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Abstract

Cities are highly dynamic entities, with urban ele-
ments such as businesses, cultural and social Points-of-
Interests (POIs), housing, transportation and the like,
continuously changing. In order to maintain accurate
spatial information in these settings, crowd-sourcing
models of data collection, such as in OpenStreetMap
(OSM), have come under investigation. Like many
crowd-sourcing platforms (e.g., Wikipedia), these geo-
wikis exhibit tailing-off activity, bringing into ques-
tion their long-term viability. In this paper, we begin
an investigation into the sustainability of urban crowd-
sourcing, by studying the network structure and ge-
ographical mapping of implicit communities of con-
tributors in OSM. We observe that spatially clustered
crowd-sourcing communities produce higher coverage
than those with looser geographic affinity. We discuss
the positive implications that this has on the future of
urban crowd-sourcing.

Introduction
The world’s population has grown sevenfold in the past two
centuries and now half of us live in cities, with the rate
of urbanisation still approaching its peak. While economic
growth is welcomed in urban hubs (Bettencourt and West
2010), high dynamicity increases the cost of centrally main-
taining up-to-date spatial information such as maps, render-
ing some public datasets obsolete (Masser 1998). A solution
made possible with the advent of Web 2.0 is crowd-sourcing,
where user-generated content can be cultivated into mean-
ingful and informative collections, as exemplified by sites
like Wikipedia (Voss 2005). This form of citizen science
has been amplified by the rise of location-based services and
the wide adoption of powerful mobile devices. Equipped in
this manner, citizens can become surveyors, with council-
monitoring applications like FixMyStreet1; reporters, with
micro-blogging sites such as Twitter2, and cartographers,
with geo-wikis like OpenStreetMap3.
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1http://www.fixmystreet.com/
2https://twitter.com/#!/iranprotestnews/
3http://www.openstreetmap.org/

OpenStreetMap is a successful example of a crowd-
sourcing platform, where people with basic geographic
skills and an affinity for digital mapping can contribute to
the free wiki map of the world. There are currently 547,270
users registered on the OSM platform4. The geographic in-
formation they collectively provide has been demonstrated
to be of high quality, where quality has been measured
in terms of positional accuracy, attribute completeness and
consistency. Indeed, OSM’s quality has shown to sometime
supersede the most reputable geographic datasets, perform-
ing especially well in urban areas (Haklay 2010).

Relying entirely on user-generated content for urban map-
ping raises concerns, not only in terms of quality of the col-
lected information (which, for OSM, is presently high), but
also in terms of its long-term sustainability, on account of
the driving force behind it (Panciera et al. 2010). Will cit-
izens continue to remain engaged with the crowd-sourcing
process, and will they do so accurately?

As a first step towards assessing the viability of urban
crowd-sourcing, we build a spatial interest network, where
an edge exists between two users if they have been editing
in the same areas of the city of London, UK. The higher the
number of edits in the same areas, the higher the similarity
weight on the edge connecting such users (i.e., the stronger
the ‘interest’ of such citizens in the same parts of the city).
We then observe whether geographic clustering affects the
quality of coverage of an area.

The reminder of the paper is structured as follows: we
begin with a brief review of the state of the art in urban
crowd-sourcing and community analysis. We then present
the urban crowd-sourcing dataset we have used in our in-
vestigation, the process we have followed to construct a vir-
tual network of contributors from it, and the method used
to extract communities from this network. We analyse the
spatial and structural characteristics of the detected commu-
nities and their relation to quality of coverage, allowing for a
better understanding and, in the future, prediction of quality
in urban crowd-sourcing settings. Finally, we conclude the
paper with a discussion of our research agenda.

