
Diversity Measurement of Recommender Systems
nder Different User Choice Models

Z. Szlávik and W. Kowalczyk and M.C. Schut
Department of Computer Science
VU University Amsterdam (NL)

{z.szlavik, w.j.kowalczyk, m.c.schut}@vu.nl

Abstract

Recommender systems are increasingly used for per-
sonalised navigation through large amounts of informa-
tion, especially in the e-commerce domain for product
purchase advice. Whilst much research effort is spent
on developing recommenders further, there is little to
no effort spent on analysing the impact of them – nei-
ther on the supply (company) nor demand (consumer)
side. In this paper, we investigate the diversity impact
of a movie recommender. We define diversity for dif-
ferent parts of the domain and measure it in different
ways. The novelty of our work is the usage of real rat-
ing data (from Netflix) and a recommender system for
investigating the (hypothetical) effects of various con-
figurations of the system and users’ choice models. We
consider a number of different scenarios (which differ
in the agent’s choice model), run very extensive simu-
lations, analyse various measurements regarding exper-
imental validation and diversity, and report on selected
findings. The choice models are an essential part of our
work, since these can be influenced by the owner of the
recommender once deployed.

Introduction

There is no denying that recommender engines have made
an overwhelming entrance into the world of digital informa-
tion. For this, electronic commerce is a front-runner, hoping
to sell more products with effective recommenders. Still, not
only commerce, but many owners of other information sys-
tems start to realise that recommenders may benefit the users
in finding items of interest. Whether recommendations are
generated by algorithms (Amazon, Netflix) or in more so-
cial way (e.g., Facebook, Twitter), owners ultimately want
to know if their users can better and faster navigate through
the available information. On commercial sites, this means
whether users buy more items.

Besides tackling technical questions, e.g., on deployment,
up-time and responsiveness guarantees and algorithmic opti-
misation, owners of a recommender want to know how users
react to their engine, and, following from that, how they or
the engine can react to these user’s reactions. This will en-
able them to dynamically adapt to the customer within the

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

purchasing process – similar to how a human salesperson
pitches in order to sell a product.

In this paper, we look at the interaction effects between
recommendation and user behaviour. We test a movie rec-
ommender in combination with a variety of choice models
(i.e., the way that users react to predictions of the recom-
mender engine) and report on the observed interaction ef-
fects. In particular, we look at diversity effects, i.e., the prop-
erty of being numerically distinct. We calculate diversities
for users, items and ratings. Later in this paper, we define
different diversity measurements and calculate user-, item-,
and rating-diversities for our recommender.

We are the first to conduct such a study, to our best knowl-
edge. Whilst other works have investigated the combination
of diversity and recommenders, e.g., (Garfinkel et al. 2006;
Dias et al. 2008; Fleder and Hosanagar 2009), we are the
first ones to 1) do this with actual usage data (from Netflix),
2) perform a variety of diversity measurements for different
parts of the recommender (item-, user-, and rating-based di-
versity), and 3) use a combination of data-mining and multi-
agent simulation techniques. Also, we are not aware of other
work that investigates this issue within the domain of movie
recommendation, as we do.

The objective of the study reported on in this paper is to
systematically investigate item-, user-, and rating-diversity
effects of a movie recommender system by means of a sim-
ulation. This simulation is based on real-world usage data.
With this study, we aim to obtain an insight into the effects of
recommenders from the owner’s perspective (i.e., how can
we set up the recommender such that it generates maximum
amount of added value?) as well as the consumer’s perspec-
tive (i.e., what are the consequences of particular ways of
reacting to the predictions that recommenders give?). In par-
ticular, we aim to answer the following two questions:

1. What happens if we force users to rate a certain number
of items in a period of time (e.g., everyone rates 5 movies
a week)? Such a restriction is an example of how the
owner of the recommender can ‘influence’ the behaviour
of users.

2. What is the effect of changing the type of information that
a recommender gives to users? For example, a recom-
mender can show to the user either most popular movies,
or movies that match best the user’s preferences, or just a

U

369

Proceedings of the Fifth International AAAI Conference on Weblogs and Social Media

random selection of movies.

