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Abstract

Many scientific fields analyzing and modeling social
networks have focused on manually-collected datasets
where the friendship links are sparse (due to the costs
of collection) but relatively noise-free (i.e. they indi-
cate strong relationships). In online social networks,
where the notion of “friendship” is broader than what
would generally be considered in sociological studies,
the friendship links are denser but the links contain
noisier information (i.e., some weaker relationships).
However, the networks also contain additional trans-
actional events among entities (e.g., communication,
file transfers) that can be used to infer the true under-
lying social network. With this aim in mind, we de-
velop a supervised learning approach to predict link
strength from transactional information. We formulate
this as a link prediction task and compare the utility of
attribute-based, topological, and transactional features.
We evaluate our approach on public data from the Pur-
due Facebook network and show that we can accurately
predict strong relationships. Moreover, we show that
transactional-network features are the most influential
features for this task.

Introduction

Recent research in machine learning, has demonstrated the
utility of modeling social network information in domains
such as fraud detection (Neville et al. 2005), citation analy-
sis (McGovern et al. 2003), and marketing (Domingos and
Richardson 2001). The presence of relational links in data
from these domains offers a unique opportunity to improve
model performance because inferences about one object can
be used to improve inferences about related objects. For ex-
ample, fraud and malfeasance exhibit homophily1, thus if we
know one person is involved in fraudulent activity, then his
associates have an increased likelihood of being engaged in
misconduct as well. Indeed, recent work in relational model-
ing has shown that collective inference over an entire dataset
can result in more accurate predictions than conditional in-
ference for each instance independently (e.g., (Chakrabarti,
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1The tendency of like to associate with like (McPherson, Smith-
Lovin, and Cook 2001).

Dom, and Indyk 1998)) and that the gains over conditional
models increase as homophily increases (Jensen, Neville,
and Gallagher 2004).

The accuracy of these modeling techniques, however, is
contingent on the presence of links in the data that confer
homophily. Indeed, recent research that has attempted to
prune away spurious relationships and highlight stronger re-
lationships has been shown to improve the accuracy of re-
lational models (Sharan and Neville 2008). These results
are consistent with sociological research that has found pairs
of individuals with strong ties (e.g., close friends) exhibit
greater similarity than those with weak ties (e.g., acquain-
tances) (Granovetter 1983).

In small-scale social networks that have been manually
collected through surveys, the resulting networks are of-
ten sparse but the links generally reflect strong relationships
(due to the targeted collection process). On the other hand,
the explosive growth of the Internet and electronic commu-
nication has recently facilitated the automatic collection of
large-scale social networks. These networks are often more
dense and contain more noise. This is due to the construction
of the networks from transactional data (e.g., email, phone
calls) or due to the low-cost of friendship identification (e.g.,
in online social networks). In both cases, the constructed
networks contain both strong and weak ties with little or no
information to differentiate between the two types of links.
The goal of this work is to develop automated methods to
differentiate between strong and weak relationships in these
large-scale social networks.

In dynamic network domains, there is often ancillary data
recording low-level interactions among the entities (e.g.,
emails, file transfers). For example, in online social net-
works such as Facebook, members continuously visit other
members’ pages, accessing content, posting comments and
pictures, and sending messages. We believe that these trans-
actional use patterns can be exploited to infer the nature
and strength of relationships among members. More specif-
ically, we conjecture that low-level interactions among enti-
ties provide evidence of the latent high-level social network
structure, and that the patterns of interactions over time can
be accurately and efficiently modeled to identify stronger re-
lationships that confer a higher degree of homophily. For
example, we may have communication events (e.g., phone
calls, emails), data access/transfer events (e.g., web brows-
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ing, file access), or localization events (e.g., meetings, con-
ferences). These low-level transactions among individuals
are easy to record electronically but a single event does not
(necessarily) indicate a meaningful relationship between the
participating parties. However, repeated interactions in mul-
tiple contexts do suggest a stronger relationship.

