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Abstract

Theoretical progress in understanding the dynamics of
spreading processes on graphs suggests the existence of an
epidemic threshold below which no epidemics form and
above which epidemics spread to a significant fraction of the
graph. We have observed information cascades on the so-
cial media site Digg that spread fast enough for one initial
spreader to infect hundreds of people, yet end up affecting
only 0.1% of the entire network. We find that two effects, pre-
viously studied in isolation, combine cooperatively to drasti-
cally limit the final size of cascades on Digg. First, because
of the highly clustered structure of the Digg network, most
people who are aware of a story have been exposed to it via
multiple friends. This structure lowers the epidemic thresh-
old while moderately slowing the overall growth of cascades.
In addition, we find that the mechanism for social contagion
on Digg points to a fundamental difference between informa-
tion spread and other contagion processes: despite multiple
opportunities for infection within a social group, people are
less likely to become spreaders of information with repeated
exposure. The consequences of this mechanism become more
pronounced for more clustered graphs. Ultimately, this effect
severely curtails the size of social epidemics on Digg.

Introduction

Many diverse phenomena can be modeled as contact pro-
cesses, including adoption of new ideas (Rogers 2003;
Bettencourt et al. 2005), spread of infectious disease (An-
derson and May 1991; Hethcote 2000) and behaviors (Chris-
takis and Fowler 2007; 2008), computer virus epidemics on
the Internet (Castellano and Pastor-Satorras 2010), word-
of-mouth recommendations (Goldenberg, Libai, and Muller
2001), viral marketing campaigns (Kempe, Kleinberg, and
Tardos 2003; Iribarren and Moro 2009), and information
cascades in online social networks (Lerman and Ghosh
2010). A contact process is simply a diffusion of activa-
tion on a graph, where each activated, or “infected,” node
can infect its neighbors with some probability given by
the transmissibility. Given their prevalence, contact pro-
cesses and the effect of network topology on their dynamics
have been widely studied. One of the more important results
is the existence of an epidemic threshold (Wang et al. 2003;
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Prakash et al. 2010; Chakrabarti et al. 2008; Castellano and
Pastor-Satorras 2010), i.e., the critical value of transmissi-
bility above which large number of nodes in the graph are
eventually infected. In graphs with power-law degree distri-
bution, a common property of social networks (Amaral et al.
2000), large degree heterogeneity speeds up epidemics (Bar-
rat, Barthélemy, and Vespignani 2008; Lloyd-Smith et al.
2005), resulting in the vanishing epidemic threshold in the
limit of very large graphs (Satorras and Vespignani 2001).
This result has alarming implications for propagation of
viruses in human populations and computer networks: any
outbreak, even one that is not very virulent, will spread to
infect large number of nodes.

Until recently, obtaining empirical data to study con-
tact processes involved laborious surveys (Valente 2010)
and contact traces (Lloyd-Smith et al. 2005; Christakis
and Fowler 2007; 2008), which made analysis of their sta-
tistical properties impractical. The proliferation of online
social networks on sites such as Facebook, Twitter, and
Digg, where users explicitly declare social links and actively
spread information, gives us a unique opportunity to quanti-
tatively study dynamics of contact processes. We collected
data from the social news aggregator Digg detailing how in-
terest in more than 3,500 stories spreads through Digg’s so-
cial network (Lerman and Ghosh 2010). A user becomes
infected by digging (i.e., voting for) a story and exposes
her network neighbors to it. Each neighbor may in turn be-
come infected (i.e., vote), exposing her own neighbors to it,
and so on. This way interest in a story cascades through
Digg’s network.

This data enables us to trace the flow of information along
social links and quantitatively study dynamics of informa-
tion spread on a network. We find that the vast majority
of cascades grow far slower than expected from their ini-
tial spread and fail to reach “epidemic” proportions. To
understand why, we simulate information cascades on the
Digg graph and on a synthetic graph constructed to have
similar properties. We compare results to theoretical pre-
dictions and properties of real cascades on Digg. We find
that while network structure somewhat limits the growth of
cascades, a far more dramatic effect comes from the social
contagion mechanism. Unlike the standard cascade models
used in previous works on the spread of epidemics, repeated
exposure to the same story on Digg does not make the user
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more likely to vote for it. Furthermore, this effect becomes
quite significant due to the structure of the Digg graph which
results in repeated exposure for most users. While the ef-
fect of clusters on epidemics has been studied, and alter-
nate contagion mechanisms on social networks have been
observed (Romero, Meeder, and Kleinberg 2011), no one
has studied their interaction and noticed that they construc-
tively interfere to drastically limit epidemic size. We define
an alternative cascade model that fits empirical observations
and show that in simulation it reproduces the observed prop-
erties of real information cascades on Digg.

