
Automatic Versus Human Navigation in Information Networks

Robert West and Jure Leskovec
Computer Science Department

Stanford University
{west, jure}@cs.stanford.edu

Abstract

People regularly face tasks that can be understood as navi-
gation in information networks, where the goal is to find a
path between two given nodes. In many such situations, the
navigator only gets local access to the node currently under
inspection and its immediate neighbors. This lack of global
information about the network notwithstanding, humans tend
to be good at finding short paths, despite the fact that real-
world networks are typically very large. One potential reason
for this could be that humans possess vast amounts of back-
ground knowledge about the world, which they leverage to
make good guesses about possible solutions. In this paper we
ask the question: Are human-like high-level reasoning skills
really necessary for finding short paths? To answer this ques-
tion, we design a number of navigation agents without such
skills, which use only simple numerical features. We evalu-
ate the agents on the task of navigating Wikipedia, a domain
for which we also possess large-scale human navigation data.
We observe that the agents find shorter paths than humans on
average and therefore conclude that, perhaps surprisingly, no
sophisticated background knowledge or high-level reasoning
is required for navigating the complex Wikipedia network.

Introduction
Mankind has been creating, maintaining, and using infor-
mation networks for a long time. Examples from the offline
world include scientific papers citing each other and dictio-
naries with cross-referenced entries. With the emergence of
the online age, we have been witnessing a migration of es-
sentially all things written onto the Web, which may itself
be considered a gigantic information network that contains,
in turn, a myriad of smaller, more structured subnetworks.
Navigating these resources is a task people are faced with
on a daily basis: we surf Wikipedia to find the answers to
questions; we browse the virtual shelves of online stores by
clicking from one article description to the next; or we ex-
plore social networking sites to find the name of that lovely
person at yesterday’s party.

This type of navigation can be phrased as search in a
graph, where we gradually move across edges from a start to
a target node. However, identifying short paths by means of,
say, Dijkstra’s algorithm is impossible, since this would re-
quire knowledge of the full graph, whereas typically we have

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

only local access to the network, seeing only the current and
the previously visited nodes, as well as their direct neigh-
bors. Other than that, neither the—typically large—set of all
existing nodes (often with complex content) nor the links be-
tween them are known ahead of time. Therefore, it is often
easy to get lost. Nevertheless, people are rather good at find-
ing short paths between pairs of nodes, a fact known as the
‘small world’ phenomenon (Milgram 1967). One potential
explanation is that people are good at ‘connecting the dots’
because they have common sense and a large body of back-
ground knowledge for reasoning about the world, such that
their search can be guided by intuitive expectations about
the unknown link structure of the network. For instance, one
might think that, in order to find a path from the Wikipedia
article about MOZART to that about TERMINATOR, one must
know that Mozart is from the same country as the person
enacting the Terminator, such that trying to find a path like
〈MOZART, AUSTRIA, SCHWARZENEGGER, TERMINATOR〉
would make sense.

But how hard is navigating content-rich information net-
works really? Does the task require high-level reasoning
skills and common sense—which computers do not have
yet, and which is a very ambitious goal? Or can it be for-
malized in a straightforward way such that even a simple
computer program can solve it? In the present paper we at-
tempt to shed light on this question by designing a number
of automatic agents without human-like knowledge and rea-
soning skills, which use only simple numerical features. We
evaluate these agents in the controlled example task of Wi-
kipedia navigation. In this setting, the goal is to find a short
path from a given start to a given target article by clicking
only existing links. We choose Wikipedia as the validation
domain for two reasons. First, it contains rich knowledge of
the kind people are good at reasoning about. Second, we pre-
viously designed an online human-computation game, called
Wikispeedia, through which we have been collecting over
30,000 examples of humans navigating the Wikipedia net-
work and where the player’s goal is also to find short link
chains between given start and target articles.

When designing the search algorithm and the features
available to the agents, we have striven to allow for as fair a
comparison between humans and automatic agents as pos-
sible. Analyzing the results, we observe that even simple
algorithms can find shorter paths on average than humans.