It is worthwhile to mention that our work is closely related
to what is also researched in social and political sciences
on group dynamics and political systems (Andrain 1994;
Derbyshire and Derbyshire 1996; Forsyth 1998). In these
studies, it is also researched how individuals in groups re-
act to each other, both in direct interactions as well through
an intermediate entity (the government, or, in our case, the
recommender system). We come back to this generalisation
of our work later in this paper.

Related Work

The history of recommender systems is relatively short: the
first recommender system, Tapestry, was developed about 20
years ago, (Goldberg et al. 1992). Since then this field has
been developing very quickly, strongly stimulated by rapid
development of the Internet and e-commerce (Adomavicius
and Tuzhilin 2005). The main role of a recommender sys-
tem is to provide its users with recommendations concern-
ing possible products (such as movies, books or services)
that would match their preferences or needs. This can be
achieved with the help of various algorithms that analyse
available data about products and users, such as their (prod-
uct or user) characteristics, purchase history, explicit feed-
back provided by users in the form of ratings, product re-
views, et cetera.

There are two main strategies for building recommender
systems. The first strategy, called content filtering is used
in situations when some information about individual users
or products is available. This information – attributes that
describe various properties of users or products – is used to
construct their profiles. These profiles are then used to assign
products to users. Another, more general approach which
does not rely on external information, collaborative filter-
ing, uses information about the past user behaviour (such as
users’ purchase history) to group users that behave in similar
way and offer them similar products.

In some situations users evaluate products by assigning
them a rating – usually an integer between 1 and 5 that ex-
presses a user’s opinion about the given product. When rat-
ing information is available, one can measure similarity be-
tween products or between users by comparing the row or
column vectors of the “user by product” matrix of ratings.
In this way, two similarity measures can be defined: item-to-
item and user-to-user, which can then be used for generating
recommendations (Sarwar et al. 2001).

In 2006, a DVD rental company, Netflix, announced a
big competition (with a $1 million prize) that was aimed
at improving the accuracy of existing recommender sys-
tems (Bennett and Lanning 2007). This competition at-
tracted the attention of thousands of researchers from all
over the world, leading to the discovery of several new ap-
proaches. They, eventually, led to the improvement of the
accuracy of the original Netflix recommendation engine,
Cinematch, by more than 10%. These new approaches are
based on the concept of matrix factorisation of a huge ma-
trix that contains ratings given to items by users. The con-
cept of matrix factorisation, also called low rank matrix ap-

proximation, Singular Value Decomposition, or latent factor
model, had already been known and used earlier, for ex-
ample, in the context of information retrival (Deerwester
et al. 1990), but it was Simon Funk (real name Brandyn
Webb) who described, on his blog (Funk 2006), a very sim-
ple and efficient modification of this method in the con-
text of the Netflix competition. His algorithm (just a few
lines of code!) was good enough to beat the Cinematch
baseline ratings by 5%. Not surprisingly, Funk’s approach
attracted the attention of other competitors, what resulted
in numerous improvements of the original method, and fi-
nally, in reaching the main objective of the Netflix Challenge
(improvement by 10%). Several improvements of Funk’s
method are described in (Koren, Bell, and Volinsky 2009;
Takács et al. 2009).

In addition to papers on algorithmic aspects of recom-
mender systems, there are several papers that address some
psychological or economical issues of using recommender
systems. In particular, the paper (Fleder and Hosanagar
2009) focuses on analysing the impact of recommender sys-
tems on sales diversity. The authors provide an analytical
model of recommenders and, additionally, run some simu-
lations with actual recommender systems on synthetically
generated data.

The field of recommender systems is very broad. For fur-
ther references the reader should consult survey articles,
such as (Adomavicius and Tuzhilin 2005; Su and Khoshgof-
taar 2009). Additionally, (Herlocker et al. 2004) provides an
extensive overview of various methods for evaluating col-
laborative systems.

Netflix Data and Funk’s Algorithm

In our experiments we used the original data from Netflix
and the basic variant of Funk’s algorithm. Now we will de-
scribe the data and the algorithm in more detail.

