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Abstract

Web sites where users create and rate content display long-
tailed distributions in many aspects of behavior. Using one
such community site, Essembly, we propose and evaluate
mechanisms to explain these behaviors. Unlike purely de-
scriptive models, these mechanisms rely on user behaviors
based on information available to each user. For Essembly,
we find the long-tails arise from large differences among user
activity rates, the time users devote to the site, and qualities
of the rated content. The models not only explain overall be-
havior but also allow estimating the properties of users and
content from their early behaviors.

Introduction

Participatory web sites facilitate their users creating, rating
and sharing content. Examples include Digg[.com] for news
stories and Wikipedia[.org] for encyclopedia articles. To aid
users in finding content of interest to them, many such sites
employ collaborative filtering of the content (Lam 2004) to
allow users to specify links to other users whose content or
ratings are particularly relevant. These links can involve ei-
ther people who already know each other (e.g., friends) or
people who discover their common interests through partic-
ipating in the web site. The resulting networks enable users
to find others with similar interests and establish trust in rec-
ommendations (Guha et al. 2004).

The availability of activity records from these sites has led
to numerous studies of user behavior and the networks they
create. Observed commonalities in these systems have iden-
tified general generative processes leading to these obser-
vations. Examples include preferential attachment in form-
ing networks and multiplicative processes in rating content,
leading to wide variation in behaviors. While such mod-
els provide a broad understanding of the observations, they
often lack causal connection with individual user behav-
iors based on user preferences and the information avail-
able to users in making their decisions (Vázquez 2003;
Boccaletti et al. 2006). Moreover, observed behavior can
arise from a variety of mechanisms (Mitzenmacher 2004).

Predicting consequences of alternate designs of the web
site requires models of causal behavior. Establishing such
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models is difficult due to the possibility of unobserved con-
founding causal factors. Instead, such models would ide-
ally be based on intervention studies and randomized tri-
als to identify important causal relationships. In contrast to
the wide availability of observational data on user behavior,
such intervention studies are difficult, though this is situation
is improving with the increasing feasibility of experiments in
large virtual communities (Bainbridge 2007) and large-scale
web-based experiments (Salganik, Dodds, and Watts 2006).

A simpler, though less conclusive, approach to causal
models is limiting the mechanisms to use information read-
ily available to users on a participatory web site. Such mod-
els provide specific hypotheses to test with future interven-
tion experiments and also suggest improvements to the web
site by altering the user experience, e.g., available informa-
tion or incentives. The simplest such approach considers
average behavior of users on a site (Lerman 2007a). Such
models relate system behavior to the average decisions of
many users. By design, such models do not address a promi-
nent aspect of observed online networks: the long tails in
their distributions. Models including this diversity could
help improve effectiveness of the web sites by allowing fo-
cus on significantly active users or especially interesting
content, and enhancing user experience by leveraging the
long tail in niche demand (Anderson 2006).

A key question with respect to the observed diversity is
whether user behavior and content characteristics are rea-
sonably viewed as arising from a statistically homogeneous
population, and hence well-characterized by a mean and
variance. Or is diversity of prior intrinsic characteristics
among participants the dominant cause of the observed wide
variation in behaviors? In the latter case, can these charac-
teristics be estimated (quickly) from (a few) observations of
behavior, allowing site designers to use estimates of these
characteristics, e.g., to highlight especially interesting con-
tent? Moreover, to the extent user diversity is important,
what characterization of this user variation is sufficient to
produce the observed long-tail distributions?

This paper considers these questions in the context of a
politically-oriented web community, Essembly1. We con-
sider population diversity and mechanisms users could be
following to produce the observed long-tail behaviors. In the

1Essembly LLC at www.essembly.com
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remainder of this paper, we first describe Essembly and our
data set. We then examine highly variable behaviors as well
as models for users and content rating. With these models in
hand, we consider their possible use during operation of the
web site by helping identify user and content characteristics
early in their history. Finally we discuss implications and
extensions to other participatory web sites.