362

Proceedings of the Sixth International AAAI Conference on Weblogs and Social Media

While humans need twice the optimal number of clicks on
average, our best automatic agent achieves a factor as low
as 1.5. Also, the frequency with which human searches are
over twice as long as shortest paths is 4 times as high as for
automatic searches. Hence we conclude that, maybe surpris-
ingly, very basic numerical features suffice for navigating a
complex network such as Wikipedia.

On a more faceted level, human and automatic search are
qualitatively different. Our evaluation lends support to the
conclusion that, while the agents are more efficient on aver-
age, humans are less likely to get totally lost during search.
Humans typically form robust high-level plans with backup
options, something our automatic agents cannot do (for a de-
tailed analysis of how humans solve this task, cf. West and
Leskovec 2012). Instead, the agents compensate for this lack
of smartness with increased thoroughness: since they cannot
know what to expect, they always have to inspect all options
available, thereby missing out on fewer immediate opportu-
nities than humans, who, focused on executing a premedi-
tated plan, may overlook shortcuts.

While we consider these findings interesting in their own
right, our algorithms may also prove useful in the context
of social and information networks from a practical per-
spective. For instance, ‘social browsing’ (Lerman and Jones
2007) is an emerging paradigm. Also, it is estimated that
99.8% of the Web’s content, the so-called ‘deep Web’, is
hidden ‘behind the query forms of searchable databases’ (He
et al. 2007) and therefore cannot be systematically indexed
by general search engines, making it necessary to navigate
by clicking from page to page. Even on the ‘surface Web’,
there is little use in today’s search engines whenever we can-
not formulate a concise query describing what we are look-
ing for (think of that lovely person at yesterday’s party); and
even if a decent query was entered, the results often only
serve as the starting point for further, click-based naviga-
tion. Furthermore, sometimes the entire path that connects
two pages rather than a single result page matters; e.g., the
answer to a question might be spread over a series of Wi-
kipedia articles. Finally, some information resources, such
as peer-to-peer networks, are deliberately designed in a de-
centralized manner, such that global search is impossible. In
all these scenarios, navigation-based search algorithms may
complement the use of query-based search engines. By an-
alyzing the learned importance weights attributed by our al-
gorithms to different features, we can quantify what infor-
mation matters most for solving search tasks, which may in
turn help us design tools for the support of human browsing.

We proceed as follows. First, we introduce and motivate
the abstract search algorithm, before describing concrete im-
plementations of it, which differ only in the way they score
the neighbors for choosing the next click. Thereafter, we
compare our algorithms among each other and to humans,
and analyze the relative importance of features. Then we re-
view related work, and finally conclude by discussing our
findings and their implications.

The abstract search algorithm
The task we investigate is how to navigate from a start to
a target node by traversing edges of a given graph. Since

Algorithm 1 Basic navigation algorithm

Input: start node s; target node t; evaluation function V
Output: sequence of nodes visited

1: push s onto initially empty stack S

2: while stack S is not empty do
3: pop node u from stack S and remember it as visited
4: if u = t then
5: return sequence of nodes visited
6: else if u has not been visited before then
7: for all neighbors u′ of u, in order of increasing

value according to V (u′|u, t) do
8: push u′ onto stack S

9: if u′ = t then
10: break // make sure t is picked in next iteration
11: end if
12: end for
13: end if
14: end while
15: return ‘no path between s and t exists’

our goal is to design algorithms whose performance we can
compare to that of humans in a fair manner, it is important
that we subject the automatic agents to the same restrictions
a human navigator faces.

First, it is a requirement that in deciding where to go
next, our agents use only local node features independent of
global information about the network. Only the nodes visited
so far, their immediate neighbors, and the target may play a
role in picking the next node. Second, typical Web-browsing
software also imposes restrictions. The user can only follow
links from the current page or return to the immediate pre-
decessor by clicking the back button. Jumping between two
unconnected pages is not possible, even if they were both
visited separately before.

These constraints give rise to a simple navigation algo-
rithm. As input, it takes the start node s, the target node t,
and an evaluation function V . The latter is used to score each
neighbor u′ of the current node u and, due to the locality con-
straint, is a function of u, u′, and t only. We write the value
of u’s neighbor u′ as V (u′|u, t). Ideally, V should capture the
likelihood of u′ being closer to the target than u is. At each
step, the algorithm chooses from those neighbors of the cur-
rent node u that have not previously been visited, picking the
candidate u′ with the highest value V (u′|u, t). If all neighbors
of u were previously visited, or if it has none, we backtrack,
which is the analogue of a human’s clicking the back but-
ton. In the worst case, the algorithm has to explore all nodes
reachable from s in order to find t. Pseudocode for the basic
navigation procedure is listed in Algorithm 1.

