
Large-Scale Community Detection on YouTube
for Topic Discovery and Exploration

Ullas Gargi
Google, Inc.

Mountain View, CA
ullas@google.com

Wenjun Lu
University of Maryland

College Park, MD
wenjunlu@umd.edu

Vahab Mirrokni
Google, Inc.

New York, NY
mirrokni@google.com

Sangho Yoon
Google, Inc.

Mountain View, CA
shyoon@google.com

Abstract

Detecting coherent, well-connected communities in large
graphs provides insight into the graph structure and can serve
as the basis for content discovery. Clustering is a popular
technique for community detection but global algorithms that
examine the entire graph do not scale. Local algorithms are
highly parallelizable but perform sub-optimally, especially in
applications where we need to optimize multiple metrics. We
present a multi-stage algorithm based on local-clustering that
is highly scalable, combining a pre-processing stage, a lo-
cal clustering stage, and a post-processing stage. We apply
this to the YouTube video graph to generate named clusters
of videos with coherent content. We formalize coverage, co-
herence, and connectivity metrics and evaluate the quality of
the algorithm for large YouTube graphs. Our use of local
algorithms for global clustering, and its implementation and
practical evaluation on such a large scale is a first of its kind.

Keywords: Community detection; Graph partitioning;
YouTube; Content discovery.

1 Introduction

Many real-world graphs decompose naturally into commu-
nities where nodes are densely connected within the com-
munity and have much sparser connection between commu-
nities. Communities typically correspond to behavioral or
functional units of the network, such as social groups in a
social network. Community detection provides us a valu-
able tool to analyze network structure as well as provide
better discovery and recommendation tools for very large
collections. The community detection problem is typically
modeled as a graph partitioning problem, where a commu-
nity or cluster is a set of nodes in the graph that have more
edges linking among its members than edges linking out-
side it to the rest of the graph. Depending on whether ev-
ery node in the graph or only a subset of the nodes are as-
signed to a cluster at the end, graph partitioning algorithms
can be divided into global and local algorithms. A more
extensive survey on the large body of community detection
work can be found at (Lancichinetti and Fortunato 2009;
Schaeffer 2007).

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

For large graphs such as the YouTube video graph we
operate on, global approaches that require the entire graph
to be processed simultaneously do not scale well. Ex-
amples are methods based on minimum-cut maximum-
flow (Flake, Lawrence, and Giles 2000), modularity-based
clustering (Newman 2006) and spectral clustering meth-
ods (Chung 1997). A more scalable approach is to use
local clustering algorithms (Bagrow 2008; Clauset 2005;
Andersen and Lang 2006) that do not require the full knowl-
edge of the graph and examine only a subset of the graph at
each step. Local clustering algorithms typically start from
one or a set of seed nodes and examine only the adjacency
list of the seed nodes at a time. We adapt two such local
algorithms (Section 4).

In spite of the rich literature on graph clustering, select-
ing the appropriate algorithm for community detection on
a real-world graph is not straightforward and requires care-
ful examination of the specific application. Single-stage lo-
cal clustering may not optimize application metrics. Our
goal in this paper is to design scalable multi-stage clustering
methods that take into account multiple metrics and gener-
ate clusters with good coverage—important if the resulting
clustering is to be used in exploration and discovery. We
post-process the results to optimize application metrics in
addition to graph metrics. In particular, we study commu-
nity detection for the YouTube online video community with
the objective of generating named video clusters which each
have a coherent topic and content. We adapt local algorithms
for efficient parallel implementation and to evaluate our re-
sults we consider various metrics capturing coverage, coher-
ence, and connectivity of those clusters. Using these met-
rics, we compare different local clustering algorithms and
design pre-processing and post-processing strategies to get
coherent video clusters. Our main contribution includes us-
ing existing state-of-the-art clustering as a building block to
design a practical and efficient multi-stage clustering system
to detect communities on a very large real-world graph with
specific challenges and produce useful results.

