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Abstract

Social network analysis encompasses the study of net-
worked data and examines questions related to struc-
tures and patterns that can lead to the understanding of
the data and the intrinsic relationships, such as identify-
ing influential nodes, recognizing critical paths, predict-
ing unobserved relationships, discovering communities,
etc. All of these analyses, germane to a variety of appli-
cation domains, are typically done on static information
networks; that is, a fixed snapshot of the information
network. Yet, a social network changes and understand-
ing the evolution of the network and detecting these
changes in the underlying structures is paramount for a
multitude of applications. Looking at networks as fixed
snapshots misses the opportunity to capture the evolu-
tionary patterns. In this paper, we present a framework
for modeling community evolution in social networks
by tracking of events related to the life cycle of a com-
munity. We illustrate the capabilities of our framework
by applying it to real datasets and validate the results
using topics extracted from the tracked communities.

Introduction
Social networks, are interconnected records typically repre-
sented by a graph that depicts the interactions between in-
dividuals or entities. In these networks, each individual is
represented by a node, and there is an edge between two
nodes if an interaction has occurred, or a relationship exists,
between the two individuals during the time. The analysis
of these networks is of interest to many fields such as so-
ciology (Wasserman and Faust 1994), epidemiology (Mey-
ers, Newman, and Pourbohloul 2006), criminology (Calvo-
Armengol and Zenou 2003), etc. The need to identify com-
munities, which are densely connected individuals that are
loosely connected to others (Newman and Girvan 2004), has
recently driven attention in the research community.

Most networks are dynamic as they tend to evolve grad-
ually, due to frequent changes in the interaction of their in-
dividuals. Also, the communities inside a dynamic network
could grow or shrink, and the membership of the individuals
shifts regularly (Newman and Park 2003). In these networks,
researchers may be interested in the evolution of commu-
nities and membership of individuals. One way to model
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the structural changes in dynamic networks is to convert an
evolving network into static graphs at different snapshots.
Such dynamic analysis of social networks, especially assess-
ing the evolution of communities, provides insights into un-
derstanding the structures of the networks, and detecting a
change in the interaction patterns. Leskovec et al. (Leskovec,
Kleinberg, and Faloutsos 2005) study the patterns of growth
for graphs based on various topological properties, such as
the degree of distribution and small-world properties of large
networks. Backstrom et al. (Backstrom et al. 2006) approx-
imate the probability of an individual joining two explic-
itly defined communities based on defining critical factors
and then analyze the evolution of these communities. Ku-
mar et al. (Kumar, Novak, and Tomkins 2006) provide the
properties of two real-world networks and then analyze the
evolution of structure in these networks. Tantipathananandh
et al. (Tantipathananandh, Berger-Wolf, and Kempe 2007)
formulate the detection of dynamic communities as a graph
coloring problem. They provide a heuristic technique that
involves greedily matching detected communities at dif-
ferent snapshots. Falkowski et al. (Falkowski, Barth, and
Spiliopoulou 2008) discover the evolution of communities
by applying clustering on a graph formed by all detected
communities at different timepoints.

A number of researchers are working on identifying
events that characterize the evolution of communities in dy-
namic networks. For example, Palla et al. (Palla, Barabasi,
and Vicsek 2007), Asur et al. (Asur, Parthasarathy, and Ucar
2007), Takaffoli et al. (Takaffoli et al. 2010), and Greene
et al. (Greene, Doyle, and Cunningham 2010) analyze the
behavior of network by defining events between commu-
nities detected at two consecutive snapshots and character-
ized each community by a series of events. All of these
works focus on analyzing the evolution of communities by
using a two-stage approach, where the communities are
first detected independently for each snapshot, and then
compared to determine the evolution. Another approach is
to use evolutionary community mining, where the com-
munity mining at a particular time is influenced by the
communities detected in a previous time. Adapting com-
munity mining in order to consider both current and his-
toric information into the objective of the mining process is
also proposed by (Chakrabarti, Kumar, and Tomkins 2006;
Asur and Parthasarathy 2009; Sun et al. 2010). However,
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none of the previous works cover all of the changes a com-
munity may experience during the observation time of a dy-
namic social network. Thus, we propose the MODEC frame-
work to detect all the events related to the communities
where it takes the detected communities at consecutive snap-
shots as an input and provides a mapping of how each com-
munity evolved at each timepoint.

