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Abstract

Twitter has become exceedingly popular, with hundreds of
millions of tweets being posted every day on a wide vari-
ety of topics. This has helped make real-time search appli-
cations possible with leading search engines routinely dis-
playing relevant tweets in response to user queries. Recent re-
search has shown that a considerable fraction of these tweets
are about “events”, and the detection of novel events in the
tweet-stream has attracted a lot of research interest. However,
very little research has focused on properly displaying this
real-time information about events. For instance, the leading
search engines simply display all tweets matching the queries
in reverse chronological order. In this paper we argue that for
some highly structured and recurring events, such as sports,
it is better to use more sophisticated techniques to summarize
the relevant tweets. We formalize the problem of summariz-
ing event-tweets and give a solution based on learning the un-
derlying hidden state representation of the event via Hidden
Markov Models. In addition, through extensive experiments
on real-world data we show that our model significantly out-
performs some intuitive and competitive baselines.

Introduction

A key component of real-time search is the availability of
real-time information. Such information has recently prolif-
erated thanks to social media websites like Twitter and Face-
book that enable their users to update, comment, and other-
wise communicate continuously with others in their social
circle. On Twitter, user compose and send short messages
called “tweets”, putting the medium to a wide array of uses.
Recent research has shown that one of the big use-cases of
Twitter is users reporting on events that they are experienc-
ing: Sakaki et al. (2010) demonstrated that careful mining
of tweets can be used to detect events such as earthquakes.
Since then a lot of research works have focused on detection
of novel events on Twitter (Petrović, Osborne, and Lavrenko
2010) and other social media websites (Becker, Naaman,
and Gravano 2010) such as Flickr and Youtube.

However, the state of the art in real-time usage of this
stream of event-tweets is still rather primitive. In response
to searches for ongoing events, today’s major search en-
gines simply find tweets that match the query terms, and
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Figure 1: Absolute number of tweets referring to Football teams
showing marked spikes on the days the teams compete in games.

present the most recent ones. This approach has the ad-
vantage of leveraging existing query matching technologies,
and for simple one-shot events such as earthquakes it works
well. However, for events that have “structure” or are long-
running, and where users are likely to want a summary of
all occurrences so far, this approach is often unsatisfactory.
Consider, for instance, a query about an ongoing game of
American Football (we will use this as our running exam-
ple). Just returning the most recent tweets about the game is
problematic for two reasons: (a) the most recent tweets could
be repeating the same information about the event (say, the
most recent “touchdown”), and (b) most users would be in-
terested in a summary of the occurrences in the game so far.
This approach can clearly be improved upon using informa-
tion about the structure of the event. In the case of Football,
this corresponds to knowledge about the game play.

This motivates our goal of summarizing long-running
structure-rich events. Our work complements recent work
on detecting events in the twitter stream (Petrović, Osborne,
and Lavrenko 2010). We assume that a new event has been
detected; our goal is to extract a few tweets that best describe
the chain of interesting occurrences in that event. In particu-
lar, we focus on repeated events, such as sports, where differ-
ent games share a similar underlying structure (e.g., touch-
downs, interceptions, fumbles, in American football) though
each individual game is unique (different players, different
sequences of touchdowns, fumbles, etc.). We want our ap-
proach to learn from previous games in order to better sum-
marize a recent (perhaps even an ongoing) game; queries
about this game can then present a full summary of the key
occurrences in the game, as well as the latest updates.
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Our proposed solution is a two-step process. We first de-
sign a modified Hidden Markov Model that can segment
the event time-line, depending on both the burstiness of the
tweet-stream and the word distribution used in tweets. Each
such segment represents one distinct “sub-event”, a seman-
tically distinct portion of the full event. We then pick key
tweets to describe each segment judged to be interesting
enough, and combine them together to build the summary.
OUR CONTRIBUTIONS. We are, to the best of our knowl-
edge, the first to consider summarization of events using
tweets. To do this our algorithm tackles several challenges.
(1) Events are typically “bursty”. Some types of sub-events
generate far more tweets per unit time than others. Our algo-
rithm balances the number of tweets picked for the summary
from low activity and bursty periods.
(2) Separate sub-events may not be temporally far apart.
Our algorithm solves this problem by automatically learn-
ing language models for common types of sub-events. This
allows it to separate different types of sub-events even when
they are temporally close.
(3) Previous instances of similar events are available. Our
algorithm can build offline models for the different sub-
events using tweets from previous events – we do not want
to re-learn the characteristics of a touchdown in every game.
(4) Tweets are noisy. Tweets are very short (less than 140
characters) and noisy, rife with spelling mistakes. Our algo-
rithm achieves robust results in the face of these issues.
(5) Strong empirical results. We empirically compare our
model against several baselines; in particular, we show that
our algorithm achieves better recall over the set of important
occurrences, and also gives a better sense of the context of
these occurrences and the players associated with them.
ORGANIZATION. In the next section, we describe the na-
ture of real-time coverage of sports events, American Foot-
ball games in particular, on Twitter. Then, we discuss sev-
eral baselines and present our proposed solution based on a
modification of Hidden Markov Models 1. These solutions
are compared in the experiments section, where the accu-
racy and utility of our algorithm is demonstrated. We defer
the discussion of related work to the end of the paper as pre-
senting the details of our approach first helps us better con-
trast it with existing works. Finally, we conclude the paper
listing directions for future research.