We formulate the problem of differentiating between
strong and weak ties as a link prediction task where, given
a pair of linked individuals, the aim is to predict whether or
not the pair has a strong relationship. Our method is appli-
cable to transactional network domains where relationships
are either observed explicitly (e.g., friendship links in online
social networks) or where relationships are constructed from
interactions (e.g., email networks). In this paper, we take a
supervised learning approach to the problem, using labeled
examples of strong relationships. We analyze data from the
public Purdue Facebook network, where we have friend-
ship links, profile information, wall postings, picture post-
ings, group memberships, and tags indicating “top friends.”
Under the assumption that “top friends” indicate a person’s
strongest relationships, we learn a model to predict which of
a person’s friends will be their “top friend”. We use existing
machine learning methods and consider features from four
different categories: attribute similarity, topological connec-
tivity, transactional connectivity, and network-transactional
connectivity. We show experimentally, that we are able to
predict “top friends” accurately and that the most influen-
tial features are those that consider transactional information
in the context of the larger network structure (i.e., network-
transactional features).

Background

Online social networks

Online social network sites such as Facebook, Orkut, and
MySpace allow members to maintain user profiles with ba-
sic information, interests, and friends, as well as interact
with other users by posting comments, sending messages,
tagging photos, etc. Friendships links are generally undi-
rected (a friendship link is formed through agreement by
both users and appears on both profiles) and due to the ease
of electronic collection, more abundant than previous small-
scale social network datasets. For example, in the Purdue
Facebook network, the median and average degrees are 78
and 46 respectively, whereas the median and average de-
grees in the social networks collected by the National Lon-
gitudinal Study of Adolescent Health (Harris 2008) are 8
and 7 respectively. However, online social networks and
other electronically-collected networks often contain ancil-
lary transactional information that can be used in both de-
scriptive and predictive models. For example, in Facebook,
members can send each other email, write short comments
on friends’ profile pages (i.e., their wall), post photos and
tag the members that appear in them, invite friends to join
groups, etc. This transactional information records low-level
interactions among related nodes and can be used to predict
which linked members are close friends, as opposed to ac-
quaintances.

Social network analysis

Social network analysis and link analysis are a collection
of techniques for calculating descriptive models of net-
works (e.g., (Wasserman and Faust 1994)). Approaches
range from estimating measures of node and link centrality
based on the topology of the graph (e.g., (Brandes 2001)),
to learning more advanced probabilistic models to describe
the link structure of networks (e.g., (Robins et al. 2007)),
to characterizing the structure and evolution of commu-
nities in the networks (e.g., (Girvan and Newman 2002;
Kumar, Novak, and Tomkins 2006)). However, nearly all
these methods focus on descriptive statistics and generative
models of link structure, rather than predictive modeling
of specific node/link attributes. Moreover, nearly all these
methods focus on modeling the link structure in isolation
and do not exploit the dependencies between the observed
attributes and behaviors and the relational structure. As a
result, they offer a means for calculating potential aggregate
features to include in our statistical models (e.g., sender cen-
trality) but they offer no support for developing predictive
models of link strength on their own.

Data fusion

The broad area of data fusion is relevant to the task of com-
bining information from multiple transactional networks
(e.g., phone calls and emails) to predict the underlying social
network (i.e., strong ties). Data fusion is the process of com-
bining of data from multiple sources such that the resulting
information is “better” than using the sources individually.
Recent work on data fusion methods has focused on appli-
cations in biological (Lanckriet et al. 2004) and web-based
datasets (Xu, King, and Lyu 2007). In these approaches, the
data from each source is compiled into a matrix of similar-
ity scores for each pair of entities (e.g., proteins, web pages)
and then each source is weighted appropriately during ag-
gregation of the matrices. This work has focused on fus-
ing datasets with widely varying types of information (e.g.,
time-series expression data, DNA strings) to assess the simi-
larity between all pairs of entities in the data. We are instead
interested in modeling multiple sources of transactional in-
formation (e.g., phone calls, email) between pairs of related
entities to predict which relationships are strong. We conjec-
ture that larger relational context, within which the transac-
tional information resides, will be critical to the fusion pro-
cess. For example, if one network shows weak linkage from
A to C and from B to C, but A and B are strongly linked
in another network then this provides more evidence to infer
strong links for A − C and A − B.