The dataset used in the Netflix Challenge (Bennett and
Lanning 2007) consists of about 100 million records which
represent ratings given by about 500.000 users to 17.700
movies over a period of about 6 years. Each record consists
of four items: user id, movie id, date, and rating.
Ratings are integers between 1 and 5 that reflect users’ sat-
isfaction levels (the higher the better). This dataset served
as a training set: a recommender algorithm was supposed
to use this set to learn how to predict ratings that could be
given by users to movies in the future. To test the accu-
racy of various algorithms, Netflix also provided a test set:
around 3 million records with actual ratings (known to Net-
flix, but not disclosed to the public) removed. The quality
of recommender algorithms was measured with help of the
Root-Mean-Squared-Error:

RMSE =

√√√√ 1

N

N∑
i=1

(pi − ti)2,

where the sum ranges over all N test records, pi denotes
the predicted rating (which is produced by the tested recom-
mender algorithm) and ti is the true rating that was given by
the user to the movie.

370

In our experiments we decided to use the algorithm of Si-
mon Funk, (Funk 2006). The algorithm is very simple, com-
putationally cheap, and predicts ratings with very high ac-
curacy. It is based on an assumption that the taste of a user
can be captured by a vector of a few numbers called user
features, while the corresponding characteristics of a movie
can be expressed by another vector of the same length, called
movie features. More formally, we assume that for every
user u and movie m, there are two vectors of length d: user
features, fu, and movie features, fm. Additionally, we as-
sume (and this is a very strong assumption!) that the pref-
erence (possible rating) of user u with respect to movie m,
pu,m, can be expressed by the dot product of both vectors:

pu,m =
d∑

i=1

fu(i)fm(i).

The values of feature vectors are unknown, but they can
be estimated from the training data. Let ru,m denote the ac-
tual rating given by user u to movie m (as recorded in the
training set). Then the error made by our recommender on
the training set is a function of feature vectors:

RMSE =

√√√√ 1

N

∑
u,m

(
d∑

i=1

fu(i)fm(i)− tu,m)2.

This function, although it involves a huge number of un-
knowns (d times the number of users plus d times the num-
ber of movies), is relatively simple and its minimum can be
found with the help of the gradient descent algorithm. In
our experiments we set the training parameters to values that
were suggested in (Funk 2006): 10 features, all initialised to
0.1, 200 iterations per feature, learning rate set to 0.001, and
the regularisation term set to 0.015.

We will refer to the collection of user and movie features
as the rating model: it can be used to predict, for any user
and any movie that occured in the training set, the rating
that the user could give to the movie.

Experimental Setup

In order to study how a recommender system affects diver-
sity, it is important to understand the circular nature of the
‘life’ of a recommender. On one hand, the recommendations
a system provides to its users shape the way the users act
(otherwise the system cannot be considered of good qual-
ity). On the other hand, the way users select and, in this case,
rate items also affects the recommendations that the system
gives in a later stage (assuming that the system is retrained
regularly or adapts on-line).

This circular process, illustrated in Figure 1, can be bro-
ken down into ‘rounds’. First, the Recommender uses the
Current Rating Model (CRM) to produce recommendations
for a specific user. Then the User selects some of the rec-
ommended movies and rates them. The ratings are sent back
to the Recommender and the CRM is updated. In this way,
a user’s behaviour affects the rating model and vice versa:

Figure 1: Movie- and user profiles, and movie selection and
ratings affect each other.

Figure 2: Simulation outline.

the rating model has an impact on a user’s ratings. To in-
vestigate how diversity changes over time, we run simula-
tions in which we control user behaviour. We control user
behaviour by introducing several choice models that simu-
late how users make selections from a list of recommended
items. We run a number of simulated rounds one after an-
other. The simulation output for each choice model is then
analysed and compared, focusing on various senses of diver-
sity.

The following subsection describes the simulations in
general, which is followed by the description of choice mod-
els. Then we discuss the diversity measures used for the
analysis of simulation results.

Simulations

The outline of a simulation is depicted in Figure 2: firstly,
we initialise the recommender, then recommend movies to
users, who select movies, then they rate them. Once movies
in a round are rated, the recommender (i.e., CRM) is up-
dated, and the next round of simulation starts.