Algorithm 1 may be considered an abstract meta-algo-
rithm, since the order in which the neighbors of the cur-
rent node are visited is determined by an arbitrary evaluation
function V . The concrete choice of V is, of course, crucial
for the performance of the algorithm. We experiment with
several choices of V , which we describe next.

363

Implementations of the search algorithm

For the evaluation function V , we experiment with simple
heuristics, as well as a set of machine learning methods.

Heuristic agents

The most basic agents navigate according to a single, simple
criterion. In particular, degree-based (Adamic et al. 2001)
and similarity-based (Kleinberg 2000) methods have been
proposed.

Degree-based navigation (DBN). For the degree-based
agent, we define V (u′|u, t) := deg(u′) (the outdegree of u′).
Note that neither the current node u nor the target t are con-
sidered. This agent is based on the intuition that nodes with
many neighbors are a good choice because they are more
likely to contain a direct link to t, or at least offer many ways
of continuing the search.

Similarity-based navigation (SBN). For the similarity-
based agent, we let V (u′|u, t) := tf-idf(u′, t), which is de-
fined as the standard TF-IDF cosine of the textual contents
of the candidate u′ and the target t. The choice of similarity
as a feature is based on the notion of homophily, a property
shared by many real-world networks: the more similar two
nodes are, the more likely they are to link to each other.

Expected-value navigation (EVN). Şimşek and Jensen
(2005) combine degree and similarity in a simple probabilis-
tic model, giving rise to ‘expected-value navigation’. They
make the assumption that each endpoint w of a node v’s out-
links is sampled independently of the others with probabil-
ity qvw, which is a function of the similarity of v and w. The
value of a candidate u′ is then defined as the probability that
at least one outlink of u′ ends in the target t, i.e.,

V (u′|u, t) := 1− (1− qu′t)
deg(u′). (1)

Following Şimşek and Jensen, we assign all pairs of nodes
(v,w) to discrete bins based on tf-idf(v,w), and estimate qvw

as the fraction of pairs in the respective bin that are direct
neighbors.

Machine learning agents

Next, we introduce machine learning agents that all com-
bine features linearly in a weighted sum but differ in how
the weights are learned. Thus, they are more adaptable to the
navigation domain at hand than the hard-coded heuristics.

The agents learn a separate weight vector (and thereby a
separate evaluation function Vi) for each path position i; i.e.,
the i-th iteration of the while loop of Algorithm 1 uses Vi to
evaluate neighbors.

Supervised learning. The first class of learning agents
we discuss is based on supervised learning. In this scenario,
the evaluation function may be seen as a classifier measuring
the confidence that a given click is a ‘good’ choice. Training
is done for each path position independently and is straight-
forward: sample pairs (u, t); for each pair, choose a number
of ‘good’ and an equal number of ‘bad’ neighbors of u; fit
the weights. The way in which we define ‘good’ and ‘bad’
determines the ultimate behavior of the agent, and we exper-
iment with two options: In the first approach, u’s neighbor
u′ is defined as ‘good’ if it decreases the shortest-path length

to t (we call this ‘lucrative vs. non-lucrative’).1 Our second
approach is applicable when human search paths are avail-
able. Then we may define u′ as ‘good’ if the link from u to u′

was ever clicked by a human under target t, and as ‘bad’ oth-
erwise. This will make the agent behave similarly to human
players (‘human vs. non-human’).

For weight-fitting, we experiment with two methods.
First, logistic regression (LR) is a standard choice for bi-
nary classification. Second, a slightly more sophisticated
classifier arises from the observation that, at each step, Al-
gorithm 1 ever only picks the neighbor with the highest
value. So choosing a neighbor may be considered a ranking
problem, where we require that the top-ranked candidate be
good. In other words, whereas LR maximizes accuracy, we
in fact want to maximize precision at k with k = 1. A host of
learning methods are available for learning to rank. In par-
ticular, we experiment with SVM-MAP (Yue et al. 2007),
a ranking support vector machine that chooses the weights
that maximize the mean average precision (MAP) of the in-
duced ranking.