Characteristics of Sports Coverage in Tweets

We want to summarize events so that the summaries can
be intelligently consumed by downstream applications like
search engines answering user queries. In this section we
will consider how sports events, particularly American Foot-
ball games, are covered in the tweet-stream.

For the purposes of this experiment we identify tweets re-
ferring to Football games by looking for certain hash-tags 2.

1Due to paucity of space some of the technical details of our
approach are given in a longer version of this paper (Chakrabarti
and Punera 2011)

2When Twitter users want to categorize their tweets they often
use hash-tags; syntactically, these are words prefixed with “#” em-
bedded in the tweet

Figure 2: The absolute number of tweets referring to Football
teams plotted over the duration of the game. Significant plays are
marked by spikes in tweets. The top frequent words during some
spikes are listed showing that words in the tweets describe the
plays.

In particular, in Figure 1 we plot the number of occurrences
of tweets containing the hash-tags “#jets”, “#steelers”, “#pa-
triots”, and “#colts”; these refer to the names of teams that
played each other on three different Sundays in January
2011. From the figure it is clear that the tweets referring to
the teams spike during the days when the events take place.

In order to check whether the tweets that contain refer-
ences to the team names are about the game we show in
Figure 2 the frequency of such tweets for two games over
the duration of the games. It is clear that the ebb and flow
of the tweets is correlated to the happenings of the game. In
addition to the frequency we have tagged some of the fre-
quency spikes with the common words in the tweets. As we
can see the words in the tweets associated with the spikes
do document the significant happenings at these events: the
“sub-events”. Hence, our goal in this work is to construct a
event-summary by selecting tweets, from the set of relevant
tweets, that describe these sub-events. Here we list some is-
sues of this data that our approach will have to deal with.

First, notice from Figure 2 that sub-events are marked
by increased frequency of tweets. More precisely, it is the
change in tweet-frequency as opposed to absolute levels
that demarcate sub-events. Second, boundaries of sub-events
also result in a change in vocabulary of tweets. The vocabu-
lary specific to a sub-event tends to come from two sources:
one part of it is sport specific comprising words like touch-
down, interception, etc., while another part is game-specific,
such as player names. Finally, we consider recurring sport
events with every repeated event sharing at least the sport-
specific vocabulary, and hence our approach should learn
from past games to do a better job of summarizing future
ones.

So do the existing methods address these issues? When
surfacing content from twitter in response to queries all ma-
jor search engines do little more that returning the match-
ing tweets in the reverse chronological order. This technique
works well for many use-cases of twitter, but not for sum-
marizing events, as it does not take into account the many of
the properties of event coverage on twitter described above.
We evaluated this technique as a baseline in our experiments
section but do not report the numbers as it proved to be ex-
tremely uncompetitive. In the next section we propose a se-
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ries of approaches that are designed to exploit the properties
of coverage of events on Twitter.

Algorithms
In this section, we will discuss three algorithms to summa-
rize tweets about events. In order to aid understanding of the
issues involved and the design choices we make, we start by
presenting the simplest approach and progressively repair
its shortcomings using more sophisticated methods. Also,
while the algorithms are given for structured long-running
events in general, we continue to use the running example
of sporting events to elucidate ideas.

Baseline: SUMMALLTEXT

The straightforward approach to summarizing tweets is to
simply consider each tweet as a document, and then apply a
summarization method on this corpus. In particular, we as-
sociate with each tweet a vector of the TF-logIDF of its con-
stituent words (Baeza-Yates and Ribeiro-Neto 1999). Defin-
ing the distance between two tweets to be the cosine distance
between them, we select those tweets which are closest to
all other tweets from the event. This algorithm - we call it
SUMMALLTEXT- is formally described in Algorithm 1.

