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Abstract

Microblogging websites such as Twitter are increasingly be-
ing used by businesses/campaigners for timely dissemina-
tion of information to their followers. The diffusion of a
tweet depends on several factors: the activity of the follower
nodes, the responsiveness of follower nodes to tweets from
the source node, the out-degree of the follower nodes, the
content of recent related tweets seen by the follower node,
etc. Using such factors, in this paper, we propose a frame-
work to measure the effectiveness of an information cam-
paign over Twitter. We consider a positive as well as a nega-
tive metric to measure the impact of a tweet: while retweets
are used to measure the positive impact, the lack of a timely
response from an active follower node is taken as a potential
negative impact. We investigate the scheduling of tweets to
increase the net positive impact while keeping the net neg-
ative impact below a desired level. We propose and study
several scheduling algorithms by casting the problem in a
Markov Decision Process (MDP) framework. In order to
compare our algorithms, we estimate the model parameters
from tweet data collected using the Twitter API from an ar-
bitrarily selected node and its 6837 followers over several
months. For this dataset, we find that if successive tweets in
the campaign are novel, then substantial gains over user ac-
tivity based scheduling can be obtained by scheduling tweets
in time slots where the ratio of the expected positive and neg-
ative metrics is high. We call this the MaxRatio policy and
we show that it is optimal under certain conditions. In cases
where we are not certain about the response of users to suc-
cessive related tweets, we identify another algorithm (which
we call MaxReach) as a robust alternative.

1 Introduction

Twitter has rapidly emerged as a tool for timely dissemina-
tion of information to a wide audience. It provides busi-
nesses an opportunity to directly inform end users about
their products/services and to understand their opinions.
Consequently, a large number of businesses have a Twitter
ID, and many have several tens of thousands of followers.
While communication over Twitter is often effective, it is
not perfect. On Twitter, every user is a source of tweets, and
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therefore, a typical user often gets flooded with a large num-
ber of tweets. A user reads tweets as per her convenience,
and at any given time, she may read only a fraction of the
tweets. Tweets that miss this window of opportunity are not
read, and thus, a tweet reaches only a fraction of the poten-
tial readership.

The importance of timing tweets for maximizing their ex-
posure is well acknowledged by social media experts: bad
timing could mean failure to create buzz and may trans-
late into loss of click-through-rate and even sale. Based on
a study of more than 1.2 billion tweets over two months,
(Sysomos 2010) reports that about 90% of all retweets hap-
pen within the first hour of the original tweet. This suggests
that the time at which a tweet is sent out critically influences
the diffusion of the tweet. “Schedule-your-tweets” is a fea-
ture in numerous Twitter tools (for example, (Socialoomph
2010)). A generic recommendation is to send tweets during
periods of high activity such as around lunch time. But such
a viewpoint ignores several key aspects of Twitter. First -
all users are not equal and some have (lot) more followers
than others. Second - due to the lossy nature of tweets, it is
important to spread the message over time, but repeating a
message carries the risk of irritating users who read multiple
copies. Hence a delicate balance between the reach and irri-
tation of an information campaign has to be achieved. Third
- if the source node follows its follower node, then it knows
if the follower node has responded to its original tweet. Such
feedback may help in future timing decisions. Fourth - all
followers are not equally responsive and it is important to
account for this responsiveness.

In this paper, we take such a nuanced perspective. We
propose a method to measure the effectiveness of a cam-
paign that accounts for the above mentioned factors, and we
address the problem of scheduling a tweet campaign to in-
crease its effectiveness. For our study, we use a mix of a sim-
ple theoretical (but rather natural) model and actual tweet
dataset collected from 6837 followers of an arbitrarily se-
lected root node over several months. One key aspect of
our model, described in Section 2, is the incorporation of an
irritation state for a user: if a user does not respond to a re-
ceived tweet, then her irritation level increases, which in turn
may reduce her chances of responding to subsequent tweets
in the information campaign. It is difficult to pin down ex-
actly how the response probabilities of a user depend on the
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irritation level, since these probabilities also depend on the
content of the tweets. Hence, we consider two extreme mod-
els to gain insight: a model in which the irritation level has
no impact on response, and another model in which a user
does not respond once she is irritated. The parameters in our
model are estimated from real data collected from Twitter.
The data collection and parameter estimation procedures are
described in detail in Section 3.