Link Prediction

There has been a surge of interest in the link prediction
task—which is a formulization of the problem of predict-
ing future links in a social network, given a snapshot of
the network at the current time step. This is the area of re-
search that is most relevant to our work in this paper. Link
prediction methods can be generally grouped into two ap-
proaches: those that use just the link structure of the net-
work and those that use both the attributes on nodes in the
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network. In the former category, the methods typically use
topological features that measure the connectivity of nodes
in the network (e.g., (Liben-Nowell and Kleinberg 2004;
Kashima and Abe 2006)). In the latter category, the methods
typically incorporate additional similarity features that mea-
sure the correspondence among the attributes of the nodes
(e.g., (Taskar et al. 2003; Hasan et al. 2005)). The link pre-
diction task is very challenging due to the extremely large
class skew (in social networks the majority of node pairs
are not linked) and as such researchers have recently inves-
tigated restricted problems that involve only the previously
linked pairs, such as anomalous link discovery (Rattigan
and Jensen 2005). We take the same approach but focus on
predicting link strength rather than link existence. We differ
from previous work in that we aim to exploit transactional
information among nodes in order to improve prediction ac-
curacy. O’Madadhain et al. (2005) also model transactional
events, but they formulate a temporal link prediction task
which tries to predict the occurrence of an event (e.g., co-
authorship) in a time interval [t, t + δ] given the occurrence
of events in the previous time interval (i.e., < t). Adamic
and Adar (2003) also investigate the use of ancillary net-
work information but with the goal of predicting social ties,
instead of tie strength. They consider the web graph that
connects students and faculty and use similarity-based fea-
tures to predict link existence. The features consider simi-
larity in homepage text and mailing list membership, as well
as topological similarity in hyperlink structure.

Methodology

We define the link strength prediction problem as follows.
Given a network graph G = (V,E) with nodes V represent-
ing users and undirected edges E representing relationships
(e.g., friendships) between pairs of users (eij : vi and vj

are friends). Each edge eij is associated with a link weight
lij , which indicates the strength of relationships between
nodes vi and vj . The goal is to learn a predictive model
of link weight l from labeled training data. In addition to
the network graph G, we also have directed multigraphs
T = {Tk = (Vk, Ek)}, where Vk = V and Ek ⊆ E (i.e.,
the edges represent transactions among pairs of linked nodes
in E). The data also contain attributes on nodes V (e.g., gen-
der, political views) and edges Ek (e.g., email subject). In
this work, we consider the simpler binary task of predicting
whether or not a relationship is strong.

Data

We evaluated our approach on data from the public Purdue
Facebook network. Facebook is a popular online social net-
work site with over 150 million members worldwide. Mem-
bers create and maintain a personal profile page, which con-
tains information about their views, interests, and friends,
and can be listed as private or public. Friendship links are
undirected and are formed through an invitation by one user
along with a confirmation by the other. One key aspect of
Facebook that we exploited for this work is the popularity
of the “Top Friends” application. The application, which
has more than 15 million users, allows users to nominate

some of their friends as top friends. Among the users with
the “Top Friends” application listed on their profile page,
we can use top friend nominations as indicators of strong
friendships.

We considered the set of 56061 Facebook users belong-
ing to Purdue University network in March 2008. To be af-
filiated with a University network, users must have a valid
email account within the appropriate domain (e.g., pur-
due.edu), thus the members consist of students, faculty, staff,
and alumni. The public Purdue network comprised more
than 3 million public friendship links among the members.
Users had an average and median degree of 46 and 81 re-
spectively (see Table 1).

