
Event Detection and Tracking in Social Streams ∗

Hassan Sayyadi
University of Maryland-College Park,Microsoft Research & LiveLabs, sayyadi@cs.umd.edu

Matthew Hurst and Alexey Maykov

Microsoft LiveLabs, {mhurst,amaykov}@microsoft.com

Abstract

Events and stories can be characterized by a set of de-
scriptive, collocated keywords. Intuitively, documents
describing the same event will contain similar sets of
keywords, and the graph of keywords for a document
collection will contain clusters individual events. In this
paper we build a network of keywords based on their
co-occurrence in documents. We propose and develop a
new event detection algorithm which creates a keyword
graph and uses community detection methods analo-
gous to those used for social network analysis to dis-
cover and describe events. Constellations of keywords
describing an event may be used to find related articles.
We also use the proposed algorithm to analyze events
and track stories in social streams.

Introduction

We can define a news event as being any event (something
happening at a specific time and place) of interest to the
(news) media. Furthermore, we can consider any such event
as being a single episode in a larger story arc. For example,
a speech at a rally might be an event, but it is an episode in a
larger context: a presidential election. To help position our
work, we will use the term episode to mean any such event
and saga to refer to the collection of events related within
a broader context. The key challenges that the work in this
paper addresses are: the detection of episodes, and the for-
mation of sagas.

If we think about episodes abstractly, there is a process of
selection and ranking which results in their being reported
in media. Social Media (which we define by extension as
blogs, usenet, message boards, etc.) can be considered evi-
dence of an example of that type of process. The attention
that we discover in this content to main stream news articles,
or just to events reported in isolation, indicates what is im-
portant to the authors. Taken in aggregate, we can analyze
this attention to discover important (or news-worthy) events.
In addition, by analyzing social media in this way, we can

∗This research was partially supported by National Science
Foundation grant CMMI 0753124 INTEROP: Rapid Deployment
of Humanitarian Assistance Social Networks for ad hoc Geospatial
Data Sharing (GeoNets)
Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

compare it with a different selection and ranking process:
that of the main stream media, their reporters and editors.

Related Work

New Event Detection (NED) models usually do a single pass
incremental clustering algorithm. For a newly arrived docu-
ment the similarity between the document and known events
is computed and the maximum similarity will be selected.
If the similarity is more than the predefined threshold, the
document will be assigned to the corresponding event, oth-
erwise it will be considered a new event.

Allen et al. (Allan, Papka, & Lavrenko 1998) used a mod-
ified version of TF/IDF and also penalized the threshold
by the time distance between the document and the event.
Since future document features are not known, such online
clustering algorithms need to estimate IDF. While Allen et
al. (Allan, Papka, & Lavrenko 1998) use an auxiliary dataset
to estimate IDF, Yang et al. (Yang, Pierce, & Carbonell
1998) propose an incremental IDF factor. Yang et al. con-
sider a time window and also a decay factor for the similarity
between documents and events based on the time difference.

Yang et. al (Yang, Pierce, & Carbonell 1998) proposed
an agglomerative clustering, GAC (augmented Group Aver-
age Clustering), to extract retrospective events in the corpus.
They also applied an iterative bucketing and re-clustering
model proposed by Cutting et al. (buc ) to compromise be-
tween cluster quality and computational efficiency. Li et al.
(Li et al. 2005) proposed a probabilistic model for RED.
and use Expectation Maximization (EM) algorithm to max-
imize log-likelihood of the distributions and learn the model
parameters. Such algorithm requires the number of events
to be given which is difficult in practice. Li et al. com-
puted an estimation of event counts from the article count-
time distribution. While most of event detection models use
similar algorithms, many variations of the document repre-
sentation, distance or similarity metrics, and clustering al-
gorithm are proposed in the literature (Kumaran & Allan
2004; Brants, Chen, & Farahat 2003; Yang et al. 2002;
Lam et al. 2001). Mory et al. (Mori, Miura, & Shioya 2004;
2006) used features extracted from the KeyGraph (Ohsawa,
Benson, & Yachida 1998) in which each maximally con-
nected component, which is called a foundation or basic
concept, is chosen as a document feature. Documents repre-
sented with basic concepts, were clustered by a single-link

311

Proceedings of the Third International ICWSM Conference (2009)



Figure 1: A sample of the KeyGraph and communities of
keywords

clustering algorithm. Toda et al. (Toda & Kataoka 2005) and
Sayyadi et al. (Sayyadi, Salehi, & Abolhassani 2006) have
also proposed Label-Based clustering algorithms for search
result clustering of news engines to overcome the perfor-
mance issue of ordinary Cluster-based clustering models.