Given our model, it is clear that the process of schedul-
ing has two effects: the positive impact is that the tweets
reach a large number of users, while the negative impact is
that in the process we may irritate some users. In Section
4, we propose a metric that balances these two effects and
we study the optimal scheduling problem using Markov de-
cision processes (MDPs) (Bertsekas 1995). We compare the
performance of different (optimal as well as sub-optimal)
scheduling strategies based on simulations. Based on sev-
eral factors, under model uncertainty, we identify an offline
policy we call MaxReach as a good choice. In situations
where successive tweets are novel, a new offline scheduling
policy (called MaxRatio) provides further improvement. In
addition, our work also gives insight as to when feedback
from followers may not be effective. We discuss the main
conclusions and related future directions in Section 5.

To the best of our knowledge, this is the first paper that
systematically studies the problem of scheduling tweets to
maximize their effectiveness, and thereby, puts the art on
a solid ground. Our technique of casting the scheduling
task as a MDP/dynamic programming has a long history
and it has been employed in diverse fields: manufacturing
(Bomberger 1966), scheduling jobs on a computer (Sahni
1976), wireless transmission (Su, Tassiulas, and Tsotras
1999), (Berry and Gallager 2002), etc. While all these works
use the same broad mathematical framework (MDP), they
differ significantly in the details. In particular, our specific
model is suited for Twitter and does appear to have arisen in
the literature before.

Our scheduling strategies are simple to implement. They
can be tuned to balance reach and irritation at desired lev-
els. They can be easily implemented through “schedule-
your-tweets” feature of many Twitter tools. In the process
of developing these strategies, we have also studied the ac-
tivity patterns of users, responsiveness of followers to the
root node, irritation level of users to repetitive tweets, etc.,
which may also be of interest in other contexts. In particular,
we bring to attention two parameters, namely, responsive-
ness of followers and their irritation level, which play a vital
role in campaign effectiveness. While our primary motive
is to propose effective strategies for information campaigns,
our study also has a secondary motivation. As more nodes
on Twitter employ data analytics to improve their impact,
the dynamics of the social network evolves in a complex
manner. Our hope is that the various effective strategies we
develop in this paper will also aid future studies on the dy-
namics of Twitter.

2 A Probabilistic Model for Response
Consider a root node which aims to run an information dis-
semination campaign over Twitter. The node has several fol-

lowers, say N , and each of its followers has its own follow-
ers. A tweet sent by the root reaches all its followers. But
not all followers read the tweet. Amongst those who read
the message, some may retweet or send out a related tweet
to their followers, which reflects their interest in the tweet.
The original tweet from the root node thus diffuses through
the network through such retweets. The analysis of the im-
pact of a tweet requires the analysis of the Twitter network
around the root node. As a first step, in this paper, we focus
only on the followers of the root node while studying strate-
gies for scheduling of tweets. (This restriction is imposed
to make the data collection easier, but can be removed in fu-
ture.) While tweets can be sent at any time, we consider time
slots of one hour duration. We also assume that user activity
parameters described below have weekly periodicity, which
allows us to focus on 24× 7 = 168 time slots. Suppose the
message campaign is to be completed in time T . For exam-
ple, over one week, we may be interested in introducing key
features of a product. The root node that sends these tweets
has control over two quantities: the timing of the tweets and
the content of the tweets. In this paper, we study the timing
of tweets with the aid of the following model for the node
behavior.

Consider the N followers of the root node. A node is said
to be active at time t if it has tweeted in that time slot. Sup-
pose at time t, An(t) = 1 if user n is active, and An(t) = 0
if the user is inactive. Let M(t) = 1 if a tweet is sent by
the root node at time t and let M(t) = 0 otherwise. We
say that node n receives a tweet sent at time t if it is ac-
tive at time t, and the corresponding indicator variable is
Rn(t) = An(t)M(t). If a tweet is received by a node, then
it might retweet/or send a related message to its followers.
We denote the response of node n by the indicator variable
Fn(t), which is 1 if node n forwards a tweet received at time
t and is 0 otherwise. While Fn(t) = 1 indicates that node n
is interested in the tweet, Fn(t) = 0 can occur if the tweet is
not read, or if it is read but there is not much interest in it. Let
Un(t) = dnFn(t)Rn(t), where dn is the out-degree of node
n (but in general could be any other non-negative weight).
We note that the response of the node may be much later
than the time at which the tweet is received, but for simplic-
ity, we consider only those responses that occur in the same
time slot. Since we are interested in spreading the message
to as many users as possible, a metric we may want to max-
imize is