2 Graph clustering framework

We consider the YouTube graph, where each video is a ver-
tex and the edge between vertices captures their similarity,
which could be defined in many ways. We use the graph
induced by co-watching of videos by users in anonymized

486

Proceedings of the Fifth International AAAI Conference on Weblogs and Social Media

YouTube user sessions. Two videos that have a high co-
watch value will be considered similar. We limit the number
of co-watched videos to keep the graph sparse. Note that
we construct the YouTube video graph based on co-watch
statistics but also use text features to refine the clustering.

Local partitioning algorithms are run on the selected seed
videos in parallel. Each seed video is grown into a local
cluster independently which permits overlap among clus-
ters. Local algorithms have the advantage of being scal-
able, but may not achieve global optima because the algo-
rithm may not have the knowledge of the whole graph dur-
ing clustering. For example, the local clustering algorithms
used in this paper generate clusters that have either high den-
sity or small local conductance, but the average conductance
and content coherence of all the clusters may not be opti-
mum. Therefore, we apply a post-processing step to fur-
ther refine the clustering result. In post-processing, each
cluster from the local clustering step is further divided into
smaller sets to optimize a text-based coherence metric and
then a global merging step combines duplicate sub-clusters
from different clusters. These merged clusters have coher-
ent topics and can be labeled or named by entity extraction
on the constituent video titles. We present formal defini-
tions for the coverage, connectivity and coherence metrics
used in evaluating the quality of clusters. Consider a simi-
larity graph G(V,E) over the set of videos. Given a clus-
ter C ⊆ V , let E(C) = {(v, u) ∈ E(G)|v, u ∈ C}, and
volume of C be vol(C) =

∑
v∈C degree(v). The den-

sity of cluster C is density(C) = |E(C)|
|C|·(|C|−1)/2 , and the

conductance of this cluster is the ratio between the size
of the cut outgoing from C and the volume of C, i.e.,

conductance(C) = vol(C)−2|E(C)|

vol(C)
. In addition to graph

metrics, we also define the text coherence of the cluster C

as coherence(t) = |T1∪T2∪···∪Tt|
|C| Here, Ti is the subset of C

whose videos contain the ith most frequent text term of the
cluster. A coherent cluster will have high coherence(t) for
small t, i.e., a few text terms cover majority of the videos
in the cluster. This text coherence can be considered as an
application level metric to evaluate cluster quality for real-
world applications.

The above metrics are defined for each cluster. Now,
given a set of clusters C = (C1, C2, . . . , Ck), one can de-
fine connectivity metrics for the set of overlapping clus-
ters based on the above connectivity metrics. The average-
conductance of clusters in C is avg-conductance(C) =
∑

k

i=1
conductance(Ci)

k . Also, the average density of clusters

in C is avg-density(C) =
∑

k

i=1
density(Ci)

k . In addition, the
total coverage of the clusters is the total number of nodes
covered by these clusters, i.e., coverage(C) = | ∪k

i=1 Ci|.
Naturally, our goal is to find clusters that are internally
well-connected and externally less connected, so we would
like to find clusters with high density, low conductance,
and high coherence individually; and low average conduc-
tance and high ratio of coverage(C)/size(C) overall, where
size(C) =

∑
1≤i≤k |Ci|.

3 Pre-processing
To compute clusters that cover a majority of the graph, a
pre-processing step can be used to select an optimum set of
seed videos to apply local partitioning. Using every video
in the graph as a seed is computationally expensive and will
generate a large number of duplicate clusters. The objective
of the pre-processing step is to find a set of seed videos such
that the clusters C generated around these seed videos cover
the graph well but have low overlap between clusters.