In addition to the friendship graph, we considered three
transactional graphs recording interactions among friends.
First, the wall graph consists of links from users’ public
message boards on their profile pages. This message board
is called the “wall” and is a place where other users can write
small messages to their friends. From the wall postings in
the period 03/01/07-03/01/08, we constructed directed links
in the wall graph from the sender to the receiver. Second,
the picture graph consists of links from users’ public photo
pages. The photo page can contain both photos of the mem-
ber and their photo albums. The section that displays the
photos of the member, consist of both photos posted by the
member herself and photos posted in other users’ albums
that are tagged as containing the member. From these tagged
photos, we constructed directed links from the album owner
to the member. Third, the group graph consists of links cal-
culated from the group membership information posted in
the users’ profile pages. Each “group” maintains a separate
page reflecting some interest (e.g., friends of AAAI), and
users who share that interest can become members of the
group. If two users are members of the same group, we add
an undirected link between the pair in the group graph.

From these data, we selected a random sample of 500
public users with top friends nominations. From this set
of users, we considered all friendship links to other users.
We restricted attention to links between pairs of users with
values for ≥ 4 common attributes (to facilitate the attribute-
similarity features used below). The final sample contained
8766 linked friends. Each pair (vi, vj) is labeled with a posi-
tive class label (isTopFriend) if node vi has nominated node
vj as a top friend, and negative otherwise. The resulting tar-
get class contained 896 (10.2%) positive examples.

Features

Based on profile and graph information, we constructed
50 features to use for classification. The features can be
grouped into four categories based on the information they
consider in the data: attribute-based, topological, transac-
tional, and network-transactional. The details of the fea-
tures in those categories are given below.

Attribute-Based Features In the first category we con-
structed nine features which measure the similarity of the
profile attributes on the pair of users. We created boolean
match features on single-valued attributes like gender and
relationship-status (i.e., 1 if pair of user values match, 0
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Median Median Size of Largest Avg Clustering
Graph Nodes Edges In Degree Out Degree Conn. Component Coefficient

Friendship 56,061 3,138,644 81 81 56,061 0.193
Wall 51,143 430,241 27 7 49893 0.195

Picture 35180 100,666 14 0 30938 0.333

Table 1: Graph statistics for public Purdue Facebook network

otherwise). On multi-valued attributes like networks and
interested-in, we created integer features that counted the
number of matches across the pair of lists (e.g., number of
networks common to the pair of users). Finally, we con-
structed an aggregate similarity measure that summed the
number of matches found across any of the eight profile at-
tributes.

Topological Features In the second category we con-
structed six features that measure the connectivity of the
users in the friendship graph. These features (along with
the attribute-based features) are designed to be similar to the
features used in current link prediction models. Two features
are used to record the clustering coefficients of the pair of
users. The remaining four features measure the degree and
number of shared neighbors in the friendship graph, includ-
ing the Jacquard coefficient and Adamic/Adar coefficient.
For example:

Jacquardij =
|N(i) ∩ N(j)|
|N(i) ∪ N(j)|

Adamic/Adarij =
∑

k∈N(i)∩N(j)

1
log N(k)

where N(i) refers to a function that returns the neighbors of
node vi.

Transactional Features In the third category we con-
structed seven features that consider the transactional infor-
mation between users (i.e., wall postings, picture postings
and groups). These features only consider single edges in
the transactional graphs; they do not consider the larger re-
lational context of those transactions. For example, one fea-
ture counts the number of posts from node vj on node vi’s
wall; another counts the number of photos posted by node
vj and tagged as containing node vi. However, the features
do not consider the other transactional activity of nodes vi

and vj . See Figure 1(a) for an illustration.