Algorithm 1 SUMMALLTEXT

INPUT: Tweet corpus Z, tweet word vocabulary V , de-
sired number of tweets n
OUTPUT: Set of key tweets T

for i ∈ Z,w ∈ V do
zi(w) = tfidf(w, i, Z)

end for
for i ∈ Z do

score(i) =
∑

j∈Z cosine(zi, zj)
end for
T = top n tweets with maximum score

ISSUES. While this algorithm has the advantage of simplic-
ity, it has several defects. First, O(|Z|2) computations are re-
quired to compute the scores (though this could be reduced
in practice if pruning techniques and approximations such as
LSH are used). More importantly, the result set T is likely to
be heavily biased towards the most popular sub-event, to the
complete exclusion of other sub-events. The usual method
used in such cases is to sequentially add those tweets to T
that (a) have high scores, while (b) are diverse enough from
the the tweets already added to T . However, simply using a
text-based diversity function will not help in our case, since
we want T to contains tweets for every major sub-event,
even if those sub-events are of the same class — for exam-
ple, in football, we want to get tweets for all touchdowns,
even though the tweets describing each of these touchdowns
are presumably quite similarly worded. In essence, a time-
based diversity function is necessary.

Baseline: SUMMTIMEINT

In order to pick tweets from the entire duration of the event,
we need to combine summarization with a segmentation

strategy. The simplest idea is to split up the duration into
equal-sized time intervals (say, 2 minutes for football), and
then select the key tweets from each interval. However,
clearly, not all intervals will contain useful sub-events. We
detect such intervals by their low tweet volume relative to
the average, and do not select any key tweets from such in-
tervals.

The SUMMTIMEINT algorithm is described formally in
Algorithm 2. It has two extra parameters: (a) a segmentation
TS of the duration of the event into equal-time windows,
and (b) the minimum activity threshold �, whereby time seg-
ments where tweet volume is less than �% of all tweets are
ignored. Both the window length and the threshold � are to
be picked experimentally with the goal of having no more
than one complete sub-event in each time segment.

Algorithm 2 SUMMTIMEINT

INPUT: Tweet corpus Z, tweet word vocabulary V , desired
number of tweets n, minimum activity threshold �, time seg-
ments TS
OUTPUT: Set of key tweets T

TS′ = {s ∈ TS | tweet volume in segment s > �% of |Z|}
for each segment s ∈ TS′ do

Z[s] = Z restricted to the same time as s
Ts = SUMMALLTEXT(Z[s], V, n/|TS′|)

end for
T =

⋃
Ts

ISSUES. This algorithm ensures that the selected tweets are
spread across the entire duration of the event. Diversity
within any given time segment now becomes less useful,
because only a few tweets are picked from each segment.
However, the segmentation based on equal-sized time win-
dows is far too simplistic, for three reasons discussed below.
Burstiness of tweet volume: Tweets come in bursts, and the
durations of these bursts can vary. If the event is split into
constant-time stages, one single long burst can be split into
multiple stages, and the key tweets from each stage are likely
to be near-duplicates. Conversely, if each stage is too long, it
might cover several sub-events in addition to the bursty sub-
event; since only a few tweets can selected from each time
segment, some sub-events are likely to be missing from the
final set of key tweets. The problem remains even if the event
is split into stages with constant number of tweets in each
stage. Clearly, none of these trivial solutions is satisfactory.
Multiple sub-events in the same burst: Even if bursts in tweet
volume can be detected accurately, segmenting by burst vol-
ume can be misleading. For instance, if two sub-events oc-
cur close together in time (e.g., an “interception” followed
soon after by a “touchdown”) and both generate significant
tweets, then their respective tweets might get smeared into
one seemingly continuous burst in tweet volume. However, a
careful examination of the word distribution of the tweets in
this burst would reveal the presence of the two different sub-
events. Thus, a good segmentation should consider changes
in language model along with changes in tweet volume.
“Cold Start”: At the beginning of the game, when the tweet
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language models are unknown and the thresholds defining
“bursty” behavior are unclear, the segmentation algorithm
could be very inaccurate. This is especially the case if the
thresholds for bursts or changes in language model have to
be learnt automatically. Thus, there is a significant risk of
missing important sub-events that happen early.

We need a segmentation method that can overcome all
these obstacles. A good segmentation will isolate at most
one sub-event in each time segment, which can then be used
by the summarizer to output summaries (or choose to ignore
segments where little seems to be happening). In the next
section, we propose a variant of the Hidden Markov Model
(HMM) to solve this problem.