We can formally define the pre-processing step as select-
ing k nodes from the graph G = (V,E) such that the ratio
coverage(C)

size(C) is maximized. We observe that even with simplifi-

cation the problem of choosing a set of seed nodes to maxi-
mize the total coverage of C is NP-hard. In fact, this problem
subsumes the maximum coverage problem. We hypothesize
that the local algorithm is robust to the precise seed node
selected. Therefore, instead of attempting to formulate an
optimization problem, we take the following heuristic ap-
proach to seed video selection, and use a post-processing
step to improve the quality of clustering. We rank videos by
viewcount and iteratively add the next most popular video in
the list that is not in the neighborhood of a previously added
seed. This simple greedy algorithm gives us both coverage
(since popular videos are well connected) and lower overlap
in the resulting clusters. We stop when we have an empiri-
cally determined number of seeds (e.g. 50,000).

In addition to seed selection, we also compute auxiliary
features for videos – text terms extracted from the title and
descriptions. These text features are used to compute the
text coherence of the cluster during its growth process and
determine the proper termination condition.

4 Graph clustering

We run local partitioning algorithms on each of the se-
lected seed videos in a parallel fashion using MapReduce.
We adapt two local partitioning algorithms by R. Andersen
(2008; 2009), which optimize two different graph metrics,
i.e., the density and conductance of the clusters, respectively.

The first algorithm by Andersen (2008) (Dense Parti-
tioning, abbreviated DP) exploits the close relationship be-
tween the densest subgraph and the largest eigenvalue of the
graph’s adjacency matrix. A deterministic pruned growth
process is used to generate a sequence of vectors by suc-
cessively multiplying a vector of cluster nodes (initially
the seed) with the adjacency matrix followed by pruning.
Through iterations, neighbors of existing nodes in the cluster
will be added to the cluster and nodes with more neighbors
will accumulate higher values in the corresponding elements
of the vector. Therefore, after pruning, only nodes with high
degrees are retained in the resulting dense subgraph. Dur-
ing the growth process, we monitor the cluster quality in
terms of text coherence. Once the cluster quality exhibits
a desreasing trend, we revert back to the previously-known
best cluster and restart the growing process from there. Fi-
nally, a cluster is generated once it reaches the desired den-
sity or exceeds the maximum allowed iterations.

Conductance is another important metric for cluster qual-
ity. A small conductance indicates more edges are within

487

the cluster than leaving it. The second algorithm (Andersen
and Peres 2009) (Evolving Set, abbreviated ES)simulates a
volume-biased evolving set process to produce clusters of
low conductance. The evolving set process is a Markov
chain on subsets of the vertex set V . Given the current state
of the cluster Ct, the next state of the cluster Ct+1 will be up-
dated by the following rule: a threshold U is uniformly cho-
sen at random from the interval [0, 1]. Let the set B1 = {v ∈
Ct : p(v, Ct) ≤ U} and B2 = {v /∈ Ct : p(v, Ct) ≥ U}.
The updated cluster will be Ct+1 = (Ct − B1) ∪ B2. The
p(v, C) denotes the transition probability of the node v to the

cluster C and is defined as p(v, C) = 1
2 (

e(v,C)
d(v) + 1(v ∈ C)),

where e(v, C) denotes the number of edges between node
v and cluster C. d(v) is the degree of node v. The cluster
growth process statistically adds new nodes that have dense
connection to the cluster and remove nodes with few edges
from the cluster. A final cluster is generated if it reaches the
desired conductance or the cluster size is too large.

5 Post-processing

The local partitioning algorithms in the previous section pro-
duce clusters of high density or low conductance around
seed videos. There is a possibility that two videos on dif-
ferent topics (but still linked by user co-visitation) are added
to the cluster in the early stage of cluster growth; these two
videos will attract their neighbors into the cluster to form
two sub-clusters that may have few edges connecting them,
which can be detected by auxiliary features such as text. For
example, a table with the top 8 most frequent text terms and
their frequency for a sample cluster is shown below.

Text term Occurrence Text term Occurrence

Pocoyo 719 Dog 123
Baby 539 Charlie 122

Donald duck 493 Song 98
Mickey mouse 360 Discovery 94

Funny 161 Laughing 94

Although the cluster seems to be generally related to certain
themes, there are clearly several sub-topics that would be
desirable to separate. We post-process the clusters from the
local partitioning step to obtain more coherent clusters by
first applying a refinement process using text coherence to
potentially split a cluster into sub-clusters and then applying
an iterative global merging to merge sub-clusters (split off
from different clusters).