Proposed Algorithm

Both news and events can be represented by keywords and
there are several ways in which keywords can be extracted
from articles. We might compute a set of terms that maxi-
mally distinguish a document from some background set of
documents. Alternatively, we might extract the set of named
entities, or even noun phrases found in the document. Key
to this approach is the interdependency between extracted
terms. A document summarized by the terms ’Hillary’ and
’Clinton’ could not be used to discover related documents
that only mention ’Hillary’ or only mention ’Clinton’. In
addition, a document summarized by a set of terms does
not imply that another episode may not be described by
some subset of those terms. We will see later how our pro-
posed algorithm deals with this episode-sense ambiguity at
the keyword level. Our algorithm uses a graph of extracted
terms - a KeyGraph (Ohsawa, Benson, & Yachida 1998;
Mori, Miura, & Shioya 2006; 2004). Nodes are the key-
words and edges between the nodes are formed when those
terms co-occur in a document. We apply community anal-
ysis techniques to this graph adapted from social network
theory to discover events (communities of nodes)(Figure 1).
This figure is a small part of the keyword graph obtained
from posts published in May 22nd and 23rd. As it is clear in
the figure, there are several communities of keywords which

are suggestive of specific events. Inside each community,
nodes are highly connected and the connection to the nodes
outside of the community is very rare. For example, the
group of keywords including ”cyclone”, ”Myanmar”, ”for-
eign aid workers”, etc create a community for the the cy-
clone in Myanmar and the Myanmar government did not ac-
cept international aid in the first days.

Building the KeyGraph A keygraph is built by first ex-
tracting a set of keywords. Then, for each keyword ki we
calculate the term frequency (TFi,j), document frequency
(DFi) and the inverse document frequency (IDFi). Key-
words with low document frequency are filtered, and a node
(ni) in the KeyGraph is created for each remaining keyword
(ki). Then, an edge ei,j between nodes ni and nj is be
added if ki and kj co-occur in the same document. To re-
duce the noise in the data, each edge should satisfy two con-
ditions: An edge is removed if the keywords associated with
its nodes co-occur below some minimum threshold. The
second condition relates to the conditional probability of the
edge. For ei,j , the conditional probability of the occurrence
p(ki|kj) (the probability of seeing ki in a documents if kj

exists in the document), and similarly p(kj |ki) are calcu-
lated and if both of them are smaller than the defined thresh-
old, the edge will be removed. By these conditions the corre-
lation between nodes will be tested and noisy edges between
independent nodes will be removed.

Community Detection in KeyGraph We make the as-
sumption that keywords co-occur when there is some mean-
ingful topical relationship between them. By analogy, we
can think of the graph as a social network of relationships
between keywords. As Figure 1 makes clear, communities
of keywords (those sets of keywords which together cap-
ture some meaningful topic via the relationships between the
members) are densely linked, while there are few links be-
tween nodes from different topical communities. The be-
tweenness centrality score is a good measure to find the
edges between two communities. Betweenness centrality for
a node is defined as the number of shortest paths between all
pairs of nodes that pass through that node. Inter-community
edges will always obtain a high score, since the shortest
paths between nodes from different communities will pass
through them. After removing the edges with a high be-
tweenness centrality score, every connected component of
the KeyGraph represents a hypothesis about an event, the
keywords forming a bag of words summary of the event.
The algorithm removes edges iteratively. The set of short-
est paths between all pairs of nodes is found by breadth first
search. Then, the edge belonging to the most paths is se-
lected for removal from the graph. If two edges have the
same betweenness centrality score, the one with the lower
conditional probability will be removed.

Of course, a keyword can appear in more than one event.
However, the original approach to community detection by
using betweenness centrality score of edges does not sup-
port it. In the basic model, since only edges are removed,
each node cannot appear in two communities. We extend the
original algorithm to make it more flexible and allow nodes
to be duplicated. Before removing an edge, we first check a

312



Figure 2: Edge and node duplication to allow nodes be in
more than one cluster

condition. If the edge’s conditional probability is high, the
edge and corresponding nodes will be duplicated (Figure 2).