Our Approach: SUMMHMM
We have seen that there are two parts to event summariza-
tion: detecting stages or segments of an event, and summa-
rizing the tweets in each stage. To segment an event, we turn
to a model that has worked very well for many such prob-
lems: the Hidden Markov Model (HMM). The HMM is able
to learn differences in language models of sub-events com-
pletely automatically, so that the model parameters are tuned
to the type of event. The parameters of the HMM are easily
interpretable as well. These advantages make it easy for the
HMM to be applied to a wide variety of events, and make
it our tool of choice for event segmentation. However, the
standard HMM requires some modifications to be applica-
ble to our problem, so we first present a short background
on HMMs before discussing SUMMHMM.
BACKGROUND ON HMMS. The standard HMM posits the
existence of N states labeled S1, . . . , SN , a set of observa-
tion symbols v1, . . . , vM , the probabilities bi(k) of observ-
ing symbol k while in state i, the probabilities aij of transi-
tioning from state i to state j, and the initial state distribution
πi (Rabiner 1989). Starting from an initial state, the HMM
outputs a symbol picked according to the symbol probabili-
ties for that state, and then transitions to another state based
on the transition probabilities (self-transitions are allowed).
Now, given several sequences of symbols, one aims to learn
the symbol and transition probabilities of the HMM that best
fit the observed sequences. In our case, each state could cor-
respond to one class of sub-events (e.g., “touchdown”, “in-
terception”, “fumble”, etc.), and the symbols are the words
used in tweets. Thus, our event HMM models each event
as a sequence of states, with tweets being the observations
generated by the states. The variation in symbol probabil-
ities across different states account for the different “lan-
guage models” used by the Twitter users to describe differ-
ent classes of sub-events, and the transitions between states
models the chain of sub-events over time that together make
up any given event.

Our Modifications We enhance the standard HMM with
several modifications to devise SUMMHMM which is more
relevant to event summarization.
OUTPUTS PER TIME-STEP. One difference between
SUMMHMM and the standard HMM is immediately clear –
the observation from a given state of SUMMHMM consists
of all tweets for that time period (i.e., a multiset of symbols)

instead of just one symbol, as in the standard HMM. This
requires a simple extension of the standard model.

DETECTING BURSTS IN TWEET VOLUME. Another differ-
ence is that the standard HMM does not account for different
rates of tweets over time, since it only outputs one symbol
per time-step. Thus, it is unable to model bursts in tweet
volume. Instead, we allow each state to have its own “tweet
rate” which models the expected fraction of tweets in a game
which come from that state. This allows for differentiation
between states on the basis of the burstiness of the tweet-
stream, which complements the differentiation based on the
“language model” of state-specific symbol probabilities.

COMBINING INFORMATION FROM MULTIPLE EVENTS.
Note that in order to learn the parameters of SUMMHMM,
we require several observation sequences generated by it. In
fact, if we build a SUMMHMM for just the current event,
using only the tweets seen until now, then it will be very
similar to an algorithm that simply detects “change-points”
in a data stream. While change-point detection systems are
very useful in practice, they suffer from the problem of cold-
start: every time there is a change-point, a new model of the
data must be learnt, so there is a time lag before the next
change-point can be detected. Also, since the change-point
system can only model the tweets it has seen so far, it can
be slow to trigger when a new class of sub-event occurs,
explaining away the first wave of tweets from the new sub-
event as just the variability of the current model. Clearly,
modeling each event by itself has disadvantages. This mo-
tivates learning the SUMMHMM parameters by training on
all available events of a certain type (e.g., all football games
in a season). Since all football games share the same classes
of sub-events (“touchdown”, “interception”, etc.), combin-
ing the data from multiple events allows us to (a) better learn
SUMMHMM parameters, and (b) better detect state transi-
tions in a new game, thus solving the cold-start problem.

However, this also has the disadvantage that SUMMHMM
has to account for tweet words that only occur in some of
the events, but not in others. The most common example of
this is proper names. For instance, tweets about two differ-
ent football games will almost never share player names or
team names. However, such proper names could be very im-
portant in distinguishing between states (e.g., certain play-
ers only play in defense or offense), and so ignoring names
is not a solution. To account for this, we maintain three sets
of symbol probabilities: (1) θ(s), which is specific to each
state but is the same for all events, (2) θ(sg), which is spe-
cific to a particular state for a particular game, and (3) θ(bg),
which is a background distribution of symbols over all states
and games. Thus, θ(s) encapsulates different classes of sub-
events, while θ(sg) captures proper names and other sym-
bols that can vary across games but still give some signal
regarding the correct state; finally, θ(bg) handles all noisy or
irrelevant tweets. The standard HMM uses only θ(s). This
differentiation of symbol probabilities across specific events
is another aspect of SUMMHMM that distinguishes it from
the standard HMM.