4http://www.openstreetmap.org/stats/data stats.html
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Related Work
Quality of crowd-sourced information has been extensively
researched in the domain of Volunteered Geographical In-
formation (VGI) (Goodchild 2007). In this domain, qual-
ity of OpenStreetMap data has been assessed in comparison
to traditional geographical datasets maintained by national
mapping agencies, as well as proprietary datasets main-
tained by commercial companies such as Navteq. For ex-
ample, Haklay et al. (Haklay 2010; Haklay et al. 2010) mea-
sured the positional accuracy of OSM road networks in the
UK and found it to be very accurate (i.e., on average within 6
meters of the position recorded by Ordnance Survey). Over-
all, the attention of the VGI community has focused on road
networks only; however, the contribution process associated
with editing roads and that associated with editing POIs dif-
fer greatly: indeed, the former is typically done by users who
have some expertise in both the geography of an area and the
editing tools required to digitally represent it, whilst the lat-
ter can be performed by any city dweller with local knowl-
edge. It is the latter that is representative of citizen engage-
ment, and it is thus the focus of this paper.

The link between physical and online communities has
been observed in the prediction of social ties from space and
time co-occurrence (Crandall et al. 2010), in the adoption
of social roles (Welser et al. 2011) and vastly in the ob-
servation of offline characteristics within online social net-
working sites (Gilbert and Karahalios 2009; Pennacchiotti
and Popescu 2011). In Social Network Analysis (SNA), re-
search has shown that users cluster around moods, personal-
ity traits, beliefs as well as geographically. This analysis is
derived from the richness of personal information projected
online through social networking sites. Research shows that
online communities do in fact highly resemble real social
communities in their dynamics and structure, particularly
in their scale-free and small-world characteristics (Fu, Liu,
and Wang 2008). This mirror effect that the web has can be
used to analyse not only online social networks but also im-
plicit networks such as in Flickr, the photo-sharing website.
For example, (Crandall et al. 2010) derived accurate social
ties between the users of the site by observing the geo-tag
and timestamp of photographs. Ties need not be personal to
be meaningful as demonstrated by experiments with Twitter
and Wikipedia, where people form interest networks which
have beneficial implications for the content produced.

The relationship between quality and community has been
observed in sociological theory, where quality is shown to be
localised within tightly-knit homophilic communities. Ho-
mophily, a similarity bond that can generate social networks
is produced by homogeneity and common interests, through
which people cluster together. The principle of homophily
as the glue of social networks was originally discussed in
Lazarsfeld and Merton’s 1954 publication (Lazarsfeld and
Merton 1954), where a distinction was made between sta-
tus and value homophily. The former type of relationship
takes into consideration the social status of an individual,
while the second operates around ideas, regardless of fac-
tors such as wealth and education of an individual. More
recently, the phenomenon has been thoroughly discussed
in McPherson, Smith-Lovin and Cook’s 2001 work Birds

of a feather flock together: Homophily in social networks.
Their work discusses gender and age in homophily, among
many other factors, demonstrating that males tend to segre-
gate into larger homogeneous groups in work establishment
networks. Men are also more likely to create voluntary as-
sociations with other men roughly their age, than women
who tend to have more heterophilic relationships in general.
Most importantly, the authors show that quality becomes lo-
calised in sub-networks and that it is primarily bred by geo-
graphic factors (McPherson, Smith-Lovin, and Cook 2001).
Like many other crowd-sourcing applications, OSM editors
form a highly homogeneous group of predominantly young
and educated male contributors (Lam et al. 2011).

Collectivism and collaboration have been shown to shape
the vibrant community of OSM’s users. Despite lacking for-
mal social networking facilities, the contributors to OSM
join forces in “mapping parties” and actively participate in
forums and wikis (Perkins and Dodge 2008). This behaviour
generates implicit communities of interest, as is also the case
with other crowd-sourcing platforms such as Wikipedia,
whose contributors form interest networks around topics and
ideas. This community formation property of wikis is also
the main reason for their success, creating inner workings
of quality control and a feeling of attachment for its users
(Christakis and Fowler 2009).

Urban Crowd-Sourcing Dataset
In this section, we describe the urban crowd-sourcing dataset
at hand. We then discuss how we have extracted community
information from the user-contributed data.