MODEC Framework
We develop the MODEC framework in order to model and
detect the evolution of communities obtained at different
snapshots in a dynamic social network. Here, the problem of
detecting the transition of communities is reduced to identi-
fying events that characterize the changes of the communi-
ties across the time of observation. The events are defined in
such a way that they can capture all of the changes a com-
munity may experience.

Let 1, ..., n be the sequence of snapshots under obser-
vation. Graph G = (V,E) denotes an aggregate graph
representing the dynamic social network where V and E
are all the individuals and interactions respectively over an
observation time. We model the dynamic social network
as a sequence of graphs {G1, G2, ..., Gn}, where Gi =
(Vi, Ei) represents a graph with only the set of individu-
als and interactions at a particular snapshot i. Unlike pre-
vious approaches (Palla, Barabasi, and Vicsek 2007; Tan-
tipathananandh, Berger-Wolf, and Kempe 2007), the com-
munities at any snapshot can be the result of any static
community mining algorithm. Thus, our framework is in-
dependent of the community mining algorithm used. The
ni communities at the ith snapshot are then denoted by
Ci =

{
C1

i , C
2
i , ..., C

ni

i

}
, where communityC

p
i ∈ Ci is also

a graph represented by (V p
i , E

p
i ). In the literature there are

different taxonomies to categorize the changes of clusters or
communities that evolve over time (Spiliopoulou et al. 2006;
Asur, Parthasarathy, and Ucar 2007; Palla, Barabasi, and
Vicsek 2007). To capture the changes that are likely to oc-
cur for a community, we consider five events: form, dissolve,
survive, split, and merge. The key concept for the detection
of these events is the matching of communities across time.
We define matching as the process of finding a map between
the communities obtained at a snapshot and the communi-
ties at later snapshots, not necessary consecutive. Thus, for a
community C

p
i discovered at ith snapshot, we must first find

the matching community at later snapshots. Then, based on
the existence of the matching community, the events for C

p
i

can be detected. Two communities are matched if at least
k% of their members are the same:

Community Match: Let C
p
i and C

q
j be the communities

detected at snapshot i and j �= i respectively. Community
C

q
j is a match for C

p
i at jth snapshot if and only if C

q
j is the

community with the maximum mutual members for C
p
i and

the mutual members are at least k% of the largest one:

match(Cp
i , j) = C

q
j iff

C
q
j = argmax

Cu
j
∈Cj

{
|V p

i ∩ V u
j |

max(|V p
i |, |V

u
j |)

}
≥ k%

(1)

If there is no such C
q
j ∈ Cj , then match(Cp

i , j) = ∅.

A communityC
p
i at ith snapshot may undergo different tran-

sitions at later snapshots. Community C
p
i splits at snapshot

j > i if it fractures into more than one community with at
least k% of their members from C

p
i . Community C

p
i sur-

vives if there is a community match for it in any j > i
snapshot, when there is no community match for C

p
i at later

snapshots the community dissolves. Only the survive and
dissolve events are mutually exclusive while the split event
can be combined with the other two: community C

p
i splits

and survives at jth snapshot if it fractures to more than one
community and one of these communities is the commu-
nity match for C

p
i ; community C

p
i splits and dissolves at

jth snapshot if it fractures to other communities and none of
these communities are the community match for C

p
i . A set

of communities in Ci can merge in Community C
q
j at snap-

shot j > i. The merge event occurs when at least k% of the
members from more than one communities in Ci, exist in
C

q
j . At any snapshot there may be newly formed communi-

ties that are the ones that do not have any match in previous
snapshots. The definitions of these events are as follows:

Form: A community C
p
i forms at ith snapshot if there is

no community match for it in any of the previous snapshots:

form(Cp
i , i) = 1 iff

∀j < i : match(Cp
i , j) = ∅

(2)

Dissolve: A community C
p
i dissolves at ith snapshot if

there is no community match for it in any of the next snap-
shots:

dissolve(Cp
i , i) = 1 iff

∀j > i : match(Cp
i , j) = ∅

(3)