A round, shown as a loop in Figure 2, represents a time
period of one month, i.e., we simulate recommendations and
movie ratings of one month before updating the rating model
and moving on to the next period. The Netflix dataset covers
the period of 6 years; we use the data from the first year to
initialize the system, and use the remaining data for simulat-

371

ing 60 rounds for each choice model. The choice of the one
month interval was made as it provided us with a sufficient
number of rounds, suitably smooth diversity measurements,
and a feasible time frame for running the simulations on a
single computer.

To model the actual rating behaviour of users we used the
complete Netflix dataset, also refered to as the ‘true dataset’,
to develop the True Rating Model (TRM). We assumed here
that the model that is trained on the complete dataset will
correctly approximate the ratings given by users to movies.

The Netflix data was also used for keeping control over
the simulations and making them realistic. Firstly, in each
round of the simulation, the system was allowed to recom-
mend only those movies that appeared up to the end of that
round in the true dataset. With this method, we aimed at
controlling available movies, so the system would not rec-
ommend a movie that was only going to be released the fol-
lowing month.

Secondly, to avoid large variations caused by random ini-
tialisation, we initialised the recommender of the simulation
using user-movie-rating triplets from the first year covered
by the Netflix data. This allowed us to make comparisons
between our simulations and what happened in reality from
year two onwards.

Thirdly, we only simulated movie selection, with the use
of choice models, but not movie rating. In other words, the
choice model active for the current simulation determined
which movies a user chose from their recommendation list,
but how users actually rated a movie was determined by the
True Rating Model. The reason for this choice was, similar
to the choices described above, to keep more control over
the simulation.

The latter two design choices resulted in three kinds of
rating models for a simulation: an Initial Rating Model
(IRM) was built using the first year of data, a True Rating
Model that was built on the whole true dataset, and a Current
Rating Model was updated in each round of the simulation.
A CRM can be viewed as model that evolves from the IRM
over time, as an interaction between users and the recom-
mender system. We could notice here that as the simulations
can go differently than in real life, the last CRM might be
different than the TRM.

The selection of users in a given round was also con-
trolled. In each round, we selected the same users that rated
movies in the true dataset in the corresponding period. For
example, if there were ratings from 2000 users in the dataset
for January 2002, then our simulation also used those 2000
users in the corresponding round. As we used the same IDs
in our simulation as those in the true dataset, we achieved a
control over users’ decisions to rate movies in a round (or,
for that matter, to join and start rating movies at all).

Throughout the simulations, we assumed that no user
rates a movie twice, which was also the case in the true
dataset. Allowing for a movie to be rated several times
would not provide us with valid simulation data, as it was
observed in test simulations that user profiles do not change
so significantly as to not recommend users the same movies
in several, often all, successive rounds.

The number of movies that were recommended to a user

in a round is determined by the choice model in use. De-
pending on the choice model, users selected either the same
number of movies as they indeed did according to the true
data, or the number of movies per user was distributed
evenly among users of the round. To allow for comparison
with the real situation reflected by the true dataset, the over-
all number of movies rated in a simulation round was always
the same as in the true dataset.

Choice models

We used six choice models, which resulted in six runs of
simulation. Choice models were not mixed, i.e. each user
behaved according to the choice model of the simulation be-
ing executed. This way we could observe how the use of
particular choice models affected diversity. The used choice
models were the following:

1. The first choice model assumes that each user of the
recommender system completely accepts the recommen-
dations. Users rate those, and only those, movies that
are recommended to them. The number of movies rec-
ommended to users is the same as in the true dataset.
Throughout this paper, we refer to this choice model as
Yes-men.

2. The second choice model, similarly to the first one, as-
sumes that users rate those and only those movies that are
recommended to them. However, in this case, the number
of ratings per user follows a uniform distribution, i.e. ev-
ery user rates the same number of movies. These users are
called Uniform Yes-men.

3. The third choice model assumes that everyone watches
and rates movies that are highest rated on average. In
other words, everyone rates the globally top movies. The
number of movies rated per user is the same as in the
true dataset (i.e. not uniformly distributed). This group of
users is referred to as Trend-followers.