Algorithm Summary SUMMHMM takes multiple events
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of the same type as input, and learns the model parameters Θ
that best fit the data. The model parameters consist of multi-
nomial word distributions θ(s), θ(sg), θ(bg) and the transition
probabilities. These parameters are learnt using an EM algo-
rithm 3. Given Θ, the optimal segmentation of the events can
be quickly found by the standard Viterbi algorithm (Rabiner
1989), which we do not describe here. Each segment can
then be summarized, yielding the final set of top tweets for
each event.

Note that only the computation of Θ is time-consuming,
and this can be done periodically and offline. Then, for a
new event, the segments can be computed online, using an
old Θ, as new tweets are generated. Algorithm 3 gives the
pseudo-code for our approach.

Algorithm 3 SUMMHMM
INPUT: Tweet corpus Z, tweet word vocabulary V , desired
number of tweets n, minimum activity threshold �
OUTPUT: Set of key tweets T

Learn Θ by iterating the update equations in (Chakrabarti and
Punera 2011) until convergence
Infer time segments TS by the Viterbi algorithm (Rabiner 1989)
TS′ = {s ∈ TS | tweet volume in segment s > �% of |Z|}
for each segment s ∈ TS′ do

Z[s] = Z restricted to time s
Ts = SUMMALLTEXT(Z[s], V, n/|TS′|)

end for
T =

⋃
Ts

Experiments

We first describe the experimental setup, and then report on
the performance of our proposed algorithms.

Experimental Setup

In this section we describe the dataset used, the process of
ground truth construction, and the baselines considered in
this evaluation.
FINDING TWEETS RELEVANT TO SPORTS EVENTS.

Our goal in this paper was to summarize structured recur-
ring events. For our experiments, we selected the sport of
professional American Football. Football teams enjoy enor-
mous popularity in the USA and play a large number of
games with each other over a year, giving us an ideal test-
bed to evaluate our proposed model.

Since our emphasis is on summarization, all algorithms
assume that the problem of searching the tweets relevant to
a user query about a sports event has already been solved.
To simulate the perfect search process, we scanned Twitter
feeds for the period of Sep 12th, 2010 to Jan 24th, 2011
for tweets containing the names of NFL teams: we noticed
that on Twitter users often appended their posts about sport

3Due to paucity of space and in light of the interdisciplinary na-
ture of ICWSM the full mathematical formulation of SUMMHMM
and the corresponding EM update equations are not given here.
Please refer to the longer version of this paper (Chakrabarti and
Punera 2011) for these details.

events with hash-tags containing the names of the teams in-
volved. Hence, we collect the tweet-corpus relevant to the
game between Green Bay Packers and Chicago Bears on
Jan 23rd 2011 by finding all tweets during game-time that
contain either #packers or #bears. We understand that our
tweet-corpus is a subset of all the tweets pertinent to the
sports event, and that a stronger search system might find
other relevant tweets; however, constructing such a system
is beyond the scope this work. Even with these constraints
we obtained over 440K tweets over 150 games for an aver-
age of around 1760 tweets per game.
CLEANING THE TWEETS.

The event-tweets stream obtained by the process de-
scribed above is very noisy. The two chief sources of noise
are spam and tweets unrelated to the game. Spam-tweets can
be easily removed since they almost always have a URL in
them. We also do not consider users that have less than 2 or
greater than 100 tweets for any one football game. Finally,
we place similar thresholds on number of occurrences of
words: we remove (Porter-stemmed) words that occur fewer
than 5 times or in more than 90% of the tweets for the foot-
ball game. While this removes most of the noise, we are still
left with some tweets that do not strictly refer to the game
under consideration: typically, user rants about their favorite
teams, the game of football, or the world in general. Af-
ter this cleaning, we only consider games with greater than
1500 tweets from at least 100 independent users: we are left
with 53 of them. All experiments henceforth are conducted
on this corpus.
OUR APPROACH AND BASELINES.

The technical details of our approach and baselines are
given in the Algorithms section earlier. Here we give any
implementation details and parameter settings.
SUMMALLTEXT: This approach constructs the game sum-
mary by finding the set of tweets that are close to all others
in the corpus. We implemented this baseline by represent-
ing tweets via a TF-logIDF representation and used Cosine
similarity as the comparison measure.
SUMMTIMEINT: This approach summarizes tweets as
SUMMALLTEXT, but in each time window separately. It
takes two parameters: we set t = 120 secs and � = 1%.
These parameters were set via evaluation on a held-out vali-
dation set (10% of ground truth).
SUMMHMM: This is our proposed HMM-based approach.
We learn the underlying latent space of tweets by running
15 iterations with K = 10 states. Later in this section we
will analyze the structure of these learnt hidden states. After
finding the segments, the summary tweets are generated by
calling SUMMTIMEINT with parameters � = 1.5% (tuned
through the use of a held-out 10% validation set).
MANUAL GROUND TRUTH CONSTRUCTION.

