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Abstract

In spite of enormous previous efforts to model the growth
of various networks, there have only been a few works that
successfully describe the evolution of latent networks. In a
latent network edges do not represent interactions between
nodes, but show some proximity values. In this paper we
analyze the structure and evolution of a specific type of latent
networks over time by looking at a wide range of document
similarity networks, in which scientific titles are nodes and
their similarities are weighted edges. We use scientific papers
as the corpora in order to determine the behavior of authors in
choosing words for article titles. The aim of our work is to see
whether term selection for titles depends on earlier published
titles.

Introduction

Modeling the behavior of different networks has received
great attention in the past decade. These models are based
on the facts observed by looking at the network properties in
an interval of equally spaced points in time. The evolution of
a wide range of networks have been already modeled. These
models describe the growth of citation networks (Leskovec,
Kleinberg, & Faloutsos 2005), friendship networks (Jin, Gir-
van, & Newman 2001), online social networks (Kumar, No-
vak, & Tomkins 2006; Leskovec et al. 2008), and many oth-
ers. In all of the mentioned networks, nodes are entities that
interact with each other by making links, and the links be-
tween them show relationships. Therefore, not every pair of
nodes is connected. These networks are usually unweighted,
such as friendship networks, and sometimes directed as in
the citation networks.

Another type of networks are those in which edges rep-
resent proximity or similarity values rather than relation-
ships. These networks are fully connected, weighted, and
symmetric (if the proximity measure is symmetric). Apply-
ing a cutoff equal to c on this network, and pruning the edges
with values smaller than c will make it a regular binary net-
work We refer to A, which results in an ensemble of differ-
ent binary networks, as a latent network. Figure 1 shows a
sample latent network created by the 11 sentences from the
LexRank sample dataset used in (Erkan & Radev 2004) at
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Figure 1: Lexical network for the 11-sentence sample at cut-
off values (a) 0.20, (b) 0.15, (c) 0.10, and (d) 0.00.

different cutoff values. At each cutoff, c, the network con-
sists of the edges with weights above c.

Most of the properties in regular networks are generalized
to weighted ones, and therefore are applicable to latent net-
works.

Degree Newman (Newman 2004) defines the degree of a
node in such a network as the sum of the weights of all links
attached to it, ki =

∑
j Lij .

Shortest Path A suitable measure for shortest path length
in a network in which the similarity of two nodes is pro-
portional to the weight is proposed in (Antoniou & Tsompa
2008). The shortest path length from i to j, in L is defined as
the smallest sum of the inverse weights of the links among
all possible paths from i to j.

dij = min
γij∈Γij

[ ∑
m,n∈γij

1

Lmn

]

where Γij is the set all path from i to j, and γij denotes a
single path from i to j.

Observations

In this section we will describe observations on a set of real-
world as well as our method of generating perfectly homo-
geneous document clusters.
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Cluster Name Size Range Source Regular Expression

DP 938 1965–2007 AAN ‘‘(P|p)ars(e|ing)’’

MT 844 1965–2007 AAN ‘‘(T|t)ranslat(e|ing|ion)’’

OO 1, 035 1980–2008 DBLP ‘‘(O|o)bject[ -](O|o)riented ((L|l)ang|(P|p)rogram)’’

DB 1, 509 1975–2008 DBLP ‘‘(R|r)elational (D|d)atabase’’

Table 1: The set of title collections extracted from AAN and DBLP
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Figure 2: Term frequency vs. Rank of all terms in (a)DP, (b)MT, (c)OO, and (d)DB plotted on a log-log scale. Slopes of the
best fitted curves are −1.91 (D = 0.02), −1.93 (D = 0.02), −1.91(D = 0.02), and −1.86 (D = 0.02) respectively.

Real-world Datasets

To look at different homogeneous text collections, we use
the DBLP and the ACL Anthology papers. We extracted
papers in 4 different topics from the DBLP and AAN
corpora. The ACL Anthology1http://aclweb.org/anthology-
new/ is a collection of papers from the Computational Lin-
guistics journal, as well as proceedings from ACL confer-
ences and workshops. DBLP2http://www.informatik.uni-
trier.de/ ley/db/ is the largest Computer Science bibliography
archive. The DBLP XML records that we used to extract
smaller clusters in this paper, contains 1, 095, 872 articles
ranging from 1937 to 2009.