Reinforcement learning (RL). Supervised techniques
require labeled ground-truth data. Either we need global
network information (the shortest-path lengths between all
node pairs) or large amounts of human click behavior data.
Also, these algorithms work offline: first, all the training
data are processed for learning weights; then, the algorithm
is run with fixed weights.

A more natural paradigm for teaching an agent how to be-
have in a given environment can be found in reinforcement
learning (RL) (Sutton and Barto 1998). Here, the shortest-
path lengths of node pairs need not be known ahead of time.
The agent starts navigating with random weights, and only
once it happens to find the target does it learn through pos-
itive feedback that the recent choices were good and adapts
its weights to make similar choices more likely in the future.
Therefore, the RL agent works online—it acts and learns at
the same time.

In an RL setting, an agent moves from state to state by per-
forming actions, at each step receiving a numerical reward
(or punishment) indicating whether the current state is de-
sirable (or not). In network navigation, states are nodes and
actions are link clicks. The reward r(u) received for reach-
ing state u is positive if u = t and negative otherwise. Con-
sider a path 〈s = u1, ...,un = t〉 produced by running Algo-
rithm 1. The cumulative reward obtained from ui onward is
defined as R(ui) :=

∑
k≥i r(uk). That is, the shorter the path,

the higher the cumulative reward (since all summation fac-
tors but the last are negative), and reaching the target t from
ui as quickly as possible is equivalent to maximizing the cu-
mulative reward R(ui). Let R∗(·) be the R(·) achieved by an
optimal agent. Then, if we manage, for all k, to find weights
wk such that Vk(uk|uk−1, t) = w⊤k f(uk|uk−1, t) is a good ap-
proximation of R∗(uk), then choosing the neighbor ui+1 of

1Recall that the agents are allowed only local access to the net-
work at navigation time, whereas shortest-path length, needed to
assemble this type of training set, is a global notion. However, this
information is needed only at training, not at navigation time, and
in many scenarios this might be legitimate, since the agent might
get full access to a small training portion of the entire network.

364

the current ui that maximizes Vi+1(ui+1|ui, t) will tend to re-
sult in short solution paths (where f(ui+1|ui, t) is the feature
vector of ui+1, given the current node ui and the target t).

To learn the weights, a temporal difference (TD) update is
performed in each iteration of the while loop, after pushing
all neighbors of the current node onto the stack (i.e., between
lines 12 and 13 of Algorithm 1):

wi←wi +α [r(ui)+Vi+1(ui+1|ui, t)−Vi(ui|ui−1, t)] ·

· f(ui|ui−1, t), (2)

where α is a learning rate parameter, ui the current node,
and ui+1 the node on top of the stack, i.e., the one that will
be visited next. This update is also used in the so-called
SARSA algorithm (Rummery and Niranjan 1994). Instead
of deriving it, we explain it in intuitive terms. Recall that we
strive to achieve Vk(uk|uk−1, t) ≈ R∗(uk), for all k. In equa-
tion (2), Vi(ui|ui−1, t) is our estimate of R∗(ui) before receiv-
ing the reward r(ui), and r(ui)+Vi+1(ui+1|ui, t) is our esti-
mate for it afterwards, so the update adjusts the weights in
a gradient-descent way, making Vi(ui|ui−1, t) match the true
R∗(ui) more closely.

To learn the weights, we have the agent solve a number
of training navigation tasks, where start and target nodes
are picked randomly. In the first task, the agent starts with
random weights. Subsequently, task j + 1 starts with the
weights resulting from task j. During testing, weights are
fixed and not updated any more.

Empirical evaluation

The above descriptions of our agents are abstract in the sense
that we have not specified which features we consider. The
appropriateness of features obviously depends on the spe-
cific network to be navigated. We now describe our evalua-
tion network, list and analyze the features used, and compare
the agents among each other as well as to humans.