Network-Transactional Features For the last category
we constructed 28 features that considered the transactional
information between users, moderated by additional infor-
mation in the local transactional network. See Figure 1(b)
for an illustration. The idea here is to capture the transaction
information between nodes, but represent it within the con-
text of the larger network structure. For example, instead
of just counting the number of wall posts from vj to vi, a
network-transactional feature would also consider the num-
ber of posts made by node vj to other nodes in the network
(e.g., |postsji|P

k∈V |postsjk| ).

wall post

tagged photo

(a) Transactional

same group

wall post

tagged photo

same group

(b) Network-transactional 

same group

wall post

wall post

wall post

tagged photo

tagged photo

same group

wall post

tagged photo

Figure 1: Example illustrating the network views considered
by (a) transactional and (b) network-transactional features.

In this category, we also include features that record-
clustering coefficients calculated from the transactional
graphs (because they require more than just local knowledge
about a single edge).

Models

For classification, we considered three supervised learning
algorithms: logistic regression (LR), bagged decision trees
(BDT), and naive Bayesian classifiers (NBC). The logistic
regression model is an additive model used to predict the
probability of a discrete event (e.g., the class label) given
a set of explanatory variables. The model weights the im-
pact of each feature with an estimated coefficient and is non-
selective (i.e., it uses all possible features in the final model).
Our bagged decision trees consisted of an ensemble of ten
decision trees, each learned from a different random pseu-
dosample drawn with replacement from the training set (see
e.g., (Breiman 1996)). Decision trees are selective models
that greedily choose a subset of the features that are deemed
to be most relevant to the prediction task. Naive Bayesian
classifiers model the target class probabilities using the class
conditional distribution of each attribute and assuming con-
ditional independence among the attributes. Naive Bayes
classifiers are also non-selective models—all 50 features are
used in the final model. For all three models, we used the
algorithms from the Weka machine-learning library (Witten
and Frank 2005) with default parameter settings.

Experimental Results

The experiments in this section demonstrate the utility of
our method for automatically predicting strong friendships
(e.g., top friends) based on attribute, network, and transac-
tional information. We evaluate the models on real-world
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Facebook data, using 10-fold cross validation, and report
performance with area under the ROC curve (AUC). AUC
measures the quality of rankings (by probability) produced
by the model and is a more reasonable estimate of perfor-
mance than accuracy on problems with skewed class distri-
butions. We investigate overall performance of the models
and use ablation studies to assess the influence of different
features and graph data.

Overall Classification

In our first experiment, we used all 50 features during classi-
fication in order to measure the overall performance of each
modeling technique. Figure 2 graphs the average AUC cal-
culated from the 10 fold cross-validation trials. All three
models achieve more than 80% average AUC, which indi-
cates the model rankings are quite accurate (a random rank-
ing would correspond to 50% AUC). Although the logistic
regression (LR) and the Naive Bayes (NBC) models per-
form well, bagged decision trees (BDT) achieved the highest
AUC of 87%. Bagged decision trees also exhibit the highest
AUC in the ablation studies reported next.

Figure 3 graphs an example ROC curve, selected ran-
domly from the 10 trials, to further illustrate the AUC
results—bagged decision trees dominate in ROC space, in-
dicating that the improvement is consistent throughout the
ranking.

AUC

0.5 0.6 0.7 0.8 0.9 1.0

BDT
NBC
LR

Figure 2: Classification results for logistic regression (LR),
Naive Bayesian classifier (NBC), and bagged decision trees
(BDT), using all 50 features.

Feature Category Comparison

Our second set of experiments consisted of ablation studies
where we varied the sets of features available to the mod-
els for classification. We evaluated performance of each
of the models with the features from each category sep-
arately: attribute-based (ATT), topological (TOP), trans-
actional (TR), and network-transactional (NTR). Figure 4
graphs the average performance of each model for each cat-
egory of features.