Information Cascades on Digg

The social news aggregator Digg (http://digg.com) is one of
the oldest and more popular social media sites. Digg allows
users to submit links to news stories and vote for, or digg,
them. There are multiple submissions every minute, many
thousands a day. A newly submitted story goes to the up-
coming stories list, where it remains for 24 hours, or until it
is promoted to the front page. Digg selects about a hundred
of these stories every day to feature on its front page. Al-
though the exact promotion mechanism is secret, it appears
to take into account the number and the rate at which story
receives votes.

Digg also allows users to designate friends and track
their activities. The friends interface shows stories a user’s
friends recently submitted or voted for. The friendship graph
is directed. When user j lists user i as a friend, j can watch
the activities of i but not vice versa. We call j the fan, or
the follower, of i. A newly submitted story is visible in the
upcoming stories list, as well as to submitter’s fans through
the friends interface. With each vote it also becomes visible
to voter’s fans. In the event that j has n friends who have
voted for a story, the story appears in their interface with a
colored badge with the number n emblazoned on it.

We used Digg API to collect data about 3,553 stories pro-
moted to the front page in June 2009.1 The data associated
with each story contains story title, story id, link, submit-
ter’s name, submission time, list of voters and the time of
each vote, the time the story was promoted to the front page.
In addition, we collected the list of voters’ friends.

We define an active user as any user who voted for at least
one story on Digg during the data collection period. There
were 139,409 active users, of which 71,367 designated at
least one other user as a friend. We extracted the friends
of these users and reconstructed the fan network of active
users, i.e., a directed graph of active users who are watching
activities of other users. There were 279,634 nodes in the
fan network, with 1,731,658 links.

Degree Distribution

Figure 1(a) shows the distribution of the number of active
fans per user. This distribution has a scale-free shape that is
common to degree distributions of social and other complex
networks (Amaral et al. 2000; Clauset, Shalizi, and New-

1The data set is available at
http://www.isi.edu/˜lerman/downloads/digg2009.html

(a)

(b)

Figure 1: Properties of Digg: (a) Degree distribution of the
fan network, (b) distribution of principal cascade size.

man 2009) and is well described by a power law of the form
p(k) ∝ k−γ with γ ≈ 2.

Cascade Size

The spread of a story through Digg’s social network can be
described as a social contagion process where votes spread
between friends on the network. As interest in a story
spreads, it may generate many cascades from independent
seeds. For each story, using the methodology proposed
in (Ghosh and Lerman 2011), we extracted the cascade that
starts with the submitter and includes all voters who are con-
nected to the submitter either directly or indirectly via the
fans network. We call this the principal cascade of the story.
Figure 1(b) shows the distribution of principal cascade sizes
of stories in our sample. This distribution is well described
by a log-normal function with the mean of 156. Note that
most of the cascades are smaller than 500, and only three
are bigger than 1,000.

A story will typically generate multiple, even hundreds
of, cascades (Ghosh and Lerman 2011). Aggregating over
all cascades gives the total story popularity. This quantity
is well fit by a log-normal with the mean 614. Only 15 sto-
ries in our sample of 3,553 received more than 6,000 votes,
and only one more than 9,000. The most popular story in
our sample, and one that generated the biggest principal cas-
cade, was about Michael Jackson’s death. It received more
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than 24,000 votes. The distribution of story popularity is re-
markably similar to that obtained by Wu and Huberman (Wu
and Huberman 2007) from a sample of over 30,000 sto-
ries promoted to Digg front page in 2006. In their sample,
the most common value of story popularity was around 500
votes (with a maximum around 4,000 votes).

What Limits Cascades on Digg?

The observations above present a puzzle: why are informa-
tion cascades on Digg so small? In our sample, only one
cascade, about Michael Jackson’s death, can be said to have
reached epidemic proportions, i.e., reaching a significant
fraction of active Digg users (in this case, about 5%). The
majority of the cascades for the remaining stories reached
fewer than 0.1% of active Digg users. On the other hand,
the cascades did spread fast enough to infect hundreds of
users. This disparity becomes more striking in the next sec-
tion where we show that typical epidemic models predict
that stories will reach an order of magnitude more voters
than we observe on Digg.