Essembly

Essembly is an online service helping users engage in polit-
ical discussion through creating and voting on resolves re-
flecting controversial issues. Essembly provides three dis-
tinct networks for users: a social network, an ideological
preference network, and an anti-preference network, called
friends, allies and nemeses, respectively.

The distinct social and ideological networks enable users
to distinguish between people they know personally and
people encountered on the site with whom they tend to agree
or disagree. The Essembly user interface presents several
options for users to discover new resolves, e.g., based on
votes by network neighbors, recency, overall popularity, and
degree of controversy.

Our data set consists of anonymized voting records for
Essembly between its inception in August 2005 and Decem-
ber 2006, and the users and links in the three networks at the
end of this period. Our data set has 15, 424 users. Essembly
presents 10 resolves during the user registration process to
establish an initial ideological profile used to facilitate users
finding others with similar or different political views. To
focus on user-created content, we consider the remaining
24, 953 resolves, with a total of 1.3 million votes. The struc-
ture of the networks is typical of those seen in online social
networking sites, and the links created by users generally
conform to their nominal semantics (Hogg et al. 2008).

In common with other sites, such as Digg and Youtube,
the Essembly data shows wide ranges in user participation,
interest in content (the resolves) and degree distribution in
networks. Essembly is a relatively small site, for which it is
feasible to examine the behavior of all users and all content
during our sample period.

Users

A key quantity characterizing the users is the length of time
they choose to remain active on the site. We measure activity
time as the time between a user’s first and last votes (this
includes votes on the initial resolves during registration –
users need not vote on all of them immediately). Most users
are active for only a short time (less than a day). The 4762
users active for at least a day account for most of the votes
and links, and we focus on these active users for our model.

Fig. 1 shows the distribution of the activity times of active
users. Specifically, a point at time t in the figure is the frac-
tion of active users who remained active at least t + 1 days
from among active users who joined Essembly at least t + 1
days before the end of our sample period. Only this set of
early users could have remained active t + 1 or more days
within our sample. The points at larger times have larger
error bars because they involve smaller sets of users who
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Figure 1: Distribution of activity times for active users on
a log plot. The line shows a Weibull distribution fit to the

values, equal to e−(t/b)a

with parameters in Table 1. Error
bars show the 95% confidence intervals.
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Figure 2: Distribution of number of active users vs. the num-
ber of actions (votes and links) a user made. The solid curve
is the distribution from the model described in the text. The
plot does not include the 21 users with no votes or links.

joined the site early enough to include in the estimate. The
figure shows a Weibull distribution fit to the activity times.
This indicates a mixture of processes (Frisch and Sornette
1997) leading users to abandon the site: the longer a user
remains active, the lower the probability per unit time they
become inactive, as also occurs in a variety of other web
sites (Wilkinson 2008).

User actions consist of voting, creating resolves, and
forming links. Fig. 2 shows the distribution of number of
actions among the users. This distribution arises from two
factors: how long users participate on the site, and how often
they act on the site while active. These properties are only
weakly correlated (correlation coefficient −0.07 among ac-
tive users).

Model

Fig. 3 summarizes our model for users’ participation and
their activities on the site while they are active. New users
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Figure 3: Model of user behavior. People join the site as
active users, who create resolves, vote on them and link to
other active users. Users can eventually stop participating
and become inactive.

parameter value

activity time constants a = 0.571± 0.046
b = 112± 13 days

resolve creation q = 0.018± 0.0002
link creation λ = 0.043± 0.0003

Table 1: User activity parameters. The ranges specify 95%
confidence intervals for the parameter estimates.

arrive in the system when they register. Users leave the sys-
tem (i.e., become inactive) with a rate decreasing with the
time they have been active. Specifically, as seen in Fig. 1,
a user active for at least a day has total activity time t
beyond that one day given by a Weibull distribution, i.e.,

Ptime(t) = ab−ata−1e−(t/b)a

. Table 1 gives the values for
these model parameters.

