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Introduction
We study prominence ranking in heterogeneous social net-
works with actors who collaborate to create artifacts which
display some homophily based community structure (Fig-
ure 1). For example, a paper is an artifact and multiple au-
thors may collaborate on the paper. Papers appear in venues,
which are communities containing papers on similar topics
and of similar quality. An artifact conferes a social tie on its
contributors, and homophily based groups of artifacts serves
to identify the artifacts of similar stature. Past research on
prominence has only used the social ties, ignoring the rela-
tionships between the artifacts (two artifacts with common
authors are linked). We incorporate the artifact relation-
ships 1.

Artifacts can belong to natural groupings. For example,
conference venues have a topic and a prominence – papers in
high impact conferences tend to be from prominent authors.
This is true because of rigorous review cycles as well as self
selection of submissions. Thus, artifact groupings convey
valuable information on quality. On the other hand, confer-
ence venues can be a noisy source of information, contain-
ing peripherally related topics and papers of a wide range
in quality. One needs robust measures to obtain information
from the artifact groupings. We use the DBLP network of
scientific publications to illustrate our algorithms, and our
validation will be using citation counts (an external measure
of prominence). We show that our algorithm, which consid-
ers the artifacts as well as the artifact groupings, provides a
clear improvement over other well-known ranking methods.

What if artifact groupings, such as conference venues
are not available? In this case, using the link structure be-
tween artifacts, we use clustering algorithms to find group-
ings for the artifacts (Clauset, Newman, and Moore 2004;
Magdon-Ismail and Purnell 2010; Sun et al. 2009). Note
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Figure 1: An example object graph

that, instead of clustering people, we cluster their artifacts
to capture both the common topics and prominence of ar-
tifacts. For DBLP, we show that our clusters can be used
as a substitute for “real” groups (conference venues). In
fact, we show that a very efficient embedding based algo-
rithm for clustering (Magdon-Ismail and Purnell 2010) pro-
duces paper groupings that perform as well as or better than
real venues. The clustering is also more robust to the afore-
mentioned noise that can be present in the real venues. We
are able to show that when artifacts constitute a social tie
between people, we can use the relationships between ar-
tifacts to improve the computation of prominence in social
networks.

Prominence ranking has received significant attention in
the literature (Faust and Wasserman 1994), with methods
ranging from: centrality measures (Borodin et al. 2005);
heterogeneous weights for heterogeneous links (Hotho et
al. 2006; Balmin, Hristidis, and Papakonstantinou 2004),
navigation based measures which take into account topic or
trust (Haveliwala 2002; Gyongyi, Garcia-Molina, and Ped-
ersen 2004). Our work, in contrast, ranks actors according
to the artifacts they are associated with, and how groupings
of the artifacts improves the ranking. Methods for analysing
scientific literature typically consider the links between re-
searchers based on the papers they have co-authored (Liu
et al. 2005) instead of the linkages between the papers.
RankClus (Sun et al. 2009) partitioning the actors ranking
within each partition separately based on the claim that it
does not make sense to compare actors from different com-
munities into a single ranking. We do not dispute this fact.
Instead, we augment it by showing that information from
groupings of artifacts can be used to get a better ranking for
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the actors themselves. Our contributions:

1. A framework for ranking in an (actor)-(artifact)-(artifact
group) tri-partite social network (Figure 1). Our methods
are applicable to collaborative social networks, and can
be fine tunded to a particular dataset to tradeoff robust-
ness with accuracy.

2. Improved ranking performance using the artifact groups
as compared with ignoring these groups. We demonstrate
on by using conference venues to significantly improve
the ranking of DBLP authors, with ground truth defined
using citation counts.

3. A novel algorithm which infers artifact clusters and can
be used even when no natural artifact groupings are avail-
able. For DBLP, the infered clusters perform better than
or as well as the “ground truth” conference venues.

Computing Prominence
Consider the tripartite graph G = (V,E) in Figure 1; each
node v has a type, type(v). We consider three types: actors
(A), artifacts (B), artifact groups (C), where the only edges
are between nodes of type A and B, and B and C. Intu-
itively, A’s are authors, B’s are papers and C’s are venues.