There are a number of factors that could explain why in-
formation cascades on Digg are so small. Perhaps Digg
users modulate transmissibility of stories and keep them
small to prevent information overload. On the other hand,
transmissibility could diminish in time, either because of
novelty decay (Wu and Huberman 2007) or decrease in vis-
ibility of stories as new stories are submitted to Digg (Hogg
and Lerman 2009). Perhaps the structure of the network
(e.g., clustering or communities) limits the spread of infor-
mation. Or it could be that the mechanism of social conta-
gion, i.e., how people decide to vote for a story once their
friends vote for it, prevents stories from growing on Digg.
In addition, users are active at different times, and hetero-
geneity of their activity could be another explanation.

In this paper we examine some of these alternate hypothe-
ses through simulations of contact processes on networks
and empirical study of real cascades on Digg. Ultimately,
we are able to identify the factors that allow us to closely
reproduce the observed behavior on Digg.

Analysis of Simulated and Real Cascades

We now proceed to describe two effects that interact syn-
ergistically to severely limit the size of cascades on Digg.
First, due to the highly clustered structure of the Digg graph,
most nodes end up being exposed to a story multiple times,
even while the story fails to propagate outside of a cluster.
Second, we observe that, contrary to many contagion mod-
els, repeated exposure to a story does not make a user more
likely to vote on it. We compare observed Digg cascades
to simulations and theoretical results for standard models
of spreading processes on graphs, highlighting the profound
impact these effects have on the final size of cascades.

Network Structure

A traditional measure of graph clustering like the (Watts-
Strogatz) clustering coefficient, which is based on the num-
ber of triangles in a graph, yields an unremarkable 0.0924
for the Digg graph. In practice, we find clustering effects

Figure 2: For nodes who were exposed to a story, the average
number of friends who voted on the story.

to be far more pronounced than this measure suggests, po-
tentially reflecting high variance of the clustering coefficient
across all nodes. For every node that sees a story from one of
its friends, we count the total number of that node’s friends
who voted on the story (or, if the node itself voted, the to-
tal number of friends who voted on the story before it did).
The distribution of this quantity in Figure 2 shows that a
solid majority of ∼ 63% of exposed users have more than
one friend voting on a story, with some having dozens of
infected friends. This is especially remarkable when one
considers theoretical results that model social contagion as
branching processes, e.g., a Galton-Watson process (Iribar-
ren and Moro 2009). That model assumes cascades spread
in a tree-like fashion, so that each node has only one friend
voting before it.

Simulations

To gauge the effect of graph structure on the spread of cas-
cades, we construct a graph with the same number of nodes
and require that each node has the same degree as its coun-
terpart in the Digg graph. We used the directed configuration
model from (Newman, Strogatz, and Watts 2001) to create
a random graph with a given degree sequence. This method
preserves the degree distribution of the original Digg graph
while destroying degree correlations and cluster structure in
the graph. By simulating cascade processes on the original
and randomized network, we can measure the effect graph
structure has on cascade size.

We begin with an independent cascade model widely
used to study diffusion processes on networks (Satorras
and Vespignani 2001; Kempe, Kleinberg, and Tardos 2003;
Iribarren and Moro 2009). For later comparison we point
out similarities to the susceptible-infected-removed (SIR)
model in the epidemic literature (Hethcote 2000; Barrat,
Barthélemy, and Vespignani 2008). We start with a single
seed node who has voted for a story. By analogy with epi-
demic processes, we call this node infected. The susceptible
fans of the seed node decide to vote on the story with some
probability given by the transmissibility λ. Since every node
can only vote for the story once, at this point, the seed node
is removed, and we repeat the process with the newly in-
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fected nodes. Note that a node who is a fan of n voting
nodes, has n independent chances to become infected, but
in this model once a node votes on a story, it only has one
chance to spread it to its fans before it is removed.2 Intu-
itively, this assumption implies that you are more likely to
vote on a story if many of your friends vote on it.

Starting with random seed node, we generated 100,000
cascades using a transmissibility picked uniformly from the
range [0, 0.01] and 40,000 cascades with transmissibility
picked uniformly from the range [0.01, 0.03]. Each time a
node is infected, it will infect each of its fans independently
with probability λ. Additionally, we model the time between
seeing a story and voting for it as a random variable pulled
uniformly from some interval.