User activity is clumped in time, with groups of many
votes close in time separated by gaps of at least several
hours. This temporal structure can be viewed as a sequence
of user sessions. The averaged distributions for interevent
times between activities of individuals show long-tail be-
havior, similar to other observed human activity patterns,
such as email communications or web site visits (Vázquez
et al. 2006). To model the numbers of actions per user in
the long time limit where we are only interested in the to-
tal number of accumulated votes for a particular user, this
clumping of actions in time is not important. Specifically we
suppose each user has an average activity rate ρ while they
are active on the site, whose maximum likelihood estimate is
ρu = eu/Tu, where ρu is user u’s activity, eu is that user’s
number of events (i.e., votes, resolve creations and links),
and Tu is the time elapsed between the user’s first and last
vote. We suppose the ρu values arise as independent choices
from a distribution Puser(ρu) and the values are independent
of the length of time a user is active on the site, correspond-
ing to the near zero correlation between activity time and
votes mentioned above.

Voting is by far the most common user activity. We char-
acterize these individual activities by fractions q and λ for
creating resolves and forming links, respectively. The rate
of voting on existing resolves for a user is then ρu(1−q−λ).
The observed values of q and λ vary somewhat among users.
With our focus on a user’s total activity on the site, we re-
port average values for q and λ and examine the variation
among users due to their differing overall activity rates ρu

and amount of time they are active on the site Tu.
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Figure 4: Cumulative distribution of ρu values for the 4741
users who were active at least one day and voted on at least
one noninitial resolve or formed at least one link. Plot in-
cludes a curve for a lognormal distribution fit, which is in-
distinguishable from the points and with parameters μ =
0.03± 0.05 and σ = 1.70± 0.04. The ρ values are in units
of actions per day. In this and other figures the range given
with the parameter estimate is the 95% confidence interval.

Behavior

We estimate the model parameters from the observed user
activities, and restrict attention to active users. Table 1
shows the estimates for parameters, q and λ, governing ac-
tivity choices. Fig. 4 shows the observed cumulative distri-
bution ρu values and a fit to a lognormal distribution. The
parameter estimates and confidence intervals in this and the
other figures are maximum likelihood estimates (Newman
2005; James and Plank 2007).

In this model, the probability user u has eu events (votes,
resolve creations, and links) is a Poisson distribution with
mean ρuTu where Tu is the time the user is active. For users
joining the system near the end of our sample, Tu is limited
by the end of the sample rather than when the user decides
to become inactive.

The heavy-tailed nature of the actions per user distribu-
tion (Fig. 2) can be attributed to the interplay between the
user activity times Tu and the broad lognormal distribution
of the user activity rates ρu: the product of these two dis-
tributions (Glen, Leemis, and Drew 2004) results in a broad
distribution of the product ρuTu. In particular, the lognor-
mal distribution fit to the ρ values and the activity times of
the users give a distribution of means for Poisson distribu-
tions of number of actions for the users. This combination
gives the distribution shown as the curve in Fig. 2. Thus
this model accounts for the extended tail of the activity. For
users with relatively little activity, the model underestimates
the number of users with about 2 to 20 actions while over-
estimating the number with with zero or one action. This
arises from a dependence between activity time and activ-
ity rate for these less active users. In particular, such users
have negative correlation coefficient between their activity
rate and time, tending to increase their number of actions.

The distributions of activity times and rates reflect the
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Figure 5: Distribution of votes on resolves. The solid curve
indicates a double Pareto lognormal fit to the values, with
parameters α = 2.4± 0.1, β = 2.5± 0.1, μ = 3.67± 0.02
and σ = 0.38± 0.02.

range of dedication of users to the site. Most users try
the service for a only a short time while active users give
the heavy tail. Such extended distributions of user activity
rates are also seen in other web sites, such as Digg (Lerman
2007b; Wilkinson 2008), and in activities such as scientific
productivity (Shockley 1957).