The three models performed similarly in each category.
The attribute-based features result in the worst performance
of all feature categories, with AUC close to random (0.5).
Both the topological (based on the friendship graph) and
the transactional (based on interaction between users) fea-
ture sets result in average performance, with AUCs in the
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Figure 3: Example ROC curve comparing logistic regression
(LR), Naive Bayesian classifier (NBC), and bagged decision
trees (BDT), using all 50 features.

range of 0.65−0.75. However, the network-transactional
features result in AUCs > 0.8 for all three models. On
the bagged decision trees, the performance using only the
network-transactional features accounts for 97% of the per-
formance we observe using all features. These results indi-
cate the influence of the network-transactional features for
our classification task. Moreover, their improvement over
the transactional features indicates that is important to con-
sider the interactions in the context of the node behavior in
the larger transactional network.

Figure 5 graphs an example ROC curve, selected ran-
domly from the 10 trials, showing BDT model performance
using features from each category. The model learned with
NTR features dominates in ROC space, indicating again that
the gains are due to consistent improvement throughout the
ranking.

Network comparison

Our third set of experiments comprised another set of abla-
tion studies, where in this case we varied the network graph
available for classification. We evaluated performance of
each of the models with all features types but only gen-
erating those features which apply to a particular network:
the friendship network, the group membership network, the
photo tagging network, and the wall posting network. In
each case, we included the same set of attribute-based fea-
tures, which consider the profile information on pairs of
users. Figure 6 graphs the average performance of each
model for each category of feature. Again the models per-
form similarly in each ablation case. Overall, the wall net-
work appears to offer the most information, resulting in
AUCs close to 80%. The friendship graph results in aver-
age performances (i.e., around 70% AUC). The picture and
group graph produce the lowest performances, with AUCs
of less than 65%.
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ATT

TOP

TR

NTR

AUC

0.5 0.6 0.7 0.8 0.9 1.0

BDT
NBC
LR

Figure 4: Classification results when using the features from
each category separately: attribute-based (ATT), topolog-
ical (TOP), transactional (TR), and network-transactional
(NTR).

Figure 7 graphs an example ROC curve, selected ran-
domly from the 10 trials, showing BDT model performance
for each network. The model learned from the wall fea-
tures mostly dominates the ROC space, indicating that the
improvement is consistent through all but the bottom of the
ranking.

We hypothesized that the group interactions would be
least useful (because there is often no direct interaction
among group members) and that the picture interactions
would be most informative to the models (since tagged pho-
tos indicate not only that the two users were physically to-
gether at the time of the photo, but also that one of them
had taken the time to post, view, and tag the photo). Con-
sequently, we hypothesized that the wall interactions would
be important but somewhat less informative than the picture
interactions. The poor performance of the models when we
restrict attention to the picture network appears to contradict
this hypothesis. However, one explanation for the poor per-
formance is the sparsity of the picture graph compared to the
wall graph. Although 27.9% of user pairs in our sample have
at least one wall link between them (i.e., a posting in either
direction), only 3.7% of the user pairs have a picture link
between them. This means that there will be few non-zero
values for the picture-based features and could be a reason
that the models perform poorly. Indeed, it indicates that at
most 36% of the positive examples would have non-zero val-
ues for the features. Given the feature ranking results in the
next section, if there were more picture data available, it is
likely that performance would improve significantly.

Feature ranking

Our final set of experiments investigated the relative impor-
tance of each of the 50 features. We considered each fea-
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Figure 5: Example ROC curve comparing BDT models
with features from each category separately: attribute-based
(ATT), topological (TOP), transactional (TR), and network-
transactional (NTR).

ture independently and calculated their ability to distinguish
between the positive and negative examples using Informa-
tion Gain (IG) and the Chi-Square statistic (χ2). For each
feature, we recorded the ranking assigned by each measure
and computed the average overall ranking. Table 2 lists the
top 15 features, along with their category, description of the
feature, and the resulting rankings. Note that the function
NW (i) returns the set of unique users to which node vi has
posted wall comments. We define NP (i) analogously for
the picture taggings.