Let VA, VB , VC denote the nodes of each type. The re-
lationships between VA and VB , and VB and VC are many
to many (actors can be associated with many artifacts, and
artifacts can be associated with many actors; artifacts can be-
long to multiple groups and groups can have many artifacts).
If the artifact groups are conferences, then they are disjoint.
But, if the groups correspond to research topics, then a pa-
per may belong to multiple groups. Assume the vertices in
each of VA, VB , VC are numbered from 1 to |VA|, |VB |, |VC |
respectively. We compute scores for each node a ∈ VA,
b ∈ VB and c ∈ VC , denoted by va, vb and vc.

We use a parametrized framework for computing the
scores, in which the scores of nodes of type A,B and C de-
pend on each other in a circular way (see Figure 2). The
algorithm is specified through the functions f1, f2, f3, f4
(see the pseudo-code for Algorithm 1). Artifacts (papers)
derive prominence from their actors (authors) and artifact
groups (conferences) derive prominence from their artifacts.
To close the loop, artifacts derive prominence by being in
prominent groups and actors derive prominence by associ-
ation with prominent artifacts. This framework provides
us with a set of simultaneous equations to satisfy (given
f1, f2, f3, f4); the unknowns are the {va, vb, vc}. When the
algorithm converges, it provides a solution to the given equa-
tions. Some examples of functions fi are given below.
• f1: Artifact score depends on the scores of associated ac-

tors (good authors create good papers). Examples are:
avg (each actor contributes equally); max (an artifact is
as good as its best associated actor); sum (artifacts asso-
ciated to more actors are better).

• f2: The score of an artifact group depends on the scores
of member artifacts (good papers are in good confer-
ences). Examples are: avg (each member artifact con-
tributes equally); T(k,avg) is the average of the best k%
and worst k% of member artifacts.

A B

C
B

vb

vcvb

va = v'a

f1(va) = vb

f2(vb) = vc

f3(vc) = vb

f4(vb) = v'a

vb = f1(va)

vc = f2(vb)

vb = f3(vc)

va = f4(vb)

Figure 2: System of equations for computing prominence

• f3: Artifact score depends on the groups it belongs to
(good conferences contain good papers). An examples
is avg (average score of groups containing the artifact).

• f4: Actor score depends on the scores of associated
artifacts (authors of prominent papers are prominent).
Examples are: sum (more artifacts are better); sum2:
normalize artifact score by number of actors and sum
(more artifacts with few co-actors is better); T(k,sum) (and
T(k,sum2)) use only the best and worst k% associated arti-
facts (prominent actors have some important artifacts and
few dudds).

Algorithm 1 PAG (G = (V,E))
1: Input: Tri-partite G = (V,E) with node types A,B,C.
2: For a ∈ VA, let va = degree(a)/

∑
a∈VA

degree(a).
3: while not converged do
4: for all b ∈ VB do vb = f1({va | (a, b) ∈ E})
5: normalize vb values to sum up to 1
6: for all c ∈ VC do vc = f2({vb | (b, c) ∈ E})
7: normalize vc values to sum up to 1
8: for all b ∈ VB do vb = f3({vc | (b, c) ∈ E})
9: normalize vb values to sum up to 1

10: for all a ∈ VA do va = f4({vb | (a, b) ∈ E})
11: normalize va values
12: end while
13: return {va}, {vb}, {vc}

Our algorithm is similar in formulation to the Hits algo-
rithm (Kleinberg 1999), except for a tri-partite graph; we
compute the scores of each type of node separately. The
ranking performance can depend on the choice of the func-
tions, and this choice can benefit from domain knowledge.
For example, a group may contain many artifacts, but we
might only care about the quality of the top artifacts in eval-
uating the group. We introduce the Tk method. Let X be the
set of scores of the papers in a conference; top(X, k) and
bottom(X, k) are the average score of the top and bottom
k% scores in X . Then, T(k,f)(X) = λ · top(X, k) + (1 −
λ)·bottom(X, k). When λ < 1, the best score asks for good
scores in X with low deviations.

Inferring Groups
When external artifact groups are not known, we infer
groups using clustering. For b ∈ VB , let A(b) be the set
of actors associated with b. Construct the artifact similarity
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graph G∗(VB , E
∗) on vertex set VB with (b1, b2) ∈ E∗ iff

A(b1) ∩ A(b2) �= ∅; in this case, we give the edge a weight
(distance) w(b1, b2) = |A(b1) ∪A(b2)|/|A(b1) ∩A(b2)|.