OpenStreetMap Dataset
OpenStreetMap (OSM) is the most famous example of VGI
publicly available today. Registered users can contribute
spatial content describing map features to the global OSM
database, thus collectively building a free, openly accessi-
ble, editable map of the world. The OSM dataset contains
the history of all edits (since 2006) on all spatial objects per-
formed by all users. Spatial objects can be one of three types:
nodes, ways, or relations. Nodes broadly refer to Points of
Interest (POIs), ways are representative of roads, and rela-
tions are used for grouping other objects together.

For the present analysis, we have restricted our attention
to a subset of the openly available OSM dataset. In particu-
lar, we have selected edits done to POIs of the city of Lon-
don, UK in the one year period between 19-06-2010 and
19-06-2011. We selected London as the context of our in-
vestigation because of its large number of users and contri-
butions, which is partly due to the fact that OSM originated
there. Our study is confined to the above one year period in
order to capture a sufficiently representative static snapshot
of the community. To ensure we are considering real citi-
zens, and not bots for example, users with unnaturally high
numbers of edits (over 40 edits in the same ‘changeset’ –
i.e., same session in OSM) were filtered out. Our focus is
only on POIs (and not roads), capturing edits requiring less
specialised skill from the citizens contributing them.

The characteristics of our filtered dataset are summarised
in Table 1. A preliminary analysis of the number of edits per
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#Users #POIs #Edits Power Law Coefficients
819 9, 718 10, 623 α = 1.328, R2 = 0.9681

Table 1: Characteristics of OSM Filtered Dataset

user shows a power-law distribution, with an alpha value ex-
ponent of 1.33 and a fitting coefficient of R2 = 0.97. Given
a set of pairs 〈xi, yi〉, where xi ∈ N is a user and yi ∈ N is
the number of edits performed by xi, α is chosen such that∑

(ax−αi − yi)2 is minimized. Our value signifies that the
majority of contributions are made by a small subset of so-
called “power users”, that is, users who contribute heavily.

Interest Network and Communities

Our virtual network was crafted from the raw dataset de-
scribed above, where nodes are OSM editors, and an edge
exists between any two editors if they have made contri-
butions in the same geographical area. When studying the
implicit community structure of this network, we make the
underlying assumption that citizens predominantly edit in
urban areas of relevance to them. That is, areas where they
spend time (e.g., near where they live, or work), as they must
have visited a location physically to edit it, and they care
enough to place it on the map. POIs do not include houses or
private residences but only businesses and public locations.
The following analysis therefore focuses specifically on the
urban elements which represent the user’s locus of edits and
from which we can confidently build a representation of the
user’s spatial interests.

We divided London into a 20x20 grid, with each cell cov-
ering an area of 2Km x 2Km. For each user, a vector of
400 elements was created (one per geographic cell), count-
ing how many edits that user made in each such cell. Af-
ter normalising these counters, we computed pair-wise user
similarities, as the cosine similarity of their corresponding
vectors. Following manual inspection of the distribution of
these weights, we constructed a network with an edge be-
tween two users if their similarity was at least 0.5. The re-
sulting network contains 714 (out of the original 819) nodes
and 8,839 edges (the top 40%); it has a diameter of 13 and an
average clustering coefficient of 0.8, representative of strong
interconnectedness. To study community structure within
this network, we ran the Louvain modularity optimisation
algorithm for community detection (Blondel et al. 2008), as
implemented in Gephi (http://gephi.org). The algorithm op-
erates iteratively, beginning with one community per node
in the network, and then repeatedly aggregating communi-
ties together so to optimise, at each aggregation step, the di-
vision of network modules. The process stops when further
iterations fail to increase the modularity and a hierarchy of
communities is then produced. The Louvain algorithm de-
tected 98 communities in our network, with a final modu-
larity value of 0.63, showing that the network is naturally
highly divided into non-overlapping communities, although
the vast majority of these communities are singletons. In the
next section, we focus our attention on the top 6 communi-
ties in terms of size, and analyse their properties.

Mapping Citizen Engagement
For each of the six communities detected above, we now in-
vestigate their properties in terms of spatial affinity, network
characteristics and quality of coverage.