Our proposed approach and baselines all output a set of
tweets they consider as a good summary of the game. In
order to evaluate these approaches we had human editors
manually label every tweet output by them. Each output
tweet was matched with the happenings in the game and
labeled as Comment-Play, Comment-Game, or Comment-
General. To be labeled as Comment-Play the tweet had to
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Figure 3: PRECISION-RECALL curves of our approach and base-
lines. To produce the curve the number of tweets was varied from
10 . . . 70 in increments of 10. Around the operating point of 30
tweets, SUMMHMM has a PRECISION@30 = 0.5 and a RE-
CALL@30 = 0.52.

explicitly describe and occur with a few minutes of the play
in question. The specific type of play (touchdown, field-
goal, interception, fumble, etc.), was also noted in the la-
bel. These tweets were also assigned additional labels if they
gave extra information, like current score, number of yards,
and other contextual information (Comment-Play-Details),
or names of the players involved (Comment-Play-Names).
Tweets labeled Comment-Game typically described the state
of the game at that point in time, such as the current score
or reports of player injuries etc., and can be considered
highly useful in a game summary. Tweets labeled Comment-
General were statements unrelated to the football game un-
der consideration. A total of 2175 tweets were manually la-
beled this way.

Play-by-Play Summary Construction Performance

Here we evaluate our approach (SUMMHMM) and base-
lines, SUMMTIMEINT and SUMMALLTEXT, on the task
of obtaining a useful play-by-play summary of football
games. For these results we use the set of manually labeled
tweets described above. We report performance using stan-
dard measures in information retrieval research. We want an
ideal game summary to contain all important plays in foot-
ball, like touchdowns, field goals, interceptions, and fum-
bles. Hence, we define RECALL of an approach as the frac-
tion of such important plays that are found by it. Further, we
want the ideal game summary to include as few irrelevant
tweets as possible: the screen real-estate to display the sum-
mary and the user’s attention are both limited. Hence, we
define the PRECISION of an approach as the fraction of its
output tweets that are labeled Comment-Play or Comment-
Game. Note that, as an approach outputs more tweets typi-
cally the PRECISION will become smaller and the RECALL
will increase. Hence, we report PRECISION and RECALL by
varying the number of output tweets from 10 . . . 70 in incre-
ments of 10.
EVALUATION AT OPERATING POINT.

In Figure 3 we plot the PRECISION-RECALL curves of

SUMMHMM and the baseline methods. First thing to no-
tice is that performance of SUMMHMM dominates the per-
formance of the SUMMTIMEINT and SUMMALLTEXT over
the whole set of operating points. As it is difficult to show
the full set of 70 output tweets to users, owing to limited
user attention and screen real-estate, the operating point of
a deployed system is likely to be lower. In the more realistic
operating ranges 10 − 30 the performance of SUMMHMM
is significantly higher than both SUMMTIMEINT and SUM-
MALLTEXT. In the middle of that range in terms of PRE-
CISION@20 and RECALL@20, SUMMHMM is 25% and
16% better, respectively, than the nearest competitor.

RECALL OF DETAILS OF PLAYS.
Here we compare the performance of SUMMHMM and

baselines in terms of whether the output tweets give con-
text and details around the play. In Figure 4 we plot the
measure RECALL@30 on the task of retrieving Comment-
Play, Comment-Play-Details, and Comment-Play-Names la-
beled tweets. To be clear, RECALL@30 for Comment-Play-
Details is the fraction of important plays in a game that
are matched by some top-30 tweet that has been labeled
Comment-Play-Details by the editors. If an important play
is matched with some tweet in the top-30 that is only la-
beled Comment-Play or Comment-Play-Names, then it does
not count towards RECALL@30 for Comment-Play-Details.
From the figure, first note that SUMMHMM outperforms
the baselines in all three tasks. In fact, as the tasks become
harder the performance difference between SUMMHMM
and the nearest competitor is higher as well: SUMMHMM
beats others by more than 33% on finding Comment-Play-
Details and by 26% on finding Comment-Play-Names.