Ū =

N∑
n=1

T∑
t=1

Un(t) =

N∑
n=1

dn

T∑
t=1

Fn(t)An(t)M(t).

Since the activity An(t) and the response Fn(t) of a node
is not under the control of the transmitter, it is clear that Ū
is maximized by flooding, that is, M(t) = 1 for all t. Such
flooding however has negative effects. Suppose a node re-
ceives a message, but does not respond to it. Then it is likely
that the node is not interested in the message. Moreover,
further reception of similar messages may be construed as
spam and may cause the node to i) start ignoring messages
from the root node, which may reflect poorly on future cam-
paigns, ii) and in the extreme case it may stop following
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the root node. This negative effect of broadcasting similar
tweets several times can be accounted for as follows.

We assign each node a state Sn(t) ∈ {0, 1, 2, ...}, which
represents the degree of irritation1 of the node n at time t.
All nodes start in the zero state: Sn(0) = 0 for all n. If
a node receives a tweet (Rn(t) = 1) but does not forward
it (Fn(t) = 0), then Sn(t + 1) = Sn(t) + 1; otherwise
Sn(t+1) = Sn(t). From the above description, we see that

Sn(t+ 1) = Sn(t) +M(t)An(t)(1 − Fn(t)) (1)

= f (Sn(t),M(t),Wn(t)) ,

where Wn(t) := [An(t), Fn(t)] and the function f(s,m,w)
is defined by the last equality. Thus the next state is a func-
tion of the current state, the current action M(t) of the root
node, and a driving signal Wn(t) not under the control of
the root node. A measure of the negative effect of sending
tweets repeatedly is the net irritation level at the end of the
campaign:

S̄ =

N∑
n=1

dnSn(T + 1),

where we have used the same weights as in Ū to make the
problem more tractable.

In order to consider average performance metrics, we next
describe the probabilistic relationships between various in-
dicator variables described above. For convenience let

SSS(t) = [S1(t), . . . , SN (t)] .

Below, we discuss the assumptions and their implications
one-by-one. (If the reader is not interested in mathematical
details, then he may just read the definitions of an(t) and
βn,s below, and proceed to the next section.)

A1) We assume that the activity variables {An(t)} are inde-
pendent across n as well as t and

an(t) = E[An(t)] (2)

is known for all n, t. (In Section 3, we describe how
an(t) can be estimated from real data.) We also assume
that {An(t)} is independent of the state process {SSS(t)}.
Our mathematical formulation holds even if we consider
a Markov model for {An(t)}t≥1. But in practice this en-
tails a higher number of parameters to be estimated, and
hence we prefer the simpler independent evolution model.

A2) Given M(t) = 1, An(t) = 1 and the current irritation
state Sn(t), the response Fn(t) is independent of the past:

{Am(s),M(s), Sm(s), s ≤ t− 1, 1 ≤ m ≤ N}.
In words, this means that the response of node n (given
that the root node sent a tweet and node n is active) de-
pends only on the current state. The probability that node
n forwards a tweet received at time t given that it is in
state s is denoted by βn,s, that is,

βn,s = P (Fn(t) = 1|Rn(t) = 1, Sn(t) = s). (3)

1In Section 4, we introduce a scaling parameter to control the
importance given to this degree of irritation in relation to the reach
of the tweet.

We expect these probabilities to be non-increasing in the
irritation level s. These probabilities not only depend on
the user (Boyd, Golder and Lotan 2010), but we also ex-
pect them to depend on the composition of the tweets:
similar tweets are expected to be met with βn,s that de-
creases rapidly with s, while dissimilar tweets may see
almost constant βn,s. The estimation of βn,s from real
data also appears to be difficult. Therefore, to gain in-
sight, we focus on the two extreme cases:

• State Independent Response Probability (SIRP):
βn,s = βn for all s;

• No Response Under Irritation (NRUI): βn,0 = βn �=
0, βn,s = 0 for all s ≥ 1.