Resolves

A key question for user-created content is how user activi-
ties distribute among the available content. For Essembly,
Fig. 5 shows the broad distribution in total number of votes
per resolve. In Essembly, each resolve receives its first vote
when it is created, i.e., the vote of the user introducing the
resolve. Thus the observed votes on a resolve are a combina-
tion of two user activities: creating a new resolve (giving the
resolve its first vote) and subsequently other users choosing
to vote on the resolve if they see it while visiting the site.

We consider a user’s selection of an existing resolve to
vote on as mainly due to a combination of two factors: vis-
ibility and interestingness of a resolve to a user. Visibility
is the probability a user finds the resolve during a visit to
the site. Interestingness is the conditional probability a user
votes on the resolve given it is visible to that user. These
two factors apply to a variety of web sites, e.g., providing a
description of average behavior on Digg (Lerman 2007a).

The web site’s user interface design determines content
visibility. Typically sites, including Essembly, emphasize
recently created content and popular content (i.e., receiv-
ing many votes over a period of time). Essembly also em-
phasizes controversial resolves. As with other networking
sites, the user interface highlights resolves with these prop-
erties both globally and among the user’s network neighbors.
Users can also find resolves through a search interface.

For Essembly, the networks have only a modest influence
on voting (Hogg et al. 2008). Recency appears to be the
most significant factor affecting visibility. Fig. 6 shows how
votes distribute according to the age of the resolve at the time
of the vote. We define the age of the resolve as the ordinality
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Figure 6: Distribution of votes vs. age of a resolve.

of the given resolve among resolves introduced in time. An
age 1 resolve is the newest one of the resolves introduced,
while the oldest resolve has age R where R is the number of
resolves. Most votes go to recent resolves, i.e., those with a
small age.

The decay in votes with age is motivated by recency (de-
creasing visibility with age as resolve moves down, and
eventually off, the list of recent resolves). We offer no under-
lying model for this “aging function” but its overall power-
law form corresponds to users’ willingness to visit succes-
sive pages or scroll down a long list (Huberman et al. 1998).
The step at age 50 is, presumably, due to a limit on num-
ber of recent resolves readily accessible to users. The values
decrease as a power law, proportional to a−s, where a is re-
solve age and s ≈ 0.5 up to about age 50. For larger ages,
the values in Fig. 6 decreases faster, with s ≈ −1.

The combination of different ages in the data sample is a
significant factor in producing the observed distribution of
votes (Huberman and Adamic 1999). In particular, a distri-
bution of ages and a multiplicative process produces a log-
normal distribution with power-law tails, the double Pareto
lognormal distribution (Reed and Jorgensen 2004), with four
parameters. Two parameters, μ and σ characterize the loca-
tion and width of the center of the distribution. The remain-
ing parameters characterize the tails: α for the power-law
decay in the upper tail, with number of resolves with v votes
proportional to v−α−1, and β for the power-law growth in
the lower tail, with number of resolves proportional to vβ−1.
Fig. 5 shows a fit of this distribution to the numbers of votes
different resolves received.

Model

Our model of resolve creation involves a fraction q of each
user’s activity on the site, on average, giving each resolve its
first vote. For subsequent votes, we view a user’s choice of
resolve as due to an intrinsic “interestingness” property r of
each resolve and its visibility.