Experimental setup

The Wikipedia network. We evaluate our navigational
agents on the Wikipedia hyperlink network, under the task
of finding short paths between given pairs of Wikipedia arti-
cles. Wikipedia is an attractive validation domain mainly for
two reasons. First, there is large-scale human navigational
data for the Wikipedia network, which we have been col-
lecting through the online game Wikispeedia2 (West, Pineau,
and Precup 2009), where the task formulation is the same
as for our agents: find as short a path as possible from a
given s to a given t, only by clicking links (or the back
button). Over 30,000 trajectories have been gathered from
around 9,400 distinct IP addresses, such that it is possible
to compare the automatic agents to humans quantitatively.
Second, Wikipedia contains a wealth of rich knowledge of
the kind that humans can easily deal with: they may use all
their world knowledge and reasoning skills to find clever
paths between the start and target articles; recall the exam-
ple task ‘MOZART to TERMINATOR’ from the introduction.

2http://www.wikispeedia.net (accessed 03/2012)

Since our agents do not possess such sophisticated, struc-
tured knowledge, the comparison sheds light on the ques-
tion whether navigating rich knowledge resources is possi-
ble without human-like knowledge.

Our online game uses the 2007 Wikipedia Selection for
schools,3 which is edited by SOS Children’s Villages UK
and contains 4,604 articles (and about 120,000 links) that
can serve as a free alternative to costly encyclopedias. We
sample the start–target pairs, the so-called missions, only
from the strongly connected core component comprising
4,051 articles (98%), such that every mission has a solution.
The mean shortest-path length between article pairs is 3.18,
with a median of 3, and a maximum of 9.

Features. In our experiments, we consider the following
features (alongside a constant bias term):

1. deg(u′): degree of the candidate u′, as in DBN;

2. deg(u): degree of the current node u;

3. tf-idf(u′, t): the TF-IDF cosine of u′ and t, as in SBN, is
important because of homophily;

4. tf-idf(u, t): the similarity between u and t;

5. tf-idf(u,u′): if this feature gets a large weight, then the
next node is preferred to be similar to the current one;
otherwise, clicks between unrelated nodes are preferred;
e.g., a small similarity between neighbors might be good
in the beginning of paths, for quickly getting away from
s, a large one towards the end, for homing in on t;

6. linkcos(·, ·): the equivalent of features 3–5, but with TF-
IDF cosine replaced by link cosine, a similarity measure
based on the outgoing links of the nodes under considera-
tion: represent a node as the sparse vector of its outgoing
links, where the non-zero entries are IDF-weighted; simi-
larity is then defined as the cosine of such vectors (Milne
and Witten 2008); the purpose of including this in addi-
tion to TF-IDF is to have redundancy: when one fails, the
other might still work;

7. taxdist(u′, t): the Wikipedia version we use contains a
tree-like hierarchy of categories, the leaves of which are
populated by the articles; the ‘taxonomic distance’ be-
tween u′ and t is defined as the number of edges in the
tree that separate the two.

Features 1–6 are considered in logarithmic form, since the
distributions of their values are approximately log-normal.

We emphasize that the content of the neighbor u′ is not
available to the agents explicitly; e.g., while the content of
u′ is necessary to compute tf-idf(u′, t) (feature 3), the agents
know only this resulting number, not the content of u′ it-
self. We argue that this way the agents do not have an unfair
advantage over humans, who also only get to see the tex-
tual content of an article once they visit it. Also, the agents
know the degree of the neighbor u′ (feature 1), while humans
do not. However, humans can probably roughly anticipate
the degrees of articles based on intuitions about the impor-
tance of the corresponding concepts (more important con-
cepts typically have higher degree), and we think that this
difference in available information does not crucially affect
the fairness of our comparison either.

3http://schools-wikipedia.org (accessed 08/2008)

365

Training set creation for supervised learning. Recall
from the section about supervised learning that we consider
classifiers for distinguishing ‘lucrative vs. non-lucrative’ and
‘human vs. non-human’ clicks, respectively. Whereas for
‘human vs. non-human’ the examples are necessarily cre-
ated from human paths, this need not be the case for ‘lucra-
tive vs. non-lucrative’. As an alternative we explore using
the transitions made on random shortest paths as positive
examples, with negative examples subsampled randomly.