We compare results with different clustering algorithms:
(1) FC: FastCommunity (Clauset, Newman, and Moore
2004) finds densely connected subgroups of the graph and
produces disjoint clusters of varying sizes. (2) DE: Distance
Embedding, SSDE-Clustering (Magdon-Ismail and Purnell
2010) based on metric embeddings followed by Gaussian
Mixture Model clustering to find n (an input) of overlap-
ping clusters. (3) RC: RankClus (Sun et al. 2009) takes the
dataset a with predefined venues and partitions these venues
into n disjoint clusters where n is an input to the algorithm.

Clusters from FC and DE capture two types of informa-
tion: common topics and collaborators. Clusters from RC
correspond to common groupings of existing venues into
topics. DE allows a paper to belong to multiple groups,
which none of the other methods do.

Experimental Setup
To test our prominence framework, we used the RDF
tagged version DBLP from August 2007 called SwetoD-
BLP(lsdis.cs.uga.edu/projects/semdis/swetodblp/) contain-
ing publications from Computer Science (books, confer-
ences and journals). The data contains 1,004,959 publi-
cations (book chapters, journal articles and conference pa-
pers). which we partition into 5 subsets:

Description Size
ALL All publications in all venues 1,004,959
III Books & conference w/ proceedings 495,159
C All conferences 611,910
J All Journals 382,499
M Conferences merged across years 993,651
In the first four subsets, every year of a conference

is considered a different venue. To test the ranking per-
formance, we used the citation record of authors for a
sample of 89K authors, gathered using Google Scholar.
We considered two measures: (1) h-index is the largest x
for which the author has x papers with at least x citations
each (Hirsch 2005). (2) tc-10 measures the average number
of citations of the top 10 most cited papers. The tc-10
measure is useful for capturing the authors who are not
prolific but impactful. We used four measures to compare
the performances of various ranking algorithms. The
first two measure the prominence of the top 20 ranked
actors. The second compares the full rank ordering with
the ground truth as defined by the citation based measures.

Name Description
avgh Average h-index of Top20
avgt Average tc-10 of Top20
kth Kendall-τ between h-index & algorithm ranking
ktt Kendall-τ between tc-10 & algorithm ranking

For all measures, higher is better. The Kendall-τ correlation
is for all 89K authors: for two rankings, it is number of
pairs with the same ordering minus the number of pairs
with flipped ordering, all divided by the total number of
pairs. A Kendall-τ of 1 corresponds to identical orderings
whereas -1 corresponds to reversal. Note that we have

Dataset: ALL
Algorithm avgh avgt kth ktt
Indegree 44.5 385.58 0.44 0.39
Pagerank 44.3 435.5 0.36 0.33
PAG/NoGroups 47.3 534 0.45 0.39
PAG 48 695 0.45 0.39

Dataset: III
Algorithm avgh avgt kth ktt
Indegree 36.75 319 0.4 0.35
Pagerank 42.5 352 0.32 0.29
PAG/NoGroups 35.4 421 0.4 0.35
PAG 56 876 0.4 0.35

Figure 3: The performance of different algorithms

run tests to determine the significance of Kendall-τ using
randomly ordered nodes, and the deviation from zero is of
order 0.003. The measures avgh and avgt capture how well
the algorithm does in finding the top ranks, while kth and
ktt capture how well the algorithm performs overall. To our
knowledge, there is no study that uses DBLP with such an
extensive evaluation against the ground truth.

We also compare with benchmark algorithms that use
the author-author graph with weights equal to the number
of common papers. We tested: INDEGREE; PAGERANK
(eigenvalue centrality with α = 0.85) and our algorithm
(PAG-NOGROUP) without any artifact groups.

Results
Our first goal is to show (using DBLP) that venue informa-
tion (artifact groupings) are useful (Figure 3). We report the
best case behavior of our PAG algorithm based on the differ-
ent functions we have tested (approximately 80 test cases).
In our tests, indegree outperforms pagerank; PAG outper-
forms all the algorithms for capturing top people (avgh,
avgt) when venue information is incorporated but indegree
is competitive with our algorithm for ktt and kth. It means
that for a suitable choice of functions f1, . . . , f4, venue in-
formation can add significant value.