Note: Even though we focus on the above two choices
for βn,s, we note that our mathematical formulation
and analysis is applicable to any arbitrary βn,s.

A3) If the root node follows user n, then it receives feed-
back from this node. Many of our strategies do not
use such feedback, but some may utilize it. For strate-
gies which do use such feedback, we assume that
Sn(0) = 0 for all n, and that at time t, we known
{An(s), Fn(s),M(s)}s≤t−1, which exactly determines
Sn(t). We note that for strategies that do use such infor-
mation, the focus is on a few important users, and hence
the overhead of obtaining such information may be man-
ageable.

A4) The controlM(t) = μt(SSS(t)), where the mapping μt is to
be designed. An offline strategy does not depend onSSS(t).
We consider both offline as well as online strategies.

Under the above assumption, we see that SSS(t) is Markov
process2, which can be influenced with the control signal
{M(t)}. Our goal is to choose the control signal (that is the
transmission schedule) that maximizes the mean reach E[Ū ]
while maintaining the mean irritation level E[S̄] below a
desired level. This problem is formulated and addressed in
Section 4 . But first, in the next section, we describe estima-
tion of the parameters {an(t), βn}.

3 Estimation of Model Parameters

In this section, we describe how we estimate an(t) and βn

from Twitter data. Our dataset consists of tweets written by
the followers of an arbitrarily chosen root node, whose de-
tails are not provided for privacy reasons. The total number
of followers of the root node is 11,916. Of these, only 6,837
have set their security settings so that their tweets are visi-
ble to the external world. We collect tweets posted by these
users and the average number of tweets per user is around
800. The time span of these tweets range from few months
to few years depending upon the activity rate of the user.

The tweets were collected using Twitter API (Twit-
ter 2011) implemented in Perl programming language.
With each tweet, Twitter returns a Tweet ID, the
tweet text, the posting time of the tweet, and a

2For a Markov process, given the current state, the future and
the past states are independent (Durrett 1996).
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tweet in reply to status ID field, among other de-
tails. The tweet in reply to status ID field indi-
cates the Tweet ID of the original tweet to which the cur-
rent tweet is either a reply to, or a retweet of. The field is
populated only if the reply-to or retweet functional-
ity of Twitter is used. The field does not get populated if the
tweet is an original tweet, or if the users cut-and-paste the
content of the original tweet into a new tweet.

While estimating the parameters, we need to ensure
that the data used is related to the current behavior of the
user and also that sufficient amount of data is available for
reliable estimation. Hence, we place some restrictions and
consider only a subset of the followers. This process is
described in detail below.

Estimating an(t): We say user n is active in slot t if she
tweets in the slot t. To estimate the activity probability
an(t), we consider the latest 26 weeks (which roughly cor-
responds to six months). In each of these weeks, we look at
slot t and check if user n was active in the slot. Let Nn(t)
be the number of times user n is active in the past 26 weeks
in slot t. Then our estimate of an(t) is simply Nn(t)/26.

We note that we ignore users who are active for a period
of less than six months, since it is not possible to estimate
the activity probability reliably for them. Also, for users
with activity periods longer than six months, we only
consider the recent six months. Thus we try to ensure that
we have enough samples to estimate reliably, but at the
same time we have a short enough time window to obtain
estimates relevant to the current behavior.

Estimating βn: We recall that under SIRP as well as NRUI,
βn is the probability that user n responds to the first tweet
(in the campaign) that she receives from the root. To es-
timate βn, we make the assumption that the tweets sent out
by the root node over the duration of interest are independent
in the sense that they do not contain correlated information.
In this case, we expect the irritation level of the users to
not change from tweet-to-tweet. Hence, we can estimate βn

by simply counting the number of tweets sent by the root
node when user n is active (say N1,n) and the number of re-
sponses (say N2,n). To find N1,n, we count every root node
tweet for which user n is found to be active in a duration of
one hour after the root node tweet. The choice of an hour
stems from previous studies, which suggest that more than
90% of retweets occur in one hour after the original tweet
(Sysomos 2010). To count N2,n, we need to define what we
mean by response. From the available data, we observe that
often users do not use the retweet facility for responding to
the tweets. Users appear to cut-and-paste the original tweet
and then add some comments of their own. Based on this,
we say that a tweet (from the root node) elicits a response
from user n, if in a duration of one hour from the time of
the tweet, the user sends a tweet satisfying any one of the
following.