Survive: A community C
p
i survives at ith snapshot if there

exists a snapshot j > i that contains a community match for
C

p
i :

survive(Cp
i , i) = 1 iff

∃j > i and ∃Cq
j ∈ Cj : match(Cp

i , j) = C
q
j

(4)

Split: A community C
p
i at ith snapshot splits to a set of

communities C∗
j =

{
C1

j , ..., C
n
j

}
at snapshot j > i if at

least k% of the members of the communities in C∗
j are from

communityC
p
i . Also in order to prevent the case where most

of the members of C
p
i leave the network, at least k% of its

member must enclosed in C∗
j :

split(Cp
i , i) = 1 iff

∃j > i and ∃C∗
j =

{
C1

j , ..., C
n
j

}
∈ Cj :

1) ∀Cr
j ∈ C∗

j :
|V p

i
∩V r

j |

|V r
j
| ≥ k%

2)
|(V 1

j ∪V 2

j ...∪V n
j )∩V

p

i
|

|V p

i
|

≥ k%

(5)

Merge: A set of communities C∗
i =

{
C1

i , ..., C
n
i

}
at ith

snapshot merges to C
q
j at snapshot j > i if C

q
j contains at

least k% of the members from each community in C∗
i . Also

to prevent the case where most of the members of C
q
j did not

exist before, at least k% of its member must enclosed in C∗
i :

merge(C∗
i =

{
C1

i , ..., C
n
i

}
, i) = 1 iff

∃j > i and ∃Cq
j :

1) ∀Cr
i ∈ C∗

i :
|V r

i ∩V
q

j
|

|V r
i
| ≥ k%

2)
|(V 1

i ∪V 2

i ...∪V n
i )∩V

q

j
|

|V q

j |
≥ k%

(6)
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Experiments

In this section, we validate the feasibility of MODEC
through experiments on two real datasets: Enron email
dataset and DBLP co-authorship dataset. On both these
datasets, we compare the MODEC framework with the
other event-based frameworks including Asur et al. (Asur,
Parthasarathy, and Ucar 2007), Palla et al. (Palla, Barabasi,
and Vicsek 2007), and Greene et al. (Greene, Doyle, and
Cunningham 2010) using the automatic extraction and the
investigation of the topics of communities. Due to computa-
tional efficiency, we apply the local community mining al-
gorithm (Chen, Zaı̈ane, and Goebel 2009) to produce sets of
disjoint communities for each snapshot.

The Enron email dataset contains the emails between em-
ployees of the Enron Corporation. The dataset includes a
period of 15 years, however, the last year (2001) is chosen
which results in a graph with 250 nodes. We set the snap-
shots to be one month each and find the communities on
each month by the chosen local community mining algo-
rithm. The Enron email dataset has rather stable communi-
ties with a considerable amount of members who participate
over a long time and a small amount of fluctuating mem-
bers. Thus, the similarity threshold k is set to 0.5 and then
MODEC finds each community with the appropriate events.
In Figure 1 communities at each timeframe are marked with
different colours, where these colours are the notion of com-
munity match and survival events (the communities without
color are the ones that only exist for one snapshot).

To assess the validity of our detected events, we evalu-
ate the topics discussed by the members of these commu-
nities and the change of topics in time. The Keyphrase Ex-
traction Algorithm (KEA) (Witten et al. 1999) is applied to
produce a list of the keywords discussed in the emails within
each community. Then, the topics for each community cor-
respondent to its 10 most frequent keywords is extracted
by KEA. We expect that a community which survives mul-
tiple timeframes is most likely to continue discussions on
the same topics. Indeed this is the case for the community
labeled by A in Figure 1, as Transwestern Pipeline Com-
pany, was consistently its most frequently discussed topic
for the whole year. We also expect that a community result-
ing from a merge would be discussing a medley of the topics
that were present in the previous communities. For example,
when community B and C in March merged, the resulting
community B continued discussing many topics from B and
fewer topics from C: Federal Energy Regulatory Commis-
sion, and Pacific Gas and Electric Company, which are the
frequent topics of B and C respectively, are also discussed in
the merged community. However, the majority of the topics
in the merged community are from B, thus confirming the
survival event. A similar expectation is also made for split.
For instance, when the merged community B splits to two
communities in May, the resulting B and C discussed the
same topics as they did separately before the merger.