After removing or duplicating one edge in each iteration,
the betweenness centrality score in the next iteration will be
computed again for the new graph and the same steps will be
repeated until all edges with the high score are removed. Fi-
nally, the communities of keywords will be used to find the
communities of documents which may represent a collection
of documents for events.

Document Clustering Each community of keywords may
be thought of as a synthetic document, called a key docu-
ment. Documents in the original corpus which are similar
to this synthetic document can be clustered, thus retrieving
a cluster of topical documents. We use cosine similarity to
discover document clusters for key documents.

In some cases, the keywords in a key document are gen-
eral or the key document contains only a few keywords. This
results in a general category of documents. Usually, such
key documents create a cluster of documents belonging to a
high level category or a long story. For example, a key docu-
ment contains only ”Obama”, ”Clinton”, ”vote”, and ”elec-
tion” points to the USA 2008 election which is not a discrete
event. Hence, the similarity of the documents belonging to a
key document help to find such key documents, since the
documents will discuss a broad number of smaller topics
and they will be different. Considering documents as a data
point, the variance of documents belonging to such key doc-
uments will be very high. Consequently, the next step would
be to calculate the variance of documents for each key docu-
ment and then filter key documents with high variance. This
helps to find key documents that truly represent events. Al-
though documents are assigned to key clusters based on the
similarity of documents to the key documents, some of doc-
uments may be filtered later by other conditions to reduce
noise. We also find the similarity between the documents
and the centroid of each cluster and filter documents with
low cosine similarity to the centroid. Furthermore, an article
can be assigned to more than one event. We find the docu-
ment overlap of events and then merge those with the high
document overlap.

Experimental Result

The data used in our experiments was drawn from Live
Labs’s Social Streams platform. The dataset used in the fol-
lowing experiments is a set of blog posts from May and June
2009. These posts were filtered to include only those with at

least one link to a news article. We used a knowledge driven
url classifier to determine if a link was to a news article or
not. The final dataset contains 18,000 posts for two months,
an average of 3,000 posts per day.

Keyword Extraction and Keyword Community Detec-
tion We used three approaches to extract keywords for
each document: (1) the algorithm proposed by (Dunning
1993) for keyword extraction (2) extracting noun phrases as
keywords from each document and (3) extracting named en-
tities (person, place, organizations and monetary amounts)
as well as noun phrases. For all of three approaches all stop-
words are removed and all extracted keywords are stemmed
by a porter stemmer. Generally, named entities appear as
a noun phrase in the text but in many cases they are used
as a part of noun phrase in combination with other words,
so we add them as individual words separately. The num-
ber of extracted events per day using the three approaches
shows that extracting noun phrases and named entities as
keywords for documents outperforms the other approaches.
Instead of calculating the betweenness centrality score for
large ketyraphs, we computed the approximated between-
ness centrality of edges. The approximated score is obtained
by finding the shortest paths between pairs of nodes which
are sampled randomly from all possible pairs of nodes. To
evaluate the accuracy of the approximated scores we select
many large graphs and run the community detection algo-
rithm with both exact and approximated scores, then com-
pare the communities. The experiments showed that the ex-
tracted communities are exactly the same communities for
both approaches. In fact, we only use the approximated
score for large graphs and, and when components are bro-
ken to smaller components by eliminating edges with the
high approximated score, we compute the exact scores for
the small components and eliminate edges with high exact
scores.

Temporal Analysis Intuitively, events have a temporal
characteristic, so events extracted by the event detection al-
gorithms should show some sort of temporal cohesion. Ba-
sically, news events will be reported by many news articles
in the period immediately following, and over the time the
number of articles reporting an event will decrease until no-
body writes about that event. We also run the event detection
algorithm on the blog posts collected during June 2008 then
calculate the time span of detected events. Figure 3 shows
the cumulative percentage of events based on the average
publication time difference of articles. Similar to the aver-
age distances, the standard deviations of 90% of events are
less than 11 days. As shown in Figure 4 the number of arti-
cles per day decrease for each event which shows the results
of our algorithm has the true temporal characteristic of news
articles.