Figure 3: Cascade size as a function of transmissibility λ for
simulated cascades on the Digg graph and the randomized
graph with the same degree distribution (see section on sim-
ulations). Heterogeneous mean field predicts cascade size as
a fraction of the nodes affected. The line (hmf) reports these
predictions multiplied by the total number of nodes in the
Digg network.

After some time, no new nodes are infected, and the cas-
cade stops. Because the graph is finite, the cascade is guar-
anteed to stop eventually. The final number of infected
nodes gives cascade size. These are shown in Figure 3,
where each point represents a single cascade with the y-axis
giving the final cascade size and the x-axis denotes the trans-
missibility λ. We only keep cascades with more than 10 in-
fected nodes (votes). Blue dots represent cascades on the
original Digg graph while pink dots represent cascades on a
randomized version of the Digg graph. In both simulations,
there exists a critical value of λ, the epidemic threshold, be-
low which cascades quickly die out and above which they
spread to a significant fraction of the graph. Note that even
above epidemic threshold, cascades that start in an isolated
region of the graph will die out.

Theoretical results

The location of the epidemic threshold is accurately calcu-
lated for both the Digg and randomized graph using the in-
verse of the largest eigenvalue of the adjacency matrix of the

2In the epidemic literature this is equivalent to setting the re-
covery rate μ = 1 and the infection rate β = λ.

graph (Wang et al. 2003). For the original graph this gives
λdigg
c = 0.00587, while for the randomized graph this gives

λrand
c = 0.00928.
As we noted previously, this process should be accurately

modeled by the SIR model of epidemics. In the limit of large
graphs, if we assume that a node’s behavior is defined by its
degree (with no degree correlations), we can calculate the
expected size of cascades using heterogeneous mean field
(HMF) theory (Moreno, Pastor-Satorras, and Vespignani
2002). Based on observations of the Digg network shown
in Figure 1(a), we pick a degree distribution p(k) ∝ k−2,
with a cut-off on the maximum degree, kmax = 103. This
prediction is depicted with the gold line in Figure 3. Both the
threshold and growth accurately characterize the random-
ized graph. Note that HMF applies in the large graph limit.
Because the randomized graph is still finite, some cluster-
ing inevitably occurs (it has a clustering coefficient of about
0.02), decreasing the cascade size from the HMF prediction.

Comparison of theory and simulation

If one assumes Digg’s graph structure consists of dense
clusters, the effects on cascades in the independent cascade
model are quite intuitive. It is easier for a story to take
off within a smaller, more tightly connected community,
thereby lowering the epidemic threshold. This also explains
why the majority of people exposed to story are exposed to
it from multiple sources. On the other hand, for cascades
to grow very large it is better to have a more homogeneous
link structure to reach all parts of the graph quickly. Ulti-
mately, clusters have the effect of marginally decreasing the
size of cascades by sequestering an infection in one part of
the graph.

Comparing the theoretical and simulation results for cas-
cades in Figure 3 to the observed distribution of cascade
sizes in Figure 1(b) highlights the aforementioned puzzle.
Why are cascades so small? According to our cascade
model, only transmissibilities in a very narrow range near
the threshold produce cascades of the appropriate size of
∼ 500 votes. Is there some sort of critical behavior that
tunes transmissibilities to be exactly near the threshold? Our
subsequent analysis suggests a more intuitive possibility.

Friend saturation model for Digg

As we previously noted, modeling the spreading process as a
branching process assumes that each node has only one vot-
ing friend. In that case, the definition of transmissibility, λ,
is unambiguous: the probability of voting for a story if your
friend voted. As we saw from Figure 4, most people exposed
to a story are exposed multiple times. In that case, even if
we maintain the definition of transmissibility in the case of
one friend voting, there is some freedom to model the effect
of having multiple voting friends. The most straightforward
generalization, which we used in the last section, is the inde-
pendent cascade model(ICM) which says that if a node has
n voting friends then it has n independent chances to vote.
Therefore,

pICM (vote|n friends voted) = 1− (1− λ)n.
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Figure 4: Characteristics of voting on Digg. Probability a
user votes given n friends voted given by the independent
cascade model and actual voting behavior on Digg (averaged
over all cascades).