Second, note that the performance of SUMMHMM
on finding tweets labeled Comment-Play-Details and
Comment-Play-Names is lower than finding tweets that are
labeled Comment-Play. This is due to the fact that while
twitter users are remarkably consistent on how they refer to
plays such as touchdowns and field-goals, there is a much
larger variability when they refer to details such number of
yards gained or names of players involved. Player names
in particular lend themselves to misspellings and abbrevi-
ations as well as ambiguities; most twitter users are posting
through mobile devices. As an extreme example, apart from
his correct name, the Ravens player “T J Houshmandzadeh”
is referred to as “tj”, “tjh”, “houzhma”, “houshma”, “housh-
moundzadeh” in the tweets. Also, there are 19 players in
14 teams with the name “Jackson”. This extremely variabil-
ity and ambiguity in the names is the reason the RECALL
performance on retrieving the name is low. As future work
we will consider special algorithms for resolving some of
these issues surrounding names before deploying a system
like this.

RECALL OF TYPES OF PLAYS.
Here we discuss the ability of the various approaches

in finding tweets that match different types of plays in the
game. In Figure 5 we plot the RECALL@30 measure when
restricted to finding just the plays of the types listed on the
x-axis. As we can see all methods are strong when retriev-
ing key touchdown-plays since these are the primary scoring
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Figure 4: RECALL performance of our approach and baselines on
finding tweets with context and details. As we can see the task of
finding tweets labeled Comment-Play-Details and Comment-Play-
Names is more difficult and the performance improvement due to
SUMMHMM is higher.

Figure 5: RECALL performance of our approach and baselines on
finding tweets about different types of plays. As expected, tweets
on scoring plays such as touchdowns and field-goals are easier to
find.

mechanisms in American Football and precisely the plays
which generate most user tweets. However, a second critical
scoring mechanism, field-goal-plays, proves much harder
for baselines while SUMMHMM detects 50% of them in the
top-30 output tweets. The fraction of touchdown-plays de-
tected in the top-30 tweets is around 60% while the number
rises to almost 90% in the top-70 tweets.

An observation about a key result in Figure 5 gives in-
sight into a strength and a weakness of our approach. As we
can see, SUMMHMM performs significantly worse on the
task of finding interception-plays than the baselines. This is
because our approach makes a critical assumption that af-
ter segmentation via HMM there is but one key play within
each segment. This is often a strength since this lets us use
the segment specific models to retrieve the play, but can
sometimes turn into a weakness when the assumption is
violated. In the case of interception-plays, they are often-
times followed immediately by other scoring plays: in our
data around 45% of interception-plays were followed within
minutes by touchdown-plays or field-goal-plays. Hence, the
assumption made by SUMMHMM is violated in the case of
interception-plays. One way to tackle this issue is ensure di-
versity amongst tweets when selecting them from a segment;
we plan to attempt this in future work.
REASONS FOR PRECISION@30 =0.5.

As we pointed out earlier in the deployment operating re-

State label Top words in θ(s) Top words in θ(sg)

TOUCHDOWN stop, catch, drive, great, pass mark sanchez
FIELD-GOAL miss, kick, kicker, no good, score nick folk

INTERCEPTION int, throw, pick, touchdown, defense mark sanchez
DEFENSE & FUMBLE sack, good, punt, stop, block darrelle revis
PENALTY & FUMBLE challenge, run, hold, punt, call darrelle revis

Table 1: The label and top words from 5 hidden states learnt by
SUMMHMM. The state label in column 1 is picked from among
the top state-specific words listed in column 2. Due to paucity of
space we only give the top (state, game)-specific word for each
hidden state averaged over all games of the Football team Jets.

gion of returning around 30 tweets, the PRECISION = 0.5.
While this seems a little low as a number, upon inspection
of the tweets output by the various approaches it is clear that
the editors enforced a very strict standard in the judgments.
A tweet was deemed relevant only if it referred to a specific
identifiable play in the game. For example, tweets encourag-
ing the teams such as “let’s convert on 3rd down #packers”
and giving personal opinions on the game such as “i hate
that was the right call by the refs #packers” were deemed
irrelevant. We believe that including these tweets into the
summary adds color and drama to it, and hence these tweets
should be scored relevant. However, the true worth of any of
these presentations can only be determined once we observe
how users interact with them; we hope to run this amended
evaluation as part of the future work.

HIDDEN STATES OF THE LEARNT HMM.
Here we examine some anecdotal evidence of our ap-

proach’s performance. In Table 1 we display 5 of the 10
hidden states used in learning SUMMHMM and give their
top state-specific as well as state-game-specific words. The
rest of the states either acted as duplicates of these states,
or had uninterpretable term distributions; this is common in
learning hidden state models where the number of underly-
ing hidden states has to be guessed. First, notice that these
states do correspond to the different types of plays in Ameri-
can Football. Second, while the state-specific words capture
the words that tweets use to describe the play in general, the
words specific to the (state, game) pairs are typically player
names that change from game to game. Column three of Ta-
ble 1 shows the top (state, game) words averaged over all
games of the Jets team. The results make complete sense as
Mark Sanchez is the team’s quarterback (or main offensive
player) and Darrelle Revis seems to be their main defen-
sive player. Nick Folk, the team’s kicker, is the top word
for the state FIELD-GOAL. Finally, some of related play-
types are represented by the same underlying hidden state.
This happens because either these plays are referred to us-
ing similar words, or the same players participate in them,
or they often occur close together in time. Hence, we see
that SUMMHMM finds a cohesive underlying structure of
Football games.