In general, r could depend on the resolve age and its pop-
ularity (especially among network neighbors, if neighbors
influence a user to vote rather than just make a resolve more
visible). However, for simplicity, we take r to be constant
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interval
resolve I1 I2 I3 I4

1 f(1)r1v1 f(2)r1v2 f(3)r1v3 f(4)r1v4

2 − f(1)r2v2 f(2)r2v3 f(3)r2v4

3 − − f(1)r3v3 f(2)r3v4

4 − − − f(1)r4v4

Table 2: Model of distribution of votes among resolves
in time intervals between successive resolve introductions,
here shown for the first four resolves.

for a resolve. A key motivation for this choice is the ob-
servation that high or low rates of voting on a resolve tend
to persist over time, when controlling for the age and num-
ber of votes the resolve already has. Thus a constant value
for an intrinsic interestingness property of resolves is a rea-
sonable approximation for Essembly. Since we use these r
values to model behavior of users other than the person who
created the resolve, there is no need to consider separately
the high interest in the resolve presumably reflected by the
creator’s choice to introduce the resolve. Thus we further
assume r is independent of the user, which amounts to con-
sidering general interest in resolves among the population
rather than considering possible niche interests among sub-
groups of users. With these simplifications, we take the r
values to arise as independent choices from a distribution
Presolve(r).

Visibility of a resolve depends on age, rank in number
of votes compared with other resolves (popularity), contro-
versy, both in general and among user’s neighbors. For Es-
sembly, resolve age appears to be the most significant factor,
so we take visibility to be a function of age alone, i.e., deter-
mined by a function f(a).

With these factors, we model the chance that the next vote
on existing resolves goes to resolve x as being proportional
to rxf(ax) where ax is the age of the resolve at the time of
the vote. The model’s behavior is unchanged by an overall
multiplicative constant, and we arbitrarily set f(1) = 1.

Behavior

Our model of resolve votes requires estimating the distri-
bution Presolve and the aging function f(a). To do so, we
consider the votes (other than the first vote on each resolve)
between successive resolve introductions. Let R be the num-
ber of resolves in our data sample. We denote the resolves
in the order they were introduced, ranging from 1 to R.

Let vi be the number of votes made in the time interval
Ii between the introductions of resolves i and i + 1 (not
including the two votes accompanying those resolve intro-
ductions). During this interval, the system has i existing
resolves. When the number of existing resolves is large, we
can treat the votes going to each resolve as approximately
independent. In this case, the number of votes resolve j ≤ i
receives during time interval Ii is approximately a Poisson
process with mean virjf(i− j + 1) because during this in-
terval resolve j is of age i− j + 1. Table 2 illustrates these
relationships.
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Figure 7: Cumulative distribution of r values for a sample
of resolves in the middle of our data set. The curve shows a
lognormal distribution fit, with parameters μ = −3.0± 0.1
and σ = 0.80± 0.07.

We estimate the ri and f(a) values as those maximizing
the likelihood of the observed numbers of votes on the re-
solves in these time intervals, treated as independent Poisson
processes. Since we are interested in estimating the distribu-
tion Presolve(r) rather than the ri values of all the resolves, it
is sufficient to maximize over a sample of resolves and time
intervals from the middle of our data set (when there are
thousands of existing resolves and votes cast). The resulting
f(a) estimate is similar to the distribution of votes vs. age
in Fig. 6, and Fig. 7 shows the distribution of estimated r
values and a lognormal fit.

With the wide variation in r values and the activity rates
for users (Fig. 4), a natural question is whether these varia-
tions are related. In particular, whether the most active users
tend to preferentially introduce resolves that are especially
interesting to other users. While active users tend to intro-
duce more resolves overall, the correlation between the ac-
tivity rate of a user and the average r values of the resolves
introduced by that user is small: −0.06. We find a modest
correlation (0.16) between the time a user is active on the
site and the mean r values of that user’s introduced resolves.