1. The tweet sent by the user contains the root node tweet ID
in the tweet in reply to status id field.

2. The content of the tweet sent by the user exactly matches
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Figure 1: Histogram of response probabilities for 86 follow-
ers

with that of the tweet sent by the root node.

3. The root node tweet contains more than 50 characters and
the tweet sent by the user contains the content of the tweet
by the root node. The condition of minimum 50 charac-
ters ignores small messages that often correspond to indi-
vidual exchanges.

While there is a large number of followers of the root node,
only a small fraction, a total of 291, have responded to the
root node in the last six months.

To ensure that our estimate β̂n = N2,n/N1,n is reli-
able, we consider the following procedure. If our observa-
tions are i.i.d., then our estimate has mean βn and variance
βn(1− βn)/N1,n. Ideally, we want the ratio of the mean to
the standard deviation √

N1,nβn

(1− βn)

to be large to ensure reliable estimates. Since we do not

know the true βn, we replace it with β̂n in the above metric,
and choose only those users for which the estimated metric

is more than
√
3. (We chose this value for our dataset since

higher values lead to very few users of interest.) In addition,
we ignore users with activity period of less than six months.
The users not chosen by this procedure are treated to have
zero response probability. As a consequence, we rule out a
number of followers with very few responses (indicating a
low response probability, which is difficult to estimate re-
liably, and also has little impact on performance). But we
also capture a few relatively low-activity users with high re-
sponse probabilities. After this shortlisting we get a list of
86 significant users, which we use to report our results. In
Figure 1, we show the histogram of the response probabili-
ties estimated from data.
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4 Scheduling Strategies: MDP Framework

and Simulations

In this section, we develop different scheduling strategies.
We start by formulating the general scheduling problem.
Then, we consider the specific cases of SIRP and NRUI re-
spectively. In the end, we summarize our results and discuss
the practical implications.

We recall that under assumption A1)-A4), the process
{SSS(t)} is Markov with observable states. Our aim in this
section is to find scheduling strategies that minimize the cost
function

C(λ) = λE[S̄]− E[Ū ],

where λ > 0 is a Lagrange multiplier. The constant λ al-
lows us to tradeoff the mean reach E[Ū ] and the mean ir-
ritation level E[S̄]. At one extreme, λ = 0 leads to the
flooding with maximum reach (Umax) and also maximum
irritation (Imax), while the other extreme of λ → ∞ leads
to no transmissions with zero reach and irritation. For our
dataset, working with only the N = 86 significant users, we
get,

Umax = 77, 588.21, Imax = 1, 869, 859.75.

In practice, λ can be chosen to obtain a desired number of
total transmissions.

In the Appendix, we show that the cost can be written
in the standard form of an MDP and the optimal control
{M(t)} can be computed by the dynamic programming
(DP) algorithm. (For an introduction to MDP and DP, see
(Bertsekas 1995).) The DP algorithm works backwards: first
we compute the optimal action (as a function of the cur-
rent state) at the terminal step T , then at T − 1, and so on.
The best action at time t (given the optimal actions for time
greater than t) is obtained by minimizing the expected future
cost, and the corresponding optimal cost at time t is referred
to as the value function. Since the campaign ends at time

T , the value function at time T + 1 is JT+1(sss) = λdddtsss. We
show in the Appendix that this entails the following optimal
choice of M(T ):

M(T ) = 1 if and only if

N∑
n=1

dnan(T )
(
λ− (1 + λ)βn,sn

)
< 0.

(4)

Having found the optimal value at time T , the dynamic
programming algorithm then proceeds to find the value
function at time T − 1, which also yields the optimal value
of M(T − 1). Without any further assumption, there is no
simplification, and hence we consider the special cases of
SIRP and NRUI below.