We can measure this quantity on Digg. To do so, we con-
sidered all cascades with more than 10 votes. We isolated
the users in a cascade who had exactly n friends voting and
did not vote versus people with n friends voting on the story
before they themselves voted. For a given n, the percentage
of people voting is depicted with a solid line in Figure 4. For
n = 1, the percentage of users voting was 1.3%, suggesting
an average transmissibility of λ = 0.013. The dashed line
depicts pICM (vote|n friends voted) for this value of trans-
missibility. Even for n = 2, ICM overestimates the proba-
bility of a vote, and by n = 10, a relatively common occur-
rence, ICM is an order of magnitude too large.

Clearly, Figure 4 shows that multiple exposures to a story
only marginally increase the probability of voting for it. The
effect of multiple recommendations quickly saturates and
would be better approximated as constant

pFSM (vote|n friends voted) = λ,

for n ≥ 1. We will refer to this simplified model for gener-
ating cascades as the “friend saturation model” (FSM). We
point out that p(vote|n friends voted) actually contains two
factors: the probability that you visit Digg and see that your
friend(s) voted on a story, and the probability you vote on
the story given that you did visit. In fact, a careful examina-
tion of Figure 4 suggests that a more sophisticated model of
behavior might include some small marginal increase in vot-
ing probability from multiple voting friends, balanced by a
marginal decrease from having many friends. We stick to the
simpler model for simplicity, and because our fundamental
result is not sensitive to these details.

Simulation of FSM We can repeat the simulation proce-
dure of the previous section. This time, though, after a node
is exposed to a story from one of its friends (voting with
probability λ), if the node chooses not to vote, it will not
vote in the future even if it is exposed to the story again.
We generated 100,000 cascades with transmissibility picked
uniformly from the range [0, 0.04]. Again, we only keep
cascades with more than 10 votes.

Figure 5: An example of a cascade for some story. An arrow
from node i → j means that j is a fan of i, and hence sees
any stories that i votes on. Time decreases down the y-axis
so that the y position of a circular node indicates the time at
which the node voted for this story. The dotted line indicates
that although 1 is a fan of 4, this has no effect because 1 has
already voted for this story before 4 spreads it to 1 again.
The cascade terminates in nodes that do not vote for the story
or nodes that vote but do not have any fans.

Inferring Transmissibility of a Cascade Assuming that
cascades on Digg spread according to the FSM process, we
can infer the transmissibility of actual cascades. Referring
to Fig. 5, we label the nodes in a cascade in order of voting
i = 1, . . . , v, where there are v total nodes who vote on the
story (not counting the seed node), and i = v + 1, . . . , w
label the w − v nodes (watching) who are exposed to the
story but do not vote on it.

Figure 6: Inferred versus actual transmissibility for simu-
lated cascades in the FSM.

According to the FSM, each node votes for a story that is
spread to it with probability λ, and we can read the proba-
bility of a cascade directly from the graph.

p(cascade|λ) = (1− λ)w−vλv (1)

Given a cascade, the maximum likelihood value for λ is

λinf = argmaxλp(λ|cascade) =
v

w
. (2)
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To test the accuracy of this inference, we compute the in-
ferred values of λ for simulated cascades and plot them
against the actual values used in the simulation in Figure 6.
Pearson’s correlation coefficient for these values is 0.946.

Figure 7: Cascade size vs inferred transmissibility for simu-
lated and real cascades on the Digg graph, this time plotted
on a log-log scale to highlight the order of magnitude dif-
ference between these cascade sizes and predictions of the
epidemic model (HMF, see text for details).

Pink dots in Figure 7 plot size of simulated cascades gen-
erated according to the FSM versus inferred transmissibil-
ity. Already, looking at the line plotting the HMF prediction
from Figure 5, we see that cascade sizes are an order of mag-
nitude smaller than for the independent cascade model. Us-
ing this model, we can also infer transmissibilities for actual
Digg cascades and we compare them on the same plot. The
similarity is striking and the overlap so complete that most
of the simulated cascade dots are covered. Also, note that
the threshold still lines up fairly well with HMF and eigen-
value prediction. At the beginning of a cascade, most people
have not been exposed multiple times, so the FSM and inde-
pendent cascade model differ very little, therefore we should
not expect much change in the location of the threshold.