4. Choice model four is the same as model three, only
this time the number of movies rated is distributed
evenly among users. These users are the Uniform Trend-
followers.

5. The fifth choice model assumes that users are completely
indifferent to recommendations. These users were simu-
lated as if they rated a random selection of movies from
the movies available for the round. The number of movies
selected per user is the same as in the true dataset. We call
these users Randomisers.

6. The last, sixth, choice model is a mixture of choice mod-
els one and two: Users accept the movies recommended
to them, but only with a certain probability. For each
movie in the recommendation, if the user does not rate the
movie as recommended, they rate a random movie that is
not in the list of recommended movies. The number of
movies per user conforms to that of the real dataset. After
some test simulations, we set the probability that a rec-
ommended movie is actually rated by a user to 0.25. With
this value, we achieved mean ratings fairly comparable to
those in the true dataset. This choice model is called 25%
Yes-Randomisers.

372

Measures of diversity

For each of the six simulations determined by the six choice
models introduced above, we measured diversity in various
ways. An overview of the used diversity measures is pre-
sented in Table 1.

In addition to the diversity measures described below, we
also calculated the average ratings per simulation round.
It is considered to be positively related to user satisfaction
and recommender system performance. The following list
describes the diversity measures we used.

• The number of unique movies rated in the given round.
This measure allows us to see whether all the movies
available in a simulation round were rated by at least one
person. It shows diversity in the sense of breadth of rated
movies. Note that, by definition, the number of unique
movies in a simulation round can not be higher than that
of the true dataset for the same period.

• Global variance of ratings in a simulation round, and
that of the corresponding period in the true dataset. This
measures diversity that describes the breadth of values of
ratings given in a certain round. Both this and the previous
measure are overall measures, i.e., they consider a round’s
data without using detailed information about individual
users or movies.

• Mean user-based variance of ratings. We take the vari-
ance of ratings for each user of the current round, and then
report the mean of these variances. Note that this measure
is not concerned with the number of movies a user rates.

• Normalised Shannon entropy of rated movies in a
round. Entropy is calculated as follows:

H = −∑n
i=1 pi · log(pi); pi =

occ(moviei)

count(ratings)
,

where n is the number of unique movies rated in a round
in question, and occ(moviei) denotes the number occur-
rences of the ith movie. As the maximum value of H de-
pends on the number of movies n, we normalise H by
dividing it with log(n).

• Cosine diversity. The Cosine coefficient is a commonly
used similarity measure, which we base another diver-
sity measure upon. For each pair of selected users, the
vectors Ui and Uj are considered, where Ui,m denotes
the rating given by user i to movie m, m ∈ 1 :
count(available movies). Then the Cosine coefficient
is calculated for each possible pair of users. Because the
maximal value of the Cosine coefficient – one – indicates
perfect similarity, and we are rather interested in diver-
sity, we define Cosine diversity as one minus the Cosine
coefficient.

Having described the simulation setup, choice models and
diversity measures in this section, the next section presents
and discusses results of the simulations that we carried out.

Results and Discussion

In this section, we present and discuss the results of our sim-
ulations. We do this using six figures: Figure 3 shows the

Figure 3: Mean ratings.

mean ratings per round per choice model, and Figures 4 to 8
show various diversity values that we measured throughout
the simulations.

There are a number of aspects from which results of the
simulations can be investigated, of which we consider the
following three. Firstly, we investigate diversity values (as
well as mean rating values) of our six simulations in compar-
ison to corresponding values extracted from the true dataset,
thus also providing some validation for our simulation re-
sults. Secondly, we investigate the effects of forcing users to
behave in a certain uniform way, i.e. when every user rates
the same number of movies per round. Thirdly, we compare
three groups of simulations to each other: 1) where users rate
movies the recommender system suggests, 2) when every-
one rates movies that are highest rated overall, and 3) when
movies are randomly selected for rating.

True data vs. Simulation results

As stated above, we first compare our simulation results to
corresponding measurements on the true dataset.