To investigate spatial affinity (or geographic clustering),
we constructed a map mosaic based on our grid division of
London, where each grid is assigned to the community that
has most significantly contributed to it over the 12 month
period under investigation (Figure 1). In the case of a tie, the
cell is assigned to more than one community. Intuitively, this
shows what communities are most responsible for the data
coverage of a given cell in the year-long period. However,
such mapping does not reveal the intensity of contributions
in different areas; also, it hides the geographic spread of each
community’s contributions, highlighting only the area they
edited the most w.r.t. any other community. We thus also
show heatmaps for each community in Figure 2.

In terms of network characteristics, Table 2 reports, for
each community, the number of users it contains, the num-
ber of edits performed by these users, and the number of
cells in the grid that such community ‘owns’, as per map-
ping above. We also report the average clustering coefficient
for each community, which gives us an insight into the den-
sity of the community, and therefore how strong the forces of
similarity are within it. The alpha value exponent determines
the proportion of heavy editors with respect to moderate and
light editors in each community. The higher the exponent,
the more occasional editors it contains and the more simi-
lar to the original distribution it is. The fitting coefficient of
the power-law distribution of edits per user, determines how
closely it follows the power-law curve. Finally, we compute
the average quality of coverage per cell of each area where
a community resides (as per Figure 1). In order to measure
this, we compared the OSM POI dataset to the Navteq pro-
prietary POI dataset as a benchmark. We calculated coverage
in every cell as the ratio of POI matches between the two
datasets to the total number of POIs appearing in the Navteq
dataset. We considered two POIs of the two datasets a match
when their Euclidean distance was no more than 0.1Km and
their names had less than 0.35 in lexographic distance.

We now go back to our goal of investigating the pres-
ence of spatial clustering in OSM. Evidence of it suggests
that the community dedicates its mapping effort to a well-
defined area and according to our hypothesis does so metic-
ulously. As shown in Figure 2 (c)(e)(f), communities 3, 5
and 6 exhibit very high concentration, with all their contribu-
tions happening in geographically small areas. For example,
Community 3 is active in the city centre and just South of
it; Community 5 is situated mainly in the North and centre,
while Community 6 is concentrated in the area of Kilburn, in
the North-West. Interestingly, these communities have much
higher clustering coefficients than the network of OSM con-
tributors as a whole (0.91, 0.96 and 0.94 respectively, as op-
posed to 0.8), suggesting that they are very tightly-knit vir-
tual communities. Furthermore, if we look at the distribution
of edits per user, we note that Community 6 does not follow
a power-law distribution (low fitting coefficient); Communi-
ties 3 and 5 do follow a power-law distribution, but with a
much lower alpha exponent w.r.t. that of the whole network.
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Figure 1: Map of the Spatial Distribution of the Six Communities on the London Grid

#Users #Edits #Cells Clustering Coefficient α R2 Coverage
1 87 1,374 34 0.93 1 0.96 0.22
2 63 856 39 0.87 0.95 0.95 0.2
3 54 749 5 0.91 0.97 0.96 0.24
4 53 1,260 43.5 0.9 1.28 0.92 0.13
5 38 218 6 0.96 0.84 0.95 0.17
6 27 427 1 0.94 1.47 0.87 0.39

Table 2: Community Properties

These findings suggest that members of these communities
are actively and more equally engaged with the OSM map-
ping effort, as opposed to what the network as a whole would
suggest (where a small group of power users is responsible
for the vast majority of contributions). It is also the case that
the coverage recorded in the cells of the two communities is
the highest, suggesting that citizen engagement in OSM does
indeed depend on community structure and spatial affinity.
Community 6, which is the most closely knit community, is
geographically associated with a single cell having a cover-
age value of 0.39, significantly higher than all the others.