The inferred transmissibilities of actual Digg cascades are
almost all above threshold. This is not surprising, given that
we are analyzing stories that have been promoted to the front
page and, therefore, have been found by Digg to be interest-
ing to the community. Note that the largest cascade, one
about Michael Jackson’s death, also has the highest inferred
transmissibility.

Discussion

In epidemic models, population models, and other branch-
ing processes, the principal quantity of interest is the repro-
ductive number, R0. Intuitively, the reproductive number is
just the average number of people infected by a single in-
fected person. If R0 > 1, each infection leads to another
indefinitely, an epidemic. Whereas, if R0 < 1, the infec-
tion will die out eventually. Naively, the reproductive num-
ber should just be the average fanout, i.e., the average num-
ber of fans, times the transmissibility. For Digg, we have
〈k〉 ≈ 6 so R0 ≈ 6λ. In that case, an epidemic threshold

(a) (b)

Figure 8: Dynamics of transmissibility and fanout (a) Num-
ber of new fans who can see the story (Δwatching) and who
actually vote for the story (Δvoting) vs time (voter i) for
actual and simulated cascades. (b) Change in the estimated
value of transmissibility for actual and simulated Digg cas-
cades as a function of time.

at R0 = 1 → λc ≈ 1/6, much higher than we observe. It
is well known, however, that heterogeneous degree distribu-
tions lower the threshold compared to this prediction (Bar-
rat, Barthélemy, and Vespignani 2008).

However, we can gain some intuition from this quantity
if we view it as a dynamic quantity. FSM implies that the
true fanout only includes the number of new fans (those that
have not already been exposed to a story) and changes with
time. Figure 8(a) shows that with this definition the fanout
is steadily decaying, both for actual and simulated cascades
on the Digg graph. Effectively, this leads to a decrease in the
reproductive number as well, so that a cascade that initially
starts above the epidemic threshold may fall below it in time.

Additionally, in Figure 8(b) we examine the dynamics of
the transmissibility. We calculate the transmissibility for
each voter by looking at the number of votes a story gets
from their fans divided by the number of new fans the voter
exposed the story to. We see this quantity is constant for
simulated cascades as it should be by construction. For ac-
tual cascades, on the other hand, the transmissibility remains
constant until about 100 people have voted, and then it be-
gins to decline. This is another effect limiting the size of cas-
cades. The decline could be due to decay of novelty (Wu and
Huberman 2007) or decrease in visibility (Hogg and Lerman
2009) as a consequence of new stories being submitted to
Digg. Alternately, people may vote for stories mostly hop-
ing to help them get “promoted” to the front page. After
about 100 votes, a story is usually promoted, thereby offer-
ing less incentive to give it further votes.

Reproductive number is a product of fanout and transmis-
sibility and on Digg both decrease with time. From this per-
spective, the slowdown of cascade growth is natural.

Related Work

Contact processes have been extensively studied in epi-
demiology, where compartmental models, such as SIS
(susceptible-infectious-susceptible) and SIR (susceptible-
infectious-recovered), have been used to model dynamics of
epidemics. These models assume that everyone is in con-
tact with everyone else in the population, and rate of infec-
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tion and recovery is uniform (Bailey 1975). One approach
to create more realistic models of interactions was to segre-
gate population using different categorical features, such as
age, sex and so on, and then treat the interactions within
the subpopulations as homogenous and symmetric (Heth-
cote 1978). Another approach to modifying homogenous
models was to represent interactions between individuals as
a directed graph (Kephart and White 1991), leading to a sin-
gle mean field (MF) reaction equation. To relax the homo-
geneity assumptions further, and to take into account, the
strong fluctuations in the connectivity distribution, the sin-
gle MF equation is modified to a heterogenous mean field
(HMF) reaction rate equation (Moreno, Pastor-Satorras, and
Vespignani 2002). In (Prakash et al. 2010), the authors
conjecture that for any virus propagation model (including
SIS and SIR), the epidemic threshold depends only on the
largest eigenvalue of the adjacency matrix of the network.
However, (Castellano and Pastor-Satorras 2010) argue that
while this holds true for the SIS model, the HMF prediction
in the SIR model seems to be much more accurate than the
generic claim made in (Prakash et al. 2010) for scale-rich
networks. They claim that on quenched scale-rich networks
the threshold of generic epidemic models is vanishing or fi-
nite depending on the presence or absence of steady state.