To relate this model to the vote distribution of Fig. 5, con-
sider the votes received by resolve j up to and including the
time it is of age A. According to our model, the number
of votes, other than its first vote, this resolve receives is a
Poisson variable Vj(A) with mean

μj(A) = rj

A∑

a=1

f(a)vj+a−1

At the end of our data set, resolve j is of age R− j + 1.
The persistence of votes on resolves based on the wide

variation of r values among resolves gives rise to a multi-
plicative process with decay. To see this, in our model the
number of votes between successive resolve introductions is
geometrically distributed with mean v̂ = (1−λ)/q−1 ≈ 50.
Furthermore, from Fig. 6, the aging function is approxi-

mately power law, with f(a) ≈ a−s and
∑A

a=1 f(a) ∼
A1−s/(1 − s). The expected number of votes up to age
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A is then μj(A) ∼ rj v̂A1−s/(1 − s). After accumulat-
ing many votes (i.e., when A is large), the actual number of
votes Vj(A) will usually be close to this expected value. The
change in votes to age A + 1 is

Vj(A + 1) ≈ rj v̂
A1−s

1− s
(1 + x)

≈ Vj(A)(1 + x)

where x is a nonnegative random variable with mean (1 −
s)/A. Thus, except possibly for the votes a resolve receives
shortly after its introduction, the growth in number of votes
is well-described by a multiplicative process with decay.

That our model corresponds to a multiplicative process
has two consequences. First, a sample obtained at a range
of ages from a multiplicative process (with or without de-
cay) leads to the double Pareto lognormal distribution seen
in Fig. 5 (Reed and Jorgensen 2004). In our case, the sam-
ple has a uniform range of ages from 1 to R, though with
the decay older resolves accumulate votes more slowly than
younger ones. A second consequence arises from the de-
cay as resolves become less visible over time. Thus our
model provides one mechanism, using information available
to users, giving rise to dynamics governed by multiplicative
random variation with decay. A similar process arises if the
decay is due to any combination of decreasing interest in the
content and loss of visibility with age, e.g., as seen in sites
such as Digg (Wu and Huberman 2007) with current events
stories that become less relevant over time.

Online Estimation

Our model allows estimating parameters for new users, as
they vote, and new resolves, as they accumulate votes. In
particular, the early history of resolves allows estimating the
number of votes a resolve will eventually receive as well
as which resolve will likely receive the next vote. Simi-
larly, early user reactions to posted content are accurately
predict later popularity of Youtube videos and Digg submis-
sions (Szabo and Huberman 2008). In essence, since con-
tent interestingness is largely unchanged in time we can in-
fer its value soon after content is submitted. We can estimate
the prediction accuracy by training the prediction algorithm
with historic data. The predictions do not consider semantic
features of the submitted content (such as title, description,
or tags), only initial samples of user activity relating to the
content.

Fig. 8 shows estimates of user activity levels from the
model described above, as a function of time since the user
first voted. Users not only differ considerably in their aver-
age activity rates but also in how their interest in the site
varies in time. In spite of this temporal variation, early
estimates of ρ for active users correlate significantly with
their final values. This correlation is 0.41 and 0.62 for esti-
mates after 1 and 7 days of activity, respectively. So while
we cannot give definite predictions of future user activity
rates from their early experience on the site, we can fairly
well distinguish between the more and less active users from
their early behavior. On average, user activity rates decline
in time, e.g., with the final and early estimates related by
ρ ≈ 0.7ρ(7)0.8 where ρ(7) is the estimate after 7 days.
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Figure 8: Estimates of ρ values for several users as a func-
tion of the time since their first vote. Error bars show the
95% confidence intervals.
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Figure 9: Estimates of r values for two resolves as a function
of their age. Error bars show the 95% confidence intervals.

For resolves, Fig. 9 shows how estimates for resolves’ r
values and their confidence intervals change as more votes
are observed. Other resolves show similar behavior. Thus
the interestingness of resolves appears to converge in time.

In practice, however, the optimization procedure is com-
putationally costly due to the large number of parameters
that grows linearly with the number of resolves in the sys-
tem. A further requirement of an online algorithm is that it
is able to update the model parameters in real time as new
users, votes and resolves enter the system. Thus it is not fea-
sible to consider a growing number of resolves with constant
resources. Instead we must limit the the number of param-
eters and thus resolves to be optimized to a constant value.
One such approach is to optimize parameters based on the
last K active resolves only, and keep the interestingness and
aging parameters constant for resolves of age greater than
K . This method can also track changes to interestingness
and aging in time.