Story Tracking in Social Streams Social Media content
is produced at a high volume, potentially hundreds or even
thousands of posts per second. Hence, it is practically im-
possible to repeat the process of event detection on the entire
data when a new article is adding to the dataset. We keep a
sliding window of articles and find all events for the articles

313



Figure 3: Cumulative percentage of events based on the av-
erage publish time difference of articles

Figure 4: Articles distribution based on the distance from
the fist article for events

in the current window. Then related events can be found by
the document overlap of events from the current window and
events in the previous window.

Conclusion and Future Work

In this work we propose a new algorithm for event detection
using the co-occurrence of keywords. In our community de-
tection algorithm, nodes can fall into different communities
as a word or phrase can be in keywords list of more than
one event. In the current version of our algorithm we count
all keywords in one community as keywords for the event,
though a subset of keywords may be better, especially in
cases where the number of nodes is large. In addition, while
the keyword graph is a weighted graph, in order to find the
betweenness centrality score, shortest paths are found on an
un-weighted graph. Hence, another future direction of re-
search is to take into account the weight of edges in finding
shortest paths.

References

Allan, J.; Papka, R.; and Lavrenko, V. 1998. On-line new
event detection and tracking. In SIGIR’98: Proceedings of

the 21st Annual International ACM SIGIR conference on
Research and development in information retrieval.
Brants, T.; Chen, F.; and Farahat, A. 2003. A system for
new event detection. In SIGIR ’03: Proceedings of the 26th
annual international ACM SIGIR conference on Research
and development in informaion retrieval, 330–337. New
York, NY, USA: ACM.
scatter/gather.
Dunning, T. 1993. Accurate methods for the statistics of
surprise and coincidence. Comput. Linguist. 19(1):61–74.
Kumaran, G., and Allan, J. 2004. Text classification and
named entities for new event detection. In SIGIR ’04: Pro-
ceedings of the 27th annual international ACM SIGIR con-
ference on Research and development in information re-
trieval, 297–304. New York, NY, USA: ACM.
Lam, W.; Meng, H. M. L.; Wong, K. L.; and Yen, J. C. H.
2001. Using contextual analysis for news event detection.
Int. J. Intell. Syst. 16(4):525–546.
Li, Z.; Wang, B.; Li, M.; and Ma, W.-Y. 2005. A prob-
abilistic model for retrospective news event detection. In
SIGIR ’05: Proceedings of the 28th annual international
ACM SIGIR conference on Research and development in
information retrieval, 106–113. New York, NY, USA:
ACM.
Mori, M.; Miura, T.; and Shioya, I. 2004. Extracting events
from web pages. In AISTA’04: Proceedings of the Inter-
national Conference on Advances in Intelligent Systems -
Theory and Applications (AISTA).
Mori, M.; Miura, T.; and Shioya, I. 2006. Topic detection
and tracking for news web pages. In WI ’06: Proceedings
of the 2006 IEEE/WIC/ACM International Conference on
Web Intelligence, 338–342.
Ohsawa, Y.; Benson, N. E.; and Yachida, M. 1998. Key-
graph: Automatic indexing by co-occurrence graph based
on building construction metaphor. In ADL ’98: Proceed-
ings of the Advances in Digital Libraries Conference, 12.
Sayyadi, H.; Salehi, S.; and Abolhassani, H. 2006. Nes-
rec: News meta-search result clustering”. In n Proceeding
of CIS2E 06 The International Joint Conferences on Com-
puter, Information, and Systems Sciences, and Engineer-
ing, 173–178.
Toda, H., and Kataoka, R. 2005. A search result clustering
method using informatively named entities. In WIDM ’05:
Proceedings of the 7th annual ACM international work-
shop on Web information and data management, 81–86.
New York, NY, USA: ACM.
Yang, Y.; Zhang, J.; Carbonell, J.; and Jin, C. 2002. Topic-
conditioned novelty detection. In KDD ’02: Proceedings
of the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining, 688–693. New
York, NY, USA: ACM.
Yang, Y.; Pierce, T.; and Carbonell, J. G. 1998. A study
on retrospective and on-line event detection. In SIGIR’98:
Proceedings of the 21st Annual International ACM SIGIR
conference on Research and development in information
retrieval.

314