State Independent Response Probability (SIRP)

Consider the case that βn,s = βn for all n, s, that is, the
state of a user does not affect his/her probability of response.
Under this assumption, we see that M(T ) = 1 if and only if∑N

n=1 dnan(T )βn∑N

n=1 dnan(T )
>

λ

1 + λ
=: c.

Thus the optimal value of M(T ) does not depend on the
state and the corresponding value function (see the Ap-

pendix) JT (sss) = λdddtsss+ c′, where

c′ =

N∑
n=1

dnan(T )
(
λ− (1 + λ)βn

)
,

does not depend on the state. As a consequence, the opti-
mization problem for finding JT−1(sss) and the optimal value
of M(T − 1) is same as the one we just solved. Repeating
this argument we get that for the optimal strategy

M(t) = 1 if and only if

∑N

n=1 dnan(t)βn∑N

n=1 dnan(t)
> c.

Thus the optimal strategy is a static strategy, that is, it does
not depend on the state and can be determined offline. In
particular, this means that we do not have to track the state
evolution and need not follow different followers to collect
information such as An(t), Fn(t). The constant c ∈ [0, 1].
For c = 0, we get the flooding strategy, while for c = 1, we
get no transmissions. The relationship between the number
of transmissions and c is not straightforward, and in practice,
in order to control the total number of transmissions, we may
implement the optimal strategy in an alternative fashion. Let
t0 be the total number of transmissions needed. Then we
choose the slots with the highest t0 values of the ratio

ratio(t) =

∑N

n=1 dnan(t)βn∑N

n=1 dnan(t)
.

We call this the MaxRatio policy. We note that the numera-
tor is the mean reach at time t, while the denominator is the
sum of the mean reach (say Ū(t)) and mean irritation at time
t (say S̄(t)), that is,

ratio(t) =
Ū(t)

Ū(t) + S̄(t)
=

Ū(t)
S̄(t)

Ū(t)

S̄(t)
+ 1

.

Thus equivalently, the optimal policy transmits in the time
slots corresponding to top t0 values of the mean reach to
mean irritation ratio.

We next compare the optimal MaxRatio policy with the
following two policies.

• Maximum Activity Policy (MaxAct): Transmit in the

top t0 slots having the highest activity
∑N

n=1 dnan(t).
This is related to the common practice of using the most
active periods.

• Maximum Reach Policy (MaxReach): Transmit in the

top t0 slots having the highest reach
∑N

n=1 dnan(t)βn.

In Figure 2, for MaxReach and MaxRatio, we show the nor-
malized mean reach E[Ū ]/Umax and the corresponding per-
centage reduction in irritation (w.r.t. MaxAct) for values of
t0 ranging from 0 to T = 168. We have used the parame-
ter values estimated in Section 3. We see that MaxAct and
MaxReach are very close. At a normalized reach of 0.25,
MaxAct and MaxReach both have a normalized mean irri-
tation of about 0.27, while the optimal policy has mean ir-
ritation level of about 0.22, which is a reduction of about
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Figure 2: Percentage reduction in irritation (w.r.t. MaxAct)
for the same reach by using MaxRatio and MaxReach under
SIRP.

18.5%. If we allow a large number of transmissions, then,
as expected, the gain of the optimal policy is not much. For
a smaller number of transmissions, the gain of the optimal
MaxRatio policy is higher, but the normalized reach is very
small. As shown in Figure 3, the optimal MaxRatio policy
needs more number of transmissions for attaining the same
mean reach. For example, to obtain a mean reach of 0.25,
the optimal policy uses about 60 transmissions, while Max-
Act/MacReach needs only about 20 transmissions. A higher
number of transmissions is expected because the ratio-based
policy picks those slots in which substantial reach as well
as relatively less irritation is expected. In Table 1, we list
the top 5 time slots (GMT time) as per MaxReach policy
for the root node, and in Table 2, we list the top 5 slots
for MaxReach. It is interesting to note the contrast between
these strategies. While MaxReach prefers weekdays, the ra-
tio based policy picks GMT Sunday 9:00 hours as the top
slot and GMT Sunday 8:00 hours as the third preferred slot.
A closer look reveals that there are three users with time
zones Beijing, Quito, and Beijing respectively, that have
high activity probabilities (0.19, 0.19, 0.11 respectively) on
Sunday at 9am GMT and their number of followers is 139,
1323, and 215 respectively. Since most of the other users are
in USA and are inactive at this time, the ratio based policy
picks this slot, which results in low irritation but high reach.
Such a choice has two aspects.