Evaluation methodology. As the basic notion of perfor-
mance, we consider the number of nodes visited until the
target is found, which we call game length or search time
(we emphasize that search time is not measured in seconds).
It is important to also count nodes from which the agent or
human backtracked, since otherwise it would be trivial to
always find an optimal solution simply by running breadth-
first search.

We count a path as ‘long’ if its length is more than twice
that of an optimal solution. This gives us an idea how often
agents and humans do reasonably well.

We report the following quantities:

1. The percentage of long paths, which counts how often the
agent took over twice the optimal number of steps.

2. The overhead factor of games, defined as ℓ/ℓ∗ for a game
of actual length ℓ and optimal length ℓ∗.

In our online game, humans often give up on missions; at
each step, there is a probability of approximately 10% of this
happening, such that only 46% of all games begun are fin-
ished. This might happen, e.g., because the player gets frus-
trated, so oftentimes paths that would be long are not even
recorded, resulting in an overestimation of performance. To
be fair and give the automatic agents the chance to drop out
as well, we introduce a small probability ρ of giving up at
each step. The missions given up are discarded, which lets
us compute less noisy averages that are not skewed by the
essentially failed searches in which nearly the entire graph
must be explored before finding t (only a small fraction of
searches, cf. Fig. 1).

Test sets. We run our agents on two test sets. For the ran-
dom test set, we sampled 100,000 (s, t)-pairs uniformly at
random from the strongly connected core component. This
large test set allows for tight performance estimates. We
choose ρ = .005, which implies that a very long search is
given up after an expected 200 steps. The probability of giv-
ing up within the first 1,000 clicks is 99%, that of not giving
up within the first 10 clicks is 95%, such that we exclude
the essentially failed searches without giving up too many
searches too early.

The human test set contains 1,200 missions that were also
played by humans, such that we can compare the agents’ to
human performance. Over 30,000 human paths have been
collected through our online game, but we consider only the
missions played at least 4 times (median 5 times), such that
the estimate of human performance can be made more reli-
able by taking the median human search time for each mis-
sion. Since the agents find short paths for virtually all human
missions, no drop-out option is required, and we set ρ= 0.

A B C D E F G H
1

1.5

2

2.5

3

3.5

overhead factor, human test set

A B C D E F G H
0

0.1

0.2

0.3

0.4
% long, human test set

A B C D E F G H
1

1.5

2

2.5

3

3.5

overhead factor, random test set

A B C D E F G H
0

0.1

0.2

0.3

0.4
% long, random test set

A B C D E F G H

Figure 1: Results of the agent evaluation, with comparison
to humans. Left: mean overhead factor (ratio of actual to op-
timal path length); right: percentage of long paths (i.e., of
more than twice the optimal length); top: 1,200 missions
played by at least 4 humans each; bottom: 100,000 ran-
dom missions; blue (A): humans; yellow (B–F): learning
agents; red (G–H): heuristic agents; black dots: percentage
of searches given up; (A) humans, (B) RL, (C) SVM-MAP,
(D) LR (lucrative vs. non-lucrative, human paths), (E) LR
(lucrative vs. non-lucrative, opt. paths), (F) LR (human vs.
non-human), (G) SBN, (H) EVN. Not shown: DBN (over-
head factors: 20 [top row] and 51 [bottom row]; percentages
long: 0.81 and 0.86; percentage given up: 0.47).

Results

Fig. 1 summarizes the performance of humans (blue), the
learning (yellow), and the heuristic agents (red), in terms
of the mean overhead factor and the percentage of searches
longer than twice the optimum (i.e., lower means better).
Error bars are small and therefore not shown.

Mean overhead factor and percentage long. First, the
learned agents (yellow) perform better than the heuristic
ones (red). In particular, RL (B) and SVM-MAP (C) are best.
What is more surprising is that, with the exception of the
poorly performing DBN algorithm, even the simple agents
do fairly well. In fact, most agents achieve lower mean over-
head factors than humans: while humans (blue) take on aver-
age twice the optimal time, our best agents need only about
1.5 times the optimum on the same test set (upper left).
Whereas 29% of human paths require more than twice the
optimal number of steps, this is the case for only about 7%
of the searches performed by the best agent (upper right).
We also note that missions accomplished by humans appear
to be easier: all agents perform better on these missions (top
row) than on random ones (bottom row). The reason is prob-
ably that humans choose not to play the really hard missions
in the first place, or start but do not finish them.