As Figure 3 shows, our deterministic models resulted
in mean ratings consistently higher than values in the true
dataset. We can also infer from Figure 3 that the introduc-
tion of randomness decreases average ratings. It needs to
be noted that the parameter value of 0.25 for the 25% Yes-
Randomisers has been determined (after some small-scale
simulations) so that simulation mean ratings do not deviate
considerably from true mean ratings.

In terms of variance (Figures 5 and 6), we can observe
that the true dataset’s variances are considerably higher than
those in our simulations. There might be several reasons for
this, but we think that two important reasons stand out. First,
our system is pure in the sense that, in a particular simula-
tion, everyone selects movies in a determined way, but also,
intra-user variability is not considered (i.e., users would al-
ways give the same rating to a movie if they were allowed
to rate it multiple times). Second, the SVD algorithm has
been proven to be better than Netflix’s own algorithm used

373

Unique Movies Global variance User-based variance Entropy Cosine
Overall measurements x x
Per movie measurements x
Per user measurements x x
Source: Binary lists/vectors x x
Source: 1-5 values lists/vectors x x x

Table 1: Overview of diversity measures we used.

at the time of recording the data. Further to variance val-
ues, this quality difference between recommender algorithm
could also explain why the mean ratings of our models are
higher than those in the true dataset.

According to results displayed in Figure 7, the entropy of
rated movies per round is considerably higher than in the
true data in three simulations, while lower in another three
simulations, suggesting that perhaps some combination of
our choice models would be able to model the true data, at
least in the entropy sense.

Values of the mean Cosine coefficient (Figure 8) reveal
that the selection and ratings of movies in reality was close
to a 1:3 mixture of Yes-men and Randomisers. As also ob-
served above already, values calculated from the true dataset
tend to be between values generated by deterministic and
random choice models, respectively.

Based on the findings above, we can conclude that the true
dataset’s diversity could be simulated as a mixture of Yes-
men and Randomisers, but only in some sense. This means
that in case a recommender owner wants to control diversity,
they might try to influence user behaviour such that a desired
high/low level of diversity is reached. One possible way of
control is requiring users to rate a certain number of movies
per month (not many more, and not many less). The effect
of such a manipulation is investigated in the next subsection.

‘Normal’ vs. Uniform simulation results

To study the effect of every active user rating the same num-
ber of movies in a round (i.e., a kind of forced behaviour),
we consider four of our six simulations. We analyse the
‘transition’ from Yes-men to Uniform Yes-men, and from
Trend-followers to Uniform Trend-followers, respectively.
We attempt to find effects that are common in these two
kinds of transitions.

It is an important observation that uniformity, in the sense
we described it in the paragraph above, drastically decreases
the number of movies ever watched. Figure 4 shows that,
by the end of the simulation, in the unforced case, almost
18.000 movies have been rated by at least one person, while
in case of uniformly distributed numbers of ratings per
movie, only around 1.000 movies have been rated. When
using the uniform versions of choice models, the global
variance of ratings tends to become lower (Figure 5), how-
ever, user-based variance of ratings tends to increase (Figure
6). This is a kind of change also observed in (Fleder and
Hosanagar 2009), where it was found that the use of a rec-
ommender system decreases global diversity but increases
individual diversity. As having to use a recommender sys-
tem can be considered as a forced way of acting in a uniform

way, our results, in which we simulate a forced way of act-
ing uniformly while using a recommender, are in line with
their findings.

The entropy of rated movies (Figure 7) indicates that the
distribution of movies when using the uniform versions of
choice models is closer to being uniform themselves. This is
particularly evident when we consider the differences be-
tween Trend-followers and Uniform Trend-followers, and
not so much in case of the Yes-men models. When users
can only choose from the same list of movies and they need
to choose the same number of movies, the distribution of
movies are even (i.e., entropy is high). However, if one of
these uniformities is not true, i.e., they can either get person-
alised recommendations or choose as many movies as they
want, entropy stays lower, meaning that there will be movies
increasingly more/less popular over time.