Next, we observe that the usefulness of the venue infor-
mation (as measured by the performance of the PAG al-
gorithm) varies significantly across different datasets (Fig-
ure 5). Some venue types are more noisy than others. Over-
all, conference proceedings appear to be the best and the
most robust data set which makes sense as in the Computer
Science fields represented in this dataset – conferences are
typically more important than journals. Adding journals or
merging conference years has a negative impact for captur-
ing the top actors. Furthermore, we note that the best func-
tions for each data set tend to differ, but in all test cases we
study, the top-k function T(k,f) appears to outperform sum
and average especially for large sets.

Our main goal is to study what happens when you don’t
have access to the artifact groupings (conference venues in
this case), and have to infer them with clustering (Figure 4).
In particular, we find that since the REAL venues are noisy,
the performance using clustering is better than that using
the real venues in almost all cases and accross all metrics.
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avgh avgt kth ktt
Groupings Avg Min Max Avg Min Max Avg Min Max Avg Min Max
FC 26.7 19.8 53.3 307 224 661 0.35 0.26 0.41 0.33 0.24 0.38
DE10 10 43.49 39.7 45.85 460 384 510 0.43 0.35 0.46 0.39 0.32 0.41
DE50 47.56 43.65 53.3 576 396 737 0.41 0.37 0.43 0.38 0.35 0.41
RC 15.6 5.67 46 120 25 469 0.39 0.28 0.43 0.35 0.26 0.38
REAL 13.8 4.92 48 124 12.13 695 0.38 0.33 0.42 0.35 0.31 0.39

Figure 4: Performance of the PAG algorithm using different clustering algorithms vs. real venues for all venues.

Dataset avgh avgt kth ktt
ALL 22.7 284 0.38 0.34
III 34.6 403 0.35 0.31
C 43.5 502 0.38 0.35
J 18.6 240 0.29 0.27
C+J 20.5 256 0.37 0.37
M 27.6 224 0.40 0.36

Figure 5: Average behavior of PAG across different data sets

Furthermore, the performance is more robust across differ-
ent choices for the ranking model using clusters than real
venues (as can be verified by looking at the worst case per-
formance). This is especially true for the DE algorithm.

In our tests, FC produced 2737 clusters of sizes beween
2 and 111,628. Due to memory restrictions, we ran RC for
authors with more than 9 papers and grouped them into 20
clusters. For DE, we used two settings: (1) DE 50: Cluster
the main data set into 50 clusters. (2) DE 10 10: Cluster the
data set into 10 main clusters, then within each cluster find
10 subclusters, resulting in a total of 100 clusters. The main
clusters corresponds to the specific research areas and each
subcluster is customized to the underlying graph induced
within the main research area; one might argue that this is
a better representation of the grouping structure within the
artifacts (papers in this case).

We also note that the DE 10 10 gives the highest Kendall-
tau performance of any test case and any subset of DBLP we
studied. We conclude that not only clusters may be substi-
tuted for real venues, it also reduces the necessity of tuning
the algorithm considerably. Our hypothesis is that clusters
are not as noisy as real venues, hence robustness and tuning
is not as crucial.

Conclusions
We developed a novel algorithm for ranking in a social net-
work where the “semantics of the ties” can add significant
value. The main message is that when the social tie between
actors is inferred by their participation in some artifact, the
properties and relations between those artifacts can signif-
icantly improve the ranking (as opposed to only using the
social ties among the actors). This is especially true when
the artifacts display strong grouping or community structure.

One important aspect of our algorithm is that it does not
need to know how the artifacts are organized into groups,
because these artifact groups can be inferred. In fact perfor-
mance was enhanced by the more robust organization of the

artifacts deduced using the overlapping clustering algorithm
in (Magdon-Ismail and Purnell 2010).

Many systems rely on ratings of information to build a
credibility score for users. However, in many cases, there
is no social link between the raters. By making the rating
scheme collaborative (e.g. through the use of budgets) and
organizing the rated artifacts into groups, our algorithm can
be used to provide better credibility scores.

Several avenues require further investigation: How do dif-
ferent choices for the functions f1, f2, f3, f4 relate to the
type of network? Should all the artifact-groups be used in
the algorithm? One might conjecture that only the “impor-
tant” groups should be used, which is similar to the notion
of trust-rank, where the structure of the graph with respect
to important nodes can be more robust (Gyongyi, Garcia-
Molina, and Pedersen 2004).
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