• The MaxRatio policy chooses different slots than
MaxReach, which is correlated with the typical practice
of using high tweeting activity periods. Thus compared
to competitors of the root node, this different strategy may
make the tweets stand out.

• However, it should be noted that since we only consider
the number of followers dn for computing the reach, and
not their activities during the relevant period, some of the
slots proposed by the ratio based policy may need closer
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Figure 3: The number of transmissions needed to attain a
desired reach for the different schemes under SIRP.

Time Slot Day Time
154 Sun 9:00

80 Thu 7:00

153 Sun 8:00
7 Mon 6:00

104 Fri 7:00

Table 1: Top 5 slots for MaxRatio

scrutiny. For example, if a user exhibits high activity in
an uncommon time slot for her time zone, and if several
of her followers are in the same time-zone, then the ef-
fective reach of this user is quite small, even though the
number of followers may be quite high. This goal can
be attained by modifying the weights dn to capture such
activity/location aspects, but in this paper, we do not pur-
sue this further. (Remark: A similar comment applies
to MaxReach as well, but since a typical slot chosen by
MaxReach has lot of active users, it is less sensitive to the
presence of nodes with high reach but poor effective reach
due their uncommon behavior.)

No Response Under Irritation (NRUI)

Consider the case βn,0 = βn and βn,s = 0 for s > 0, that
is, if the state is 1 or more, then the user does not forward

Time Slot Day Time
63 Wed 14:00

64 Wed 15:00

87 Thu 14:00
112 Fri 15:00

39 Tue 14:00

Table 2: Top 5 slots for MaxReach
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Figure 4: Comparison of the 1-step optimal policy under
NRUI assumption with MaxReach policy.

the tweet. In this case, from (4), we see that the optimal
M(T ) = 1 if and only if∑

n:Sn(T )=0 dnan(T )βn∑N

n=1 dnan(T )
> c.

Due to the dependence on the set {n : Sn(T ) = 0} the ex-
plicit calculation of JT (sss) is difficult. Moreover, even for
a small number of users the problem becomes computation-
ally intractable due to the large state space. Hence, we resort
to a suboptimal algorithm:

M(t) = 1 iff

∑
n:Sn(t)=0 dnan(t)βn∑N

n=1 dnan(t)
> c.

This algorithm attempts to make the best decision under the
assumption that the next step is the last step. Hence we re-
fer to it as the 1-step optimal algorithm. We can compare
this algorithm with MaxAct, MaxReach, and the optimal al-
gorithm under SIRP. We find that the performance of Max-
Act and the optimal algorithm under SIRP are slightly worse
than MaxReach under the NRUI setting. Hence in Figures
4 and 5, we show a comparison of the 1-step optimal al-
gorithm with only the MaxReach policy. We note that for
both the algorithms, the irritation increases very rapidly as
the reach increases. This is a consequence of the fact that
once a node is irritated, no one can be reached through it
again, and this forces us to work with very low normalized
mean reach. The 1-step optimal policy, though not optimal,
does give about 15-20% reduction in mean irritation at nor-
malized mean reach levels above 0.05. In this regime, the
average number of transmissions under the 1-step policy is
roughly 1.5 to 2 times more than the MaxReach policy with
the same mean reach. To implement the 1-step optimal pol-
icy, we need to monitor the followers and collect informa-
tion about An(t), Fn(t) so that the state can be tracked. In
contrast, MaxReach can be designed offline.
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Figure 5: Comparison of the number of transmissions to at-
tain a given reach level for the 1-step optimal policy under
NRUI and MaxReach.

5 Conclusion

The different strategies we have considered have different
value depending on the perspective and we summarize our
findings so far from different angles below.

1. Implementation Complexity: MaxReach, MaxAct, and
MaxRatio (the optimal policy under SIRP) are offline
while the 1-step optimal policy needs knowledge of the
An(t), Fn(t)’s and hence has higher complexity.