366

1 2 3 4 5 6
0

0.25

0.5

0.75

1

shortest-path length to target

pr
ec

is
io

n

2 4 6 8 10 12
0

0.25

0.5

0.75

1

search time T

cu
m

ul
at

iv
e

pr
ob

.

1 2 3 4 5 6
0

0.25

0.5

0.75

1

shortest-path length to target

pr
ec

is
io

n

2 4 6 8 10 12
0

0.25

0.5

0.75

1

search time T

cu
m

ul
at

iv
e

pr
ob

.

Figure 2: Left: Precision (probability of top-ranked neigh-
bor being closer to target than current node); right: cdf of
search time; top: 1,200 missions played by at least 4 hu-
mans each; bottom: 100,000 random missions; magenta:
optimal; blue: RL; red: SBN; green: EVN; cyan: DBN;
ocher: random; black: human (dashed: hypothetical case of
humans never giving up). (Color order corresponds to top-
down order in lower right plot.)

In Fig. 2 we take a closer look at how humans differ from
agents. We plot only RL (blue) as a proxy for all learning
agents, since they show rather similar behavior.

Precision. The left column of Fig. 2 shows the precision
of humans and of the agents’ evaluation functions V , as a
function of shortest-path length (SPL) to t, where precision
is defined as the probability that the top-ranking neighbor
decreases the SPL to t. Again, the top row shows the human,
the bottom row the random test set (the estimates for the ran-
dom test set are much less noisy because it is 100 times the
size). The basic shape of curves is identical for most agents:
precision is higher far away from and close to the target, and
lower in between. Again, the only exception is DBN (cyan),
whose mean precision is as bad as that of a randomly acting
agent (ocher); since many targets are not reachable directly
from high-degree nodes, DBN is not able to find these tar-
gets quickly. The learned agent’s precision (blue) exceeds
that of humans (i.e., the agent makes good choices more re-
liably) when the SPL to t is 1, 2, or 3. We note that 69% of
all connected pairs have a SPL of at most 3, so one may say
this agent makes better picks than humans most of the time.

Cumulative search time distribution. The right column
of Fig. 2 shows the cumulative distribution function (cdf) of
search time, i.e., the fraction of searches of length at most T .
One curve lying entirely above the others may be seen as the
respective agent being better all around. The top curve (ma-
genta) constitutes the upper bound of a hypothetical agent
that always finds the shortest path; the bottom curve (ocher)
is the lower bound set by a randomly acting agent. In be-
tween, the ranking is led by the learning agents (blue), SBN
(red), EVN (green), and finally, far off, DBN (cyan). We
see two reasons for the unexpected fact that plain SBN does

1 2 3 4 5 6

-1

0

1

path position
1 2 3 4 5 6

-1

0

1

2

path position

 tfidf(u’, t)
linkcos(u’, t)
deg(u’)
deg(u)
taxdist(u’, t)
linkcos(u, t)
tfidf(u, t)

Figure 3: Weights learned by logistic regression; one set of
weights per path position. Left: classifier ‘lucrative vs. non-
lucrative’; right: ‘human vs. non-human’ (cf. section about
supervised learning); tf-idf(u,u′) and linkcos(u,u′) are ne-
glected because their weights are close to zero everywhere.
(Colors are ordered top-down at x = 3 in left plot.)

better than EVN. On the one hand, even the TF-IDF cosine
alone is a powerful feature because of Wikipedia’s rich tex-
tual content and its homophily-based link structure. On the
other hand, EVN includes degree information in a fixed way,
which does not work well in the case of Wikipedia, possi-
bly because the probabilistic model it adopts (cf. (1)) is not
true: link endpoints are not picked independently, e.g., no
two links can have the same endpoints in our graph repre-
sentation of Wikipedia (although a page may contain several
anchors linking to the same neighbor, in the graph these are
represented as a single edge). Nonetheless, the learners’ in-
creased performance proves that taking degree into account
can help if done in a more flexible way.