Another incremental approach uses the observation that
old resolves, with a long track record of votes, have their
interestingness well-estimated. Similarly, the aging func-
tion f(a) for small ages is well-estimated from prior experi-
ence with many resolves receiving votes at those ages. Con-
versely, recently introduced resolves have had little time to
accumulate votes and f(a) for large ages is poorly estimated
due to having little experience in the system with resolves
that old. Furthermore, we expect f(a) to change slowly with
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time, primarily due to how the user interface makes resolves
visible to users. For new resolves, the maximum likelihood
estimate for the rj values involves values of f(a) for small
ages which are already well-determined from the prior his-
tory of the system. So instead of an expensive reevaluation
of all the r and f values, we can simply incrementally esti-
mate the r values of new resolves assuming f(a) values for
small ages do not change much. Conversely, as new resolves
are introduced, the oldest resolves in the system advance to
ever larger ages, allowing estimates of f(a) for those ages
by assuming the r values of those old resolves do not change
much with the introduction of new resolves.

Such estimates of model parameters can be useful guides
for improving social web sites, by identifying new users
likely to become highly active or content likely to become
popular. Since it is possible to estimate the statistical errors
given the sample size, one can also perform risk assessment
when giving the estimates. Newly posted content with high
interestingness, for instance, can be quickly identified and
given prominent attention on the online interface.

Discussion
We described several extended distributions resulting from
user behavior on Essembly, a web site where users create
and rate content as well as form networks. These distribu-
tions are common in participatory web sites. From the ex-
tended distributions of user behavior we find extremely het-
erogenous population of users and resolves. We introduce
a mechanism describing user behavior based on information
available to users, involving a combination of aging and a
large variation among people and resolves. We focused on
two areas: the wide range in user activity levels and the fac-
tors influencing the popularity of user-created content.

We found, first, most users try the online services only
briefly, so most activity arises from a relatively small frac-
tion of users who account for the diverse behavior observed.
User activity rates appear to arise from an underlying mul-
tiplicative random process, while activity time is described
by a Weibull distribution where users are more likely to con-
tinue the longer they have been active. This latter observa-
tion contrasts with a simpler model of user activity time as
a Poisson process where the probability a user abandons the
site is independent of how long the user has already partici-
pated. In terms of understanding user behavior, the Weibull
distribution raises the significant question of whether the to-
tal time users are willing to devote to the site arises from
intrinsic heterogeneity in the user population or is mainly
due to differing user experiences on the site. In the former
case, the decreasing stopping probability with time on the
site would arise from an increasing concentration of users
with high intrinsic motivation in the population as less ded-
icated users quit. In the latter case, the behavior arises from
positive experiences on the site encouraging continued use.
By contrast, the broad distribution of activity rates and their
low correlation with activity time suggest activity rates, for
however long a user chooses to participate in the site, are
mainly due to prior differences among users’ interests.

Second, we proposed a model and algorithm that de-
scribes and predicts through iterative refinements how the

popularity of user-generated content evolves in time, consid-
ering both the exposure on the site and inherent interesting-
ness. We found that the exposure content receives depends
largely on its recency, and decays with age.

The characteristics of our models apply to other web sites
where user participation is self-directed and where content
creation and social link formation plays a dominant part in
the individual online activities. For example, the Digg and
Wikipedia user communities show similar behavior in their
activity patterns (Wilkinson 2008).