Of the top 15 features, twelve are network-transactional
features, and the other three aretransactional features. These
results lend further support to the claim that considering
transactional information in the context of the larger net-
work structure is important when designing features. We
also note, that of the top 15 features, twelve features use the
information in the wall graph and three features use informa-
tion from the picture graph. This indicates the importance of
the using the transactional network data, as opposed to the
social network recorded in the friendship graph.

Based on the feature rankings, we conducted additional
experiments where the models were only supplied the top
10 and top 20 features as determined by the ranking. The
restricted feature set resulted in overall model performance
around 80% AUC. This indicates that the bagged decision
trees, which achieved 87% AUC with all the features and
84% AUC with all the NTR features, used additional fea-
tures to make fine grained distinctions among the users pairs
and make more accurate predictions.

Conclusion

In this paper we formulate and investigate a new task in
social network mining: link strength prediction. To date,
work on link prediction has focused primarily on the task of
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Wall

Picture

Group

Friends

AUC
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BDT
NBC
LR

Figure 6: Classification results when using the features from
each network graph separately: friendship, group member-
ship, picture tagging, and wall postings.

predicting link existence. However, in domains where the
underlying social network is collected automatically (e.g.,
online friendship networks) the underlying graph generally
contains more spurious (e.g., acquaintance) relationships
than previous data that was collected in a targeted manner.
When there is additional data from transactional networks
that contains low-level interactions among the users (e.g.,
text messages), this information can be used to predict which
social ties are strongest and identify possibly spurious ties.
This is the focus of our work.

We outlined a supervised learning approach for this task
and evaluated our methods on real-world (public) data from
the Purdue Facebook network. We compared three mod-
els and showed that bagged decision trees perform best
overall, achieving 87% AUC. We evaluated the importance
of features from four different categories and showed that
network-transactional features had the largest impact on the
overall performance of the models. The experimental results
indicate that (1) transactional events are useful for predicting
link strength, and (2) it is necessary to consider the transac-
tional events in the context of user behavior within the larger
social network. This success of network-transactional fea-
tures is likely due to the same reasons that term-frequency-
inverse document-frequency (TF-IDF; Salton & Buckley
1988) is a useful measure for ranking words in documents—
a word that occurs frequently in a document is less discrim-
inative if it occurs in many documents. Similarly, a transac-
tion link between two users is less likely to indicate a strong
relationship when the users have interacted with many other
users.

In addition, we evaluated the influence of each of the dif-
ferent networks (friendship, wall, picture, group) on pre-
diction accuracy and showed that the wall network had the
largest impact on model performance. This is additional ev-

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False Positive Rate

T
ru

e 
P

os
iti

ve
 R

at
e

Friends
Group
Picture
Wall

Figure 7: Example ROC curve comparing BDT models with
features from each network graph separately: friendship,
group membership, picture tagging, and wall postings.

idence in support of using transactional information for pre-
diction. A ranking of individual features by their ability to
discriminate the class also showed a preponderance of wall
features in the top of the ranking (12 out of the top 15). The
picture network was not as useful for predicting strong re-
lationships, but this is likely due to the relative sparsity of
these links in the data.

This work presents our initial attempts to use transactional
information to predict link strength. Although transactional
events generally occur over time, the features we used in this
work did not consider the temporal aspect of the data (e.g.,
time stamps on wall postings). Our future work will con-
sider ways to incorporate temporal patterns of interaction
among the users in our models. We will focus on identify-
ing influential temporal motifs (e.g., a burst of transactions
in particular time window) for use as relational features. In
addition, we will address the more general link-strength pre-
diction task by formulating a latent variable model where
link weights between pairs of nodes are hidden variables that
change over time and affect the strength of relationships be-
tween the incident nodes.
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