The mean Cosine coefficients in Figure 8 show that uni-
form versions of our models tend to have higher Cosine val-
ues. This means that, although users are forced to act uni-
formly in a way, the average difference between movie se-
lections of two users does not reflect uniformity. This effect
is likely to be the result of the presence of a particular type
of users in ‘unforced’ circumstances, who rate a lot more
movies than the average population. Rating a lot of movies
allows these users to have a greater chance of non-zero dot
product with others’ rating vectors, which contributes to an
overall lower mean Cosine coefficient value. As the distri-
bution of how many movies a user rates follow a power law,
the dominant users of the distribution cause the mean Cosine
coefficient to be lower than in the uniform case.

Also, according to our simulations, forced uniformity
makes the mean global ratings decrease (Figure 3). This is
probably caused by the fact that many users (in the long tail)
need to rate more movies than they actually like (or know).

In conclusion, forced uniformity has several negative ef-
fects on user behaviour. First, the total number of selected
items, as well as the mean rating, are decreasing, and the
average “distance” between users is increasing. We believe
that the only reason to apply such uniform models in prac-
tice is the need for collecting more data that is needed for
training recommender systems.

Yes-men vs. Trend-followers vs. Randomness

In this subsection, we compare three groups of simulation
results in order to find out how various – fundamentally dif-
ferent – movie selection methods result in different diversity
values. The first group contains the Yes-men type results, the
second is a group of Trend-followers, and the third is results
by choice models involving random selection of movies.

374

As it was expected, a random selection of movies results
in the lowest mean ratings, and we believe this also means
lowest satisfaction with the selection of movies users got to
rate. The highest mean ratings are associated with Trend-
follower type choice models1.

In terms of number of unique movies rated (Figure 4), a
random selection of movies covers the whole spectrum of
available movies, while Yes-men and Trend-followers are
either not much different from random selection (‘normal’
versions) or the spectrum is considerably tighter (Uniform
versions).

The global variance of ratings (Figure 5) is high and stable
in case of choice models involving randomness, while Yes-
men have higher variance then Trend-followers. User-based
variance (Figure 6) also shows a similar pattern – random
models result in highest variance, Yes-men are in the middle,
and Trend-followers are lowest.

With respect to entropy (Figure 7), total randomness
clearly is on top, as, by definition, entropy is highest when
samples are taken from a uniform distribution. As there is
a large entropy difference between various versions of Yes-
men and Trend-followers (discussed in the previous subsec-
tion), we do not feel that there is enough evidence to draw
conclusions about entropy results with respect to these two
types of choice models.

The mean Cosine diversities (Figure 8) also show the
highest values for randomness dominated choice models, in-
dicating that the pairwise differences between users is high-
est when movies are selected randomly. This is naturally the
case as the large number of available movies and the low
number of ratings per user per round make it very unlikely
that rating vectors of two users will overlap. Yes-men have
the second lowest mean Cosine values and Trend-followers
are associated with the lowest of these values, which reflects
that – due to the higher chance of rating the same movies2 –
the overlap between rating vectors of users will be higher.

These results show what designers or recommender sys-
tems might expect from a user: if they offer a personalised
list of movies, then diversity is expected to be higher but
overall ratings will suffer; if they only offer popular movies,
then ratings will be higher, but diversity will drop; and fi-
nally, if they offer random movies (we can call this an
‘exploration-facilitating’ recommender), ratings are likely to
become low, but a wide range of movies will be offered at
least to some people.

Conclusions

In this paper, we have investigated how diversity changes
under different models of user behaviour when using a rec-

1Note that the comparison between Yes-men and Trend-
followers is carried out in a coupled manner, e.g., we say that the
mean for Trend-followers is higher because it is higher for Trend-
followers than for Yes-men, but also higher for Uniform Trend-
followers than for Uniform Yes-men.

2Note that the overlap is not very high in case of Trend-
followers as users are not allowed to rate the same movie multiple
times, and many users join the system, and rate again, in different
rounds.

Figure 4: Number of unique movies rated.

Figure 5: Global variance of ratings.

ommender system. Our simulations have practical implica-
tions, both for recommender system owners and designers.
In particular, we have found that forced uniformity in terms
of number of items rated does not necessarily result in users
becoming more uniform, and the mean ratings they give to
items will decrease, indicating lower system performance
as perceived by the user (which answers Question 1 from
the Introduction). Also, we have identified how three kinds
of choice models, i.e., Yes-men, Trend-followers and Ran-
domisers, result in different diversity and mean rating val-
ues (answering Question 2). This is a particularly impor-
tant result as these behaviours can directly be encouraged
by recommender system owners, e.g., we might decide to
offer more trending items to one particular kind of users.