2. Performance Under SIRP: For the dataset considered,
MaxReach and MaxAct yield almost identical perfor-
mance while the optimal MaxRatio policy can have up to
15-20% reduction in the mean irritation level in the mod-
erate mean reach regime.

3. Performance Under NRUI: For the dataset considered,
MaxAct and MaxRatio (which is the optimal policy un-
der SIRP) are somewhat inferior to MaxReach, while the
one-step optimal policy can yield improvement up to 15-
20% at normalized mean reach level of around 0.05. All
schemes have substantially less reach than the SIRP case.

4. Robustness: From the dataset available, it is not possi-
ble to determine if SIRP or NRUI (or if something in be-
tween) is true. But the MaxReach algorithm seems to be
at most 15-20% from the best known scheme under either
of the case. In this sense, it is robust.

5. Non-observable Reward: Our cost function gives signif-
icant importance to response by the followers in the form
of sending out a related tweet. As the dataset reveals,
only a tiny portion of all the users retweet and yield re-
ward/cost. However, sending tweets to the other vast ma-
jority of users may also be assigned a reward/cost, even
though observing such impact is not possible. If we agree
that there is also a reward for simply reaching out to these
users, then MaxReach/MaxAct gain more significance.
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JT (s) = min
m∈{0,1}

E

[
JT+1(SSS(T + 1))−

N∑
n=1

dnFn(T )An(T )M(T )
∣∣∣SSS(T ) = sss,M(t) = m

]

= min
m∈{0,1}

{
λdddtE[SSS(T + 1)|SSS(T ) = sss,M(t) = m]−m

N∑
n=1

dnβn,snan(T )

}
.

Figure 6: The DP equation for the terminal step.

Main Conclusion: Given the above, we make following
main conclusions for the root node under consideration.

• If we are not sure about the model for βn,s, then
MaxReach is attractive for the root node since at low com-
plexity it yields decent performance under SIRP as well as
NRUI.

• The loss of performance under NRUI is quite severe, and
every effort should be made to compose novel tweets to
ensure that we are closer to SIRP than NRUI. If we expect
SIRP to be more representative of reality, then we should
use the MaxRatio that is optimal under SIRP.

• Following the followers in order to obtain retweet feed-
back is not important under SIRP.

Future directions: We think our work is only a first look
at the problem and lot more needs to be done. One impor-
tant direction is to validate the different scheduling strate-
gies on Twitter, and currently, we are working in this direc-
tion. Second, we have worked with only one root node. It is
likely that different nodes have different characteristics and
the conclusions for other root nodes may be different. Third,
considering one more level of depth of the graph around the
root node may help fine tune the performance metric. And
last but not least, it is important to understand the dynamics
of the networks if a substantial fraction of nodes start using
such scheduling strategies.

6 Appendix

In this appendix, we present the details of the MDP formu-
lation and the DP algorithm. (For an introduction to these
concepts, please see (Bertsekas 1995).) The cost function
can be expressed in the form

C(λ)

= E

[
λ

N∑
n=1

dnSn(T + 1)−
T∑

t=1

N∑
n=1

dnFn(t)An(t)M(t)

]

=: E

[
λdddtSSS(T + 1) +

T∑
t=1

g(Wn(t),M(t))

]
,

that is, we have additive cost of E[g(Wn(t),M(t))] at time

t and a terminal cost of λE[dddtSSS(T + 1)]. This shows that
we have an MDP and the optimal control {μt}Tt=1 is given
by the dynamic programming (DP) algorithm, which we an-
alyze below. To find the value function at time T and the

optimal control value M(T ), we have to solve the optimiza-
tion problem specified in Figure 6. From (1) and assump-
tions A1)-A2), we get that,

dddtE[SSS(T + 1)|SSS(T ) = sss,M(t) = m]

= dddtsss+m

N∑
n=1

dnan(T )(1− βn,sn).

Therefore

JT (s)

= λdddtsss+ min
m∈{0,1}

m

N∑
n=1

dnan(T )
(
λ− (1 + λ)βn,sn

)
.

From this we get (4). The computation of the optimal con-
trol for t < T needs more assumptions and is discussed in
Section 4 in detail.
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