Although less spatially clustered than the previous three,
Communities 1 and 2 also exhibit geographic affinity, al-
beit with a more polycentric behaviour. Indeed, whilst they
are both active in the city centre (which is not surpris-
ing as that is where POIs are most concentrated), we can
observe Community 1 (the biggest in terms of number of
users) is predominantly engaged with the North of Lon-
don, while Community 2 (second biggest) is very active in
the South. The map mosaic shows this North-South divide
quite clearly indeed (Figure 1). It is interesting to note that
even the two largest communities have alpha values signif-
icantly lower than the original network: once again, con-

tributions are more evenly distributed among members of
these communities, and this seems to be a good indicator
of ‘healthy’ communities. This is confirmed by the cover-
age metric, which is quite high for both communities, with
values of 0.22 and 0.2 respectively.

Community 4 is the only one with no spatial association
(i.e., highest geographic spread), as shown both by the map
mosaic (Figure 1) and the community heatmap (Figure 2
(d)). This is also the only community with both a high α ex-
ponent and a high fitting coefficient R2 (aligned with those
of the original overall network), indicating that contributions
are not evenly spread amongst its members: the high edits
per user ratio suggest the presence of a few power users,
responsible for the majority of edits. Note also that this is
the community with the lowest coverage, possibly a conse-
quence of its geographically spread edits.

Based on the above, there is an apparent relationship be-
tween the presence of geographic clustering within a com-
munity, and (a) the even spread of contributions within such
community, and (b) the high quality of coverage in the ar-
eas it occupies. Spatial clustering is present in five of the six
communities detected and they all exhibited higher levels of
coverage. These communities also show an active engage-

17



(a) Community 1                                                                   (b) Community 2 

(c) Community 3                                                               (d) Community 4 

(e) Community 5                                                              (f) Community 6 

Figure 2: Heatmap of Contributions across Top 6 Communities
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ment with the mapping process that is evenly distributed
among its members. This preliminary analysis inspires fur-
ther inquiry because it shows a clear correlation between
spatial affiliation, the internal community structure and the
community’s engagement in terms of coverage.

Future Work
The work presented in this position paper is an initial step
in a line of enquiry that aims to understand the factors de-
termining the viability of urban crowd-sourced geographic
data. The ultimate goal is to build predictive models of in-
formation quality and sustainability in these settings.

The hypothesis that we have started to verify in this paper
is that spatially attached virtual communities produce con-
sistently high levels of coverage. So far, we have studied the
presence of geographically clustered communities in OSM,
where the overall quality has been measured and observed
to be generally high. Indeed, we have observed that OSM
editors do cluster together in geographically well-defined
areas of London and that the quality of coverage in those
areas is greater. The next step in this line of enquiry is to
uncover what specific properties of these communities de-
termine what levels of quality. Properties that we intend to
look at go beyond topological characteristics of these com-
munities, and include socio-cultural aspects of the geograph-
ical areas these communities belong to (e.g., wealth, average
education level, income, employment). As for quality, we in-
tend to measure both accuracy and coverage of the edited in-
formation: by accuracy, we refer to both lexicographic cor-
rectness in the spelling of the POI names, and geographic
accuracy, in terms of the spatial positioning of POIs (com-
pared to proprietary mapping datasets such as Navteq). By
coverage, we refer to the proportion of POIs that have been
crowd-mapped, w.r.t. those that exist in the real world (once
again, as recorded in proprietary mapping datasets).

In order to refine our methodology, we will fine-tune our
analysis of central areas in accordance with the density of
edits. We intend to do this using ranked distance in lieu of
normalised counts (Liben-Nowell et al. 2005). In order to
classify a user’s interest in an area we will use distinctive
edits which are less common rather than popular edits which
most users will have. This will be done using a tf*idf-like
weighing technique (Salton and McGill 1983), commonly
used to calculate the relevance of documents, so to create a
more meaningful network of editors.

So far, we have focused on a single temporal snapshot
of OSM, thus disregarding its dynamic nature, which is an
essential aspect of its sustainability over time. Our final
step is to study the evolution of OSM over the years, both
in terms of its communities and the measured quality. We
also intend to repeat this study across a different cities, so
to observe the formation and evolution of communities in
various urban contexts. In so doing, we hope to be able to
build accurate predictive models of sustainability of the
urban crowd-sourcing paradigm in the future.
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