Another modified spreading process for social conta-
gion that has been considered is the effect of adding “sti-
flers” (Barrat, Barthélemy, and Vespignani 2008). Similar
to FSM, stiflers will not spread a story (rumor) no matter
how many times they encounter it. Stiflers, however, are
not merely desensitized to multiple exposures, they may ac-
tively convert spreaders or susceptible nodes into stiflers.
This complicated dynamic can lead to drastic changes, e.g.,
the elimination of the epidemic threshold. In Digg, a fan
who does not vote on a story after multiple exposures, does
not actively persuade the exposed and susceptible fans not
to vote on a story. Hence, this model does not apply to the
process of information diffusion on Digg.

The friend saturating model we have used to describe cas-
cades on Digg is a special case of a broader class of models
called “decreasing cascade models” (Kempe, Kleinberg, and
Tardos 2003). Several works have observed similar dimin-
ishing returns from friends in social networks. (Leskovec,
Adamic, and Huberman 2007) analyzed the usefulness of
product recommendations on Amazon.com. They rarely
found that anyone received more than a handful of recom-
mendations for any product, and the marginal benefit of mul-
tiple recommendations, while product dependent, was typ-
ically sublinear (i.e. two recommendations did not make
someone twice as likely to buy as one recommendation).
Link formation was studied in (Kossinets and Watts 2006),
where they also found diminishing returns in the probabil-
ity of befriending someone with whom one shares n mutual
friends, with saturation occurring around n = 5. The proba-
bility of joining a group that n friends have joined was stud-
ied in (Backstrom et al. 2006), with saturation occurring for
n around 10-20.

(Iribarren and Moro 2009) modeled viral email cascades
using branching processes like the Galton-Watson process
and the Bellman-Harris process. They argued that the topol-

ogy of the underlying social network is irrelevant in the pre-
diction of cascade size. This may hold true in the tree-like
cascades studied by the authors. However as stated previ-
ously, in Digg, dynamics of information propagation is not
tree-like and these models do not hold. Future work includes
studying the impact of activity patterns on the information
diffusion dynamics.

Conclusion

We have demonstrated a simple behavior model that strik-
ingly reproduces the behavior of Digg cascades, while stan-
dard methods go awry. Many network studies assume that
graphs with locally tree-like behavior give a good approx-
imation to real networks. In this case, we find that such
methods wildly overestimate the size of cascades. If most
of the people exposed to a story are exposed repeatedly, un-
derstanding how they are affected by repeat exposures is of
paramount importance. On Digg, multiple exposures to a
story are common and have almost no effect on the proba-
bility of voting; this severely limits the size of epidemics.
Much remains to be studied: whether these results hold
on other social networks, more sophisticated models of re-
sponse to friends, the time dependence of transmissibility,
and more detailed analysis of the effect of graph structure
on cascades.
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Appendix

We have recently (Ghosh and Lerman 2011) proposed a
framework to extract individual cascades of a spreading pro-
cess. This approach uses a cascade generating function to
compute a value for the spreading process at each time step
that allows us to extract and reconstruct the structure of the
cascade. We label nodes in the order they are activated. The
cascade generating function is parameterized by the trans-
mission rates αj,i ∀j, i ∈ [1, N ] (where N is the number
of nodes involved in the spreading process), which give the
probability that a node i activated at time ti will activate a
connected node j at a later time tj . For simplicity, we take
αji = α.

Suppose there are K seeds, which are activated at times
t = i1, . . . , iK . We set the value of the cascade generating
function at the time a seed is activated to φ(ip, α) = 1. If
node i is activated at time ti, the value of the cascade gener-
ating function at a later time when node j is activated is:

φ(j, α) =
∑

i∈friend(j)
αφ(i, α) =

K∑

p=1

f(j, ip, α)φ(ip, α).

(3)
The function f(j, ip, α) captures the cumulative effect the
cascade generated at seed ip has on the node j where tj >
tip . Note that the same node can belong to two or more cas-
cades generated by different seeds, leading to the collision
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of cascades effect. All the nodes for which f(j, ip, α) > 0
∀ α > 0, are the nodes that belong to the cascade gener-
ated by seed ip. Ref. (Ghosh and Lerman 2011) describes
an algorithm to extract a cascade generated by a seed that
has O(N) space and O(dN) time complexity, where d is
the maximum degree and N is the number of nodes in the
network.
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