Consequences of our model include suggestions for iden-
tifying user activity level and interesting resolves early in
their history. This possibility arises from persistence in vot-
ing rates over time, even before content accumulates enough
votes to be rated as popular, as is also seen in larger user
communities (Szabo and Huberman 2008). Such identifi-
cation could help promote interesting content on the web
site more rapidly, particularly in the case of niche inter-
ests. Beyond helping users find interesting content, designs
informed by models could also help with derivative appli-
cations, such as collaborative filtering or developing trust
and reputations, by quickly focusing on the most significant
users or items. Such applications raise significant questions
of the relevant time scales. That is, observed behavior is
noisy, so there is a tradeoff between using a long time to ac-
cumulate enough statistics to calibrate the model vs. using a
short time to allow responsiveness faster than other proxies
for user interest such as popularity.

Our models raise additional questions, such as under-
standing how the resolve aging function relates to the user
interface and changing interests among the user population.
Another question is how the wide distributions in user ac-
tivity and resolve interestingness arise. The lognormal fits
suggest underlying multiplicative processes are involved. It
would also be interesting to extend the model to identify
niche resolves, i.e., resolves of high interest to small sub-
groups of users but not to the population as a whole. Auto-
matically identifying such subgroups could help people find
others with similar interests by supplementing comparisons
based on ideological profiles.

A caveat on our results, as with other observational stud-
ies of web behavior, is the evidence for mechanisms is based
on correlations in observations. While mechanisms pro-
posed here are plausible causal explanations since they rely
on information and actions available to users rather than
aggregated descriptive variables not known by individual
users, intervention experiments would give more confidence
in distinguishing correlation from causal relationships. Our
model provides testable hypotheses for such experiments.
For example, if intrinsic interest in resolves is a major fac-
tor in users’ selection of resolves, then deliberate changes
in the number of votes may change visibility but will not
affect interestingness. In that case, we would expect sub-
sequent votes to return to the original trend. Thus one area
for experimentation is to determine how users value con-
tent on various web sites. For example, if items are valued
mainly because others value them (e.g., fashion items and a
variety of other economic contexts (Ariely 2008)) then ob-
served votes would cause rather than just reflect high value.
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In such cases, random initial variations in ratings would be
amplified, and show very different results if repeated or tried
on separate subgroups of the population. If items all have
similar values and differences are mainly due to visibility,
e.g., recency or popularity, then we would expect votes due
to rank order of votes (e.g., whether item is most popular)
rather than absolute number of votes. If items have broad in-
trinsic value, then voting would show persistence over time
and similar outcomes for independent subgroups. It would
also be useful to identify aspects of the model that could
be tested in small groups, thereby allowing detailed and
well-controlled laboratory experiments comparing multiple
interventions. Larger scale experiments (Bainbridge 2007;
Salganik, Dodds, and Watts 2006) would also be useful to
determine the generality of these mechanisms.

Our models incorporate the key features of continual ar-
rival of new users, existing users becoming inactive and a
wide range of activity levels among the user population and
interest in the content. These features can apply in many
contexts. For the distribution of how users rate content (e.g.,
votes on resolves in Essembly), generalizing to other situ-
ations will depend on the origin of perceived value to the
users. At one extreme, which seems to apply to Essembly,
the items themselves have a wide range of appeal to the user
population, leading some content to consistently attract user
attention at much higher rates than other content of about the
same age. At the other extreme, perceived value could be
largely driven by popularity among the users, or subgroups
of users, as seen in some cultural products (Salganik, Dodds,
and Watts 2006). In rapidly changing situations, e.g., cur-
rent news events or blog posts, recency is important not only
in providing visibility through the system’s user interface,
but also determining the level of interest. In other situa-
tions, the level of interest in the items changes slowly, if
at all, as appears to be the case for resolves in Essembly
concerning broad political questions such as the benefits of
free trade. All these situations can lead to long-tail distribu-
tions through a combination of a “rich get richer” multiplica-
tive process and decay with age. But these situations have
different underlying causal mechanisms and hence different
implications for how changes in the site will affect user be-
havior. Thus, applying models to the design and evaluation
of participatory web sites can benefit from the availability of
models relating user behavior to information readily avail-
able on the site.
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