Each cluster is a set of chronologically sorted titles in
DBLP or AAN in which the topic phrase is matched within
the title of the papers. Table 1 shows the number of articles,
publication range, and the source of the 4 clusters, as well as
the regular expressions used to extract each of them.

Term Frequency Distribution Figure 2 illustrates the
term frequency of each index term that has the given fre-
quency rank for our text collections on a log-log scale. These
plots reveal the fact that the terms appear obeying Zipf’s

law (Zipf 1949) of the form freq(k; a, V ) =
1

kaP
N
n=1

1

na
,

where V is the vocabulary size, k is the rank, and a is the
exponent of the distribution, which is 1 in the basic version
of Zipf’s law. In these plots, D is the Kolmogorov-Smirnov
goodness of fit statistic.

Densification For each of the datasets we create a latent
network in which nodes are article titles and weighted edges
are the cosine similarities. At each time t, the network con-
tains an article t and all other papers published before that.
For each network, L, we study the number of nodes v(t) and
the sum of weights e(t), at each point in time, t. The sum of
weights in a latent network can be interpreted as the number
of edges in a regular social network. We observe the den-

1http://aclweb.org/anthology-new/
2http://www.informatik.uni-trier.de/ ley/db/
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Figure 4: Effective weighted diameter versus the number of
nodes in (a)DP, (b)MT, (c)OO, and (d)DB

sification power-law in latent networks with the following
property: e(t) ∝ v(t)a

Figure 3 shows the sum of weights versus the number
of nodes in each of the 4 datasets on log-log scale. These
plots exhibit slopes that are all significantly greater than 1.
This confirms a non-linear growth in the sum of the edge
weights versus the number of nodes. In these plots, R is
the correlation coefficient of between the actual values and
the predicted values. Such a densification power-law in a
network should result in the emergence of shrinking diam-
eters. Shrinking diameters have been observed before in
other networks (Leskovec, Kleinberg, & Faloutsos 2005;
Kumar, Novak, & Tomkins 2006) but not in latent networks.
Figure 4 shows the effective weighted diameter, which is the
distance below which 90 percent of all shortest paths fall, in
the 4 growing latent networks. These figures confirm that
latent networks exhibit shrinking diameters while they grow
over time.

Synthetic Homogeneous Datasets

In this section we investigate if our findings hold for a set of
synthetic documents that represent a perfectly homogeneous
cluster. Documents that cover smaller number of topics and
are more similar to each other form a collection which we
refer to, as a homogeneous cluster. We use certain assump-
tions about homogeneity in text collections, based on which
we generate synthetic document collections. More precisely,
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Figure 3: Latent network growth. The sum of edges versus the number of nodes in (a)DP, (b)MT, (c)OO, and (d)DB plotted on
a log-log scale. Slopes are 1.88 (R = 0.99), 1.92 (R = 0.99), 1.82 (R = 0.99), and R = 1.84 (R = 0.99) respectively.

we assume in a homogeneous collection,

1. The number of occurrences of a term in documents of the
collection is a Poisson random variable.

2. The frequency of terms in the collection follows the Zip-
fian distribution.

Documents are written in a way to contain information about
a certain set of topics. The extent to which a document cov-
ers topics is different for different topics. Our first assump-
tion indicates that the frequency of a given term in a per-
fectly homogeneous cluster is determined by a Poisson ran-
dom variable. The intuition behind this assumption is based
on the N -Poisson model of term frequency, introduced and
evaluated by (Margulis 1992). This model argues that the
frequency of the occurrence a term in a particular document
of a cluster depends on the extent to which the document is
related to the topic that is associated with that term. This
frequency is the sum of N Poisson distributions, in which
every summand is an independent single Poisson. Each sin-
gle Poisson in this sum describes the frequency of the term
within the subset of documents that belong to the same level
of coverage of the topics related to the term.