GENERALIZATION TO OTHER TYPES OF EVENTS.
SUMMHMM has been designed and implemented to gen-

erate good summaries for structured and recurring sports
events, but its functionality is a strict super-set of those
needed to work on other types of events. American Foot-
ball has a very discrete nature with significant events well
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separated in clock-time, while other sports like soccer have
a much more continuous game-flow; this can be challeng-
ing for the baselines described in this paper. We have tested
SUMMHMM on soccer matches from World Cup 2010 and
obtained results similar to American Football games. Other
types of events such as music festivals and award-shows,
or even sudden news events such as the Tunisian revolu-
tion, can benefit from a Twitter-based summary though such
events are not repeated often. We expect that SUMMHMM
will be able to handle these events, however, some of its fea-
tures will be under-utilized. As future work we would like to
apply our approach to these other types of events.

Related Work

Here we describe some of the related existing research work
and discuss how our work differs from it.
MICROBLOGGING AND TWITTER. There has been much
recent interest on identifying and then tracking the evolu-
tion of events on Twitter and other social media websites,
e.g., discussions about an earthquake on twitter (Sakaki,
Okazaki, and Matsuo 2010), detecting new events (also
called first stories) in the tweet-stream (Petrović, Osborne,
and Lavrenko 2010), visualizing the evolution of tags (Du-
binko et al. 2006), and other events on Flickr, Youtube, and
Facebook (Becker, Naaman, and Gravano 2010; Chen and
Roy 2009). The problem has also been approached from the
point of view of efficiency: (Luo, Tang, and Yu 2007) pro-
pose indexing and compression techniques to speed up event
detection without sacrificing detection accuracy. However,
to the best of our knowledge, we are the first to study the
summarization of events using user updates on Twitter.
SUMMARIZATION. Summarization of text documents has
been well studied in the IR community. A common method
is based on computing relevance scores for each sentence in
the document and then picking from among the best (Gong
and Liu 2001). More complex methods are based on la-
tent semantic analysis, hidden markov models, deep natu-
ral language analysis, among others (Gong and Liu 2001;
Das and Martins 2007). However, these are primarily aimed
at standalone webpages and documents. While the summa-
rization of a sequence of tweets can be seen as a form of
text summarization, there are nuances that are not consid-
ered by most prior algorithms. Still the main contribution
of our work is in modeling the underlying hidden structure
of events; most any off-the-shelf summarization method can
then be then used to extract the important tweets to construct
the summary.
SEQUENTIAL MODELING. There are a variety of meth-
ods to model sequence information. Change-point models
try to detect instants of time when there is some marked
change in the behavior of the sequence, e.g., the intensity
with which observations arrive suddenly changes (Mannila
and Salmenkivi 2001; Kleinberg 2002). Thus, change-points
give a segmentation of the sequence into chunks of different
intensities. Another way to segment the sequence is on the
basis of differences in distribution of the observations them-
selves. A classical technique for this is the Hidden Markov
Model (HMM) (Rabiner 1989; Wang et al. 2010), which

posits the existence of an underlying process that transitions
through a sequence of latent states, with observations be-
ing generated independently by each state in the sequence.
HMMs have been extremely successful in areas as varied as
speech recognition, gesture recognition, and bioinformatics.
The various ways in which our proposed approach enhances
the classical HMM are described in detail in the Algorithms
section.

Summary and Future Work

In this work we tackled the problem of constructing real-
time summaries of events from twitter tweets. We proposed
an approach based on learning an underlying hidden state
representation of an event. Through experiments on large
scale data on American Football games we showed that
SUMMHMM clearly outperforms strong baselines on the
play-by-play summary construction task, and learns a un-
derlying structure of the sport that makes intuitive sense.
As future directions of research we would like to test
SUMMHMM on long-running one-shot events such as fes-
tivals and award shows, and to provide summaries for im-
portant but unpredictable events such as revolutions and nat-
ural disasters. Finally, we have not yet evaluated the sum-
maries generated by our approach in real-time on search en-
gine users; this is something we hope to do in the future.
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