A limitation of our work is that, apart from the 25% Yes-
Randomisers choice model that implicitly assumes a some-
what heterogeneous population of users, no mixtures of be-
haviours have been investigated. Further simulations need to
be carried out to see how more heterogeneous populations

375

Figure 6: User-based average variance of ratings.

Figure 7: Entropy of rated movies.

Figure 8: Cosine diversity values.

(and their interactions) affect diversity levels.
Our work is related to the areas of group dynamics

and political systems, as mentioned in the introduction.
The choice models that we have used are based on gen-
eral social models concerning group dynamics on peer in-
fluence, social networks and collective behaviour. Exten-
sions of our study include the investigation of the particular
role of intermediators in this dynamic process (e.g., recom-
menders/governments), which we intend to investigate fur-
ther in future work.

References
Adomavicius, G., and Tuzhilin, A. 2005. Toward the next genera-
tion of recommender systems: A survey of the state-of-the-art and
possible extensions. IEEE Transactions on Knowledge and Data
Engineering 17(6):734–749.
Andrain, C. F. 1994. Comparative political systems: policy perfor-
mance and social change. M.E. Sharpe.
Bennett, J., and Lanning, S. 2007. The netflix prize. In In KDD
Cup and Workshop in conjunction with KDD, 3–6.
Deerwester, S. C.; Dumais, S. T.; Landauer, T. K.; Furnas, G. W.;
and Harshman, R. A. 1990. Indexing by latent semantic analysis.
Journal of the American Society of Information Science 41(6):391–
407.
Derbyshire, J. D., and Derbyshire, I. 1996. Political Systems of the
World. Palgrave Macmillan.
Dias, M. B.; Locher, D.; Li, M.; El-Deredy, W.; and Lisboa, P.
J. G. 2008. The value of personalised recommender systems to
e-business: A case study. In Pu, P.; Bridge, D. G.; Mobasher, B.;
and Ricci, F., eds., Proceedings of the 2008 ACM Conference on
Recommender Systems, 291–294.
Fleder, D., and Hosanagar, K. 2009. Blockbuster culture’s next rise
or fall: The impact of recommender systems on and sales diversity.
Management Science 55(5):697–712.
Forsyth, D. 1998. Group Dynamics. Wadsworth Publishing, 3
edition.
Funk, S. 2006. Netflix Update: Try This at Home. http://
sifter.org/˜simon/journal/20061211.html.
Garfinkel, R.; Gopal, R.; Pathak, B.; Venkatesan, R.; and Yin, F.
2006. Empirical analysis of the business value of recommender
systems. Technical Report Working Paper 958770, Social Science
Research Network.
Goldberg, D.; Nichols, D.; Oki, B. M.; and Terry, D. 1992. Using
collaborative filtering to weave an information tapestry. Commun.
ACM 35:61–70.
Herlocker, J. L.; Konstan, J. A.; Terveen, L. G.; and Riedl, J. T.
2004. Evaluating collaborative filtering recommender systems.
ACM Trans. Inf. Syst. 22:5–53.
Koren, Y.; Bell, R.; and Volinsky, C. 2009. Matrix factorization
techniques for recommender systems. Computer 42:30–37.
Sarwar, B.; Karypis, G.; Konstan, J.; and Reidl, J. 2001. Item-based
collaborative filtering recommendation algorithms. In Proceedings
of the 10th international conference on World Wide Web, WWW
’01, 285–295. New York, NY, USA: ACM.
Su, X., and Khoshgoftaar, T. M. 2009. A survey of collaborative
filtering techniques. Advances in Artificial Intelligence 2009:1–19.
Takács, G.; Pilászy, I.; Németh, B.; and Tikk, D. 2009. Scalable
Collaborative Filtering Approaches for Large Recommender Sys-
tems. J. Mach. Learn. Res. 10:623–656.

376