More formally, the frequency of the term wi in docu-
ment dj is a random variable described with the density

P (freq(wi, dj) = k) =
∑

l πl
λk

l

k! e
−λl . Here l denotes the

class of coverage of the topic regarding the term wi, and
λl is the average number of occurrences of the term regard-
ing class l. In this representation πl is the probability that
the document in the collection belongs to the class l, and
so

∑
l πl = 1. The distribution of the term wi within the

class l is governed by a single Poisson process with a mean
of λl,i, and thus the distribution of wi in documents within
the whole collection is governed by the sum of Poisson dis-
tributions, one for each class of coverage (Margulis 1992).
It follows that, in a perfectly homogeneous cluster in which
documents only cover one topic, the N -Poisson model re-
duces to a single Poisson model. In such situation, the distri-
bution of term wi within the whole collection of documents
is governed by a single Poisson process with a unique mean,

say λi: P (freq(wi, dj) = k) =
λk

i

k! e
λi . The expected num-

ber of times that a term wi appears in a document dj is then
equal to E(freq(wi, dj)) = λi. Let’s assume that we have
a constant number of documents in our collection equal to
D. Then the expected total number of times that a term wi

appears in a homogeneous cluster is D · λi, where λi is the
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Figure 5: (a) Zipf’s law, (b) The sum of the edges vs. the
number of nodes, (c) Average weighted shortest path vs. the
number of nodes, and (d) Effective weighted diameter vs.
the number of nodes for the synthetic homogeneous cluster.

expected value of the number of times the term wi appears
in a document. Let’s also assume that the total number of
distinct terms in our collection (i.e. vocabulary size) is V .

For convention, assume that the term frequency vector is
sorted in a decreasing order in which the first word is the
most frequent word of the vocabulary. That is, in the collec-
tion C, according to the basic version of the Zipf’s law with

exponent 1, freq(wi, C) =
freq(w1,C)

i
, for 1 ≤ i ≤ V , and

so,

E(freq(wi, C)) = E(
freq(w1, C)

i
)

⇒ E(
∑

j

freq(wi, dj)) =
E(

∑
j freq(w1, dj))

i

⇒ D · λi =
D · λ1

i
⇒ λi =

λ1

i

The above argument indicates that according to the Zipfian
assumption and the Poisson model of occurrences, the ex-
pected number of appearances of terms is inversely propor-
tional to their rank in the collection. This also shows that the
most frequent term of the collection has the highest expected
number of occurrences in each document.

Let SC be the total number of terms in the entire collec-
tion. Then, E(SC) denotes the expected value of the number
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of terms in the collection. The expected value of the average
document length, �̄, in the collection is then calculated as

E(�) = E(
SC

D
) =

E(
∑V

i=1 freq(wi, C))

D

=

∑V
i=1 D.λi

D
=

V∑
i=1

λi =

V∑
i=1

λ1

i
= λ1

V∑
i=1

1

i

Solving for λi results in λi =
E(�)

i·
P

V
i=1

1

i

. Based on the above

argument, we can generate synthetic documents related to
a single topic as well as their corresponding cosine matrix.
Based on the two parameters, the average length of the docu-
ments and the size of vocabulary, we create a vector of Pois-
son random numbers with pre-computed means, λis, to rep-
resent each document. Using the generated term frequency
vectors for each document, we are able to compute the co-
sine similarity matrix for the synthetic collection and ob-
serve its evolution.

Figure 5 shows the rounded expected Term frequency ver-
sus rank (a), the sum of the edges vs. the number of nodes
(b), average weighted shortest path vs. the number of nodes
(c), and the effective weighted diameter vs. the number of
nodes (d), in a synthetic homogeneous cluster of 700 docu-
ments with the average document length of 50 words chosen
from a vocabulary of size 1, 500. This figure shows that a
synthetic homogeneous cluster undergoes a similar growth
behavior as it grows. Here, we assume that all documents in
a cluster select words from a common Zipfian distribution of
terms, that describes the term frequency of the entire cluster.

Related Work

Social Networks In past decade, several evolution models
have been proposed for social networks and their proper-
ties (Barabási & Albert 1999; Kumar et al. 2000; Jin, Gir-
van, & Newman 2001; Leskovec, Kleinberg, & Faloutsos
2005).
Lexical Networks Various lexical networks have also been
studied in several previous works (Steyvers & Tenenbaum
2005; Dorogovtsev & Mendes 2001; Menczer 2004).

Conclusion

In this work we studied latent networks built upon scientific
titles over time. We showed that the new nodes attach to
other nodes with similarities whose sum is not constant but
grows with a power of the number of nodes which is signif-
icantly greater than 1. By looking at the effective weighted
diameter, we observe that the average weighted geodesic
distance decreases in the network as new nodes arrive. This
means that the similarity network is becoming denser and
denser over time, and that more recent titles are more simi-
lar to previous ones. We show that the observations in real-
world datasets also hold in a synthetically generated and per-
fectly homogeneous dataset.
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