Cluster refinement using text coherence To identify sub-
clusters, we compute cluster text statistics. Specifically, we
extract the most representative text terms for each video
based on title and descriptions, then compute the occur-
rence frequency for each of the text terms over the en-
tire cluster. Denoting the top occurring text terms for the
cluster C by t1, t2, · · · , tk, we can obtain k sets of videos
{S1, S2, · · · , Sk} that contain each of the top k terms, i.e.,
Si is a set of videos in the cluster that all contain the text term
ti. The sets {Si} can be considered coherent clusters each
related to a certain topic and serve as a good first-step par-
titioning. However, considering only single text terms has
the limitation that it might ignore bigrams or semantically

similar terms. To identify bigrams, we iteratively compare
every pair of sets Si and Sj to compute their overlap; a large
overlap indicates the two text terms ti and tj are correlated,
therefore they are likely bigrams, in which case we combine
Si and Sj . To identify semantically similar terms such as
Cars and Automobiles, we compute the semantic similarity
between two text terms or two sets of text terms, and then
merge two sub-clusters if their text similarity is larger than
a threshold (the text similarity is obtained from latent-topic
modeling over a large corpus of text data and is not essential
to this description). After merging sub-clusters for bigrams
and similar terms, we obtain the final set of sub-clusters that
have high text coherence.

Global cluster merging Given that each cluster Ci
has been divided into a set of coherent sub-clusters
C̃i1, C̃i2, · · · , C̃ik , the last step in our post-processing is to
combine duplicate sub-clusters from different clusters, i.e.,

comparing C̃i∗ and C̃j∗ for i �= j, and merging them if their
overlap is larger than a threshold. The final set of clusters
will have higher text coherence, smaller overlap, and high
coverage of the whole YouTube graph.

6 Experiments

Experiment Setup We clustered a co-watch graph of tens
of millions of YouTube videos, using 50,000 popular videos
as seeds. Each local clustering process terminates when-
ever a cluster reaches a specified density or conductance or
exceeds a maximum cluster size, empirically set to 30,000
(cluster splitting and global merging make our method ro-
bust to precise values).

Cluster statistics Fig. 1 shows the number of clusters ob-
tained after local clustering, post-processing splitting, and
the final merging step. After local clustering, we have a rel-
atively small number of clusters, most of which are large.
After splitting each cluster based on text features, the clus-
ter number is greatly increased and each cluster becomes
smaller in size and more coherent in content. ES produces
many more clusters after splitting than the dense partition-
ing algorithm. This could be an indication that ES tends
to generate more diverse clusters in the first place. How-
ever, compared to DP, such a high number of clusters after
splitting may also indicate that there are many overlapping
clusters that need to be merged. Therefore the need for a
global merging step. After merging, the number of clusters
is greatly reduced to a few tens of thousands, a suitable num-
ber for topic modeling or discovery applications.

Comparison of local clustering algorithms After the lo-
cal clustering stage, the average cluster sizes for the DP and
ES algorithms are 10190 and 33450, respectively. Each node
appears in 8.2 and 11.9 clusters on average for DP and ES,
respectively. From our observation, the ES algorithm runs
faster than the DP algorithm, but it tends to generate clus-
ters of larger size and more overlapping clusters. The av-
erage density is 0.0196 for ES and 0.00056 for DP, while
the average conductance is 0.488 for ES and 0.813 for DP.

488

Figure 1: Number of clusters after each
step of the algorithm

Figure 2: Density of clusters Figure 3: Conductance of clusters

Higher density and lower conductance indicate better clus-
tering. Comparing the medians, DP has better density than
ES, while ES has better conductance than DP. At this stage,
many clusters have large size and potentially diverse con-
tent, mixed from more than one topic.