The comparison of MODEC with the other frameworks is
shown in Table 1, where the total number of events detected
by each framework during the 12 snapshots is provided.
Applying Asur’s framework, only a few merge, split, form,
and dissolve events are captured. This framework could not

Figure 1: Events detected by the MODEC framework. Solid,
dashed, and dotted arrows show detected survive, split, and merge.

detect any survive events due to its restricted definition of
these events and also because it only considers events be-
tween two consecutive snapshots. Palla’s framework defines
events based on the concept of matching communities across
time. However, the framework can not find matches for
many communities, thus, no events are detected for these
communities. Greene’s framework can not discover most
of the merge and split events occurring during the obser-
vation time. Also, some of the survive events are not de-
tected by this framework which leads to a higher number of
form and dissolve events than MODEC. The question that
arises here is which framework results in the most appropri-
ate community evolutions for the Enron dataset. To evaluate
the community evolutions, we again incorporate topics ex-
traction for each community. Topics that persist in a commu-
nity from one snapshot to the other are called mutual topics.
The average mutual topics between any two survival com-
munities during the observation time is calculated for each
framework (Table 1). The survival communities mostly dis-
cuss the same topics, thus, the framework that corresponds
to the highest average mutual topics illustrates the transi-
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Table 1: Comparison of different frameworks on Enron dataset.

Framework Form Dissolve Survive Split Merge Mutual Topics

MODEC 19 19 47 7 10 2.304/10

Asur 6 5 0 6 7 0/10

Palla 11 9 22 14 17 1.681/10

Greene 24 22 41 0 2 2.048/10

Table 2: Comparison of different frameworks on DBLP dataset.

Framework Form Dissolve Survive Split Merge Mutual Topics

MODEC 2057 2057 576 31 40 14.142/20

Asur 2108 2111 30 18 13 1.966/20

Palla 1336 1242 331 110 122 7.083/20

Greene 2261 2246 356 1 15 7.668/20

tions of the communities better than the others. Our results
show that the highest mutual topics out of the top 10 most
frequent keywords is found when using MODEC to detect
the evolution of communities, thus, MODEC results in the
most meaningful community transitions.

Our next dataset is a subset of the DBLP, where the co-
authorship network for three major data mining conferences
including ICDM, SIGMOD, and KDD from year 2000 to
2009 is chosen. The resulting network contains approxi-
mately 7000 individuals, with each year determining one
snapshot. In DBLP, communities can be highly dynamic
where members leave gradually, while new ones join, thus,
a rather low similarity threshold (k = 0.4) is chosen. The
events detected in DBLP are also validated by extracting the
topics from the titles and abstracts of the papers published
within communities. The comparison of MODEC with the
other frameworks on DBLP is shown in Table 2 where the
total number of events detected by each framework during
the 10 years and the average mutual topics out of the top
20 most frequent keywords between survival communities
is provided. Again, Asur’s framework can not detect most
of the survive events, thus, the number of form and dissolve
events is higher. Applying Palla’s framework, many com-
munities remain unmatched so no events are discovered for
them. The higher number of form and dissolve events found
by Greene’s framework is because of many undetected sur-
vive events. Again, our results shows that MODEC results
in the highest average mutual topics, thus, provides the most
meaningful community transitions.

Conclusion

We present MODEC to monitor community evolutions
over time, which includes tracing the formation, survival
and dissolution of communities in a dynamic social net-
work. Applying MODEC on the Enron dataset, we visu-
alize the events that occurred in Enron Corporation’s final
year. These events are validated by extracting the topics of
emails exchanged within communities, and the performance
of MODEC is compared with the other event-based frame-
works. We also applied MODEC on a subset of DBLP, and
the DBLP events are also validated by extracting the top-
ics of papers published in communities. On both databases,
MODEC outperforms the others based on the average mu-
tual topics between survival communities.
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