Figures 2 and 3 show the distribution of density and
conductance for DP and ES both before and after post-
processing. ES outperforms DP in both density and con-
ductance. After post-processing, the coherence of clus-
ters is greatly improved. The average percentage of videos
in each cluster covered by the top 50 terms is 94% for
DP and 99.6% for ES after post-processing. While op-
timizing the text coherence measure, we observe that the
post-processing step increases the average and median con-
ductance for both ES and DP. In terms of density, post-
processing decreases the average but increases the median
density for ES, and increases both the average and me-
dian density for DP. The overall effect of post-processing
is to increase the conductance, but improves the density and
text coherency. This comparison of cluster metrics before
and after post-processing demonstrate the effect of post-
processing and also the advantage of a multi-stage algorithm
over single-stage ones.

Cluster naming

Size Sample titles Annotation Name

434 J.S Bach prelude from suite, BWV 1007, Sebastian-Johann

Bach - Cello Suite BWV 1007 on Bass Sebastian Bach

1383 1968 Red Camaro Big Block Plymouth-Chevrolet Camaro,

4spd Fully restored, 1968 Camaro RS/SS,

1971 Plymouth Cuda Convertible Burnouts

716 Salsa Aerobic, Dance Special Rdesheim Aerobic exercise-Aerobics,

with schweppy!!!, Dance Aerobic -

Choreography - Latino, Aerobic - Mambo

Assigning meaningful names to clusters allows use for
content discovery and gives us confidence in the value of
the clustering. We use entities defined in the Freebase struc-
tured data repository (Metaweb Inc.) and extracted from the
titles of the videos in a cluster to name the cluster. The table
below shows sample clusters with their size, sample video
titles, and the assigned cluster name. This approach does
not work as well for clusters that, while thematically coher-
ent, do not correspond to something as easily identifiable as
an entity.

7 Conclusions

We have presented a scalable multi–stage graph clustering
algorithm and applied it to YouTube video graphs. Local
partitioning algorithms implemented in a parallel fashion are
used to efficiently generate clusters that cover large portions
of the graph. Pre-processing and post-processing steps are
used to optimize multiple graph–connectivity and coherence
metrics, such as conductance, coverage, and a new text co-
herence measure. We perform clustering over tens of mil-
lions of YouTube videos and produce very coherent clusters
with good coverage. These clusters can be aptly labeled by
entity annotation and are useful for content discovery.

Avenues for future work include: using clusters for
personalization; clustering audio-visual content-similarity
video graphs; better naming and representation of clusters;
and topic clustering over the graph of clusters.

References
Andersen, R., and Lang, K. 2006. Communities from seed sets. In
WWW’06, 223–232.

Andersen, R., and Peres, Y. 2009. Finding sparse cuts locally using
evolving sets. In STOC ’09, 235–244.

Andersen, R. 2008. A local algorithm for finding dense subgraphs.
In SODA ’08: Proc. of the 19th annual ACM-SIAM symposium on
Discrete algorithms, 1003–1009.

Bagrow, J. P. 2008. Evaluating local community methods in net-
works. Journal of Statistical Mechanics: Theory and Experiment
P05001.

Chung, F. 1997. Spectral graph theory. American mathematical
society.

Clauset, A. 2005. Finding local community structure in networks.
Physical Review E 72:026132.

Flake, G.; Lawrence, S.; and Giles, C. 2000. Efficient identification
of web communities. In Proc. of the Intl. Conf. on Knowledge
Discovery and Data Mining, 150–160.

Lancichinetti, A., and Fortunato, S. 2009. Community detection
algorithms: a comparative analysis. arXiv:0908.1062.

Metaweb Inc. The freebase open, creative-commons licensed
repository of structured data. http://www.freebase.com.

Newman, M. 2006. Finding community structure in networks us-
ing the eigenvectors of matrices. Physical Review E 74:036104.

Schaeffer, S. 2007. Graph clustering. Computer Science Review
1(1):27-64.

489