Comparison to humans. Now consider the cdf of search
time on the human test set (top right). Virtually all test mis-
sions are optimally solvable with at most 4 clicks (magenta).
The learning agent manages to solve 75% of them with 4
clicks or fewer, while humans achieve only 30%. However,
the agents sometimes fail entirely; when this happens, nearly
all of the network has to be searched before t is found. This
is why the 100% mark is approached only slowly in the cdf
curve. Humans, on the contrary, incur fewer complete fail-
ures, manifest in the fact that the human cdf (solid black)
approaches the 100% mark faster. One reason for this is, of
course, that humans give up rather than visit thousands of
nodes. To account for this, we compute an ideal curve for the
hypothetical case that humans are forced to finish every mis-
sion, based on measured drop-out rates (Dodds, Muhamad,
and Watts 2003). We find that even then, the human curve
(dashed black) starts to overtake the others around T = 9.
A potential explanation of this effect could be that humans,
while on average further away from optimal than the auto-
matic agents, are less prone to get totally lost.

Feature analysis

In the previous section we found that combining several
features linearly with learned weights yields better perfor-
mance than the heuristic baselines. An analysis of the result-
ing weights can tell us about the relative importance of the
respective features and lets us draw conclusions about what
information should be taken into account by real search ap-
plications based on our algorithms.

Fig. 3 plots the weights learned by the logistic regression
agent as functions of path position (feature values were nor-
malized to mean 0 and variance 1, such that the weights

367

are comparable). We show both types of classifiers (cf. sec-
tion about supervised learning): ‘lucrative vs. non-lucrative’
(left) and ‘human vs. non-human’ (right). The weights are
similar in both cases. Features capturing the similarity be-
tween u′ and t (blue TF-IDF cosine, green link cosine) dom-
inate on nearly all positions, and even more so as paths
progress. This is in tune with the good performance of the
SBN agent based on TF-IDF alone.

The weight of the candidate’s degree deg(u′) (red) de-
creases in importance along paths. In the ‘lucrative vs. non-
lucrative’ classifier, it has the strongest weight first but is
then overtaken by similarity; in the ‘human vs. non-human’
classifier, it starts positive but becomes negative after two
clicks. While navigating through high-degree hubs is very
common in the beginning of paths, people seem to actively
avoid it later on. Once searchers are close to t, they often
reach it by navigating through specific articles similar to t,
which often have low degree. This causes the purely degree-
based agent (DBN) to perform so badly and contributes to
the lesser performance of EVN: while high-degree nodes are
not necessarily desirable, both heuristics always prefer them.

We remark that the basic structure ‘degree to get away
from s, similarity to home in on t’ is in tune with a re-
cent analysis of human Wikipedia navigation (West and
Leskovec 2012).

Note that, once the weights have been learned, features
not depending on the candidate u′ play no role. However,
including them during learning may still affect the weights,
since the quality of u′ may be caused by factors indepen-
dent of u′ itself, and only by including these factors can this
be accounted for; e.g., tf-idf(u, t) and linkcos(u, t) get large
negative weights, as any u′ linked from a node u with small
similarity to t is itself likely to be closer to t than u is.

Related work

We identify three broad areas of related work: decentralized
search, focused crawling, and click-trail analysis.

Decentralized search is similar to the setup we study, in
that a target node is to be reached via local navigation only.
The analysis of such processes was kick-started by Mil-
gram’s (1967) seminal ‘small world’ experiment, later re-
peated on a larger scale by Dodds, Muhamad, and Watts
(2003). Theoretical analyses of the properties a network
must have to warrant efficient decentralized search (Klein-
berg 2000; Liben-Nowell et al. 2005) showed that just the
right amount of homophily is both necessary and suffi-
cient, which gives rise to similarity-based navigation. De-
gree-based navigation was analyzed by Adamic et al. (2001)
and combined with similarity by Şimşek and Jensen (2005).
In this paper we experiment with all three heuristics but,
more important, also explore the use of learning to trade off
degree and similarity optimally rather than heuristically. We
also note that our scenario differs from decentralized search
in a crucial point: while there, each node represents an au-
tonomous agent who forwards the message once and then
loses control, one single participant navigates from start to
end in our setup, such that high-level long-term plans can be
developed and executed.

Another area related to our work is focused crawling
(Chakrabarti, Van den Berg, and Dom 1999), where the goal
is to find as many pages as possible within topical bound-
aries. This differs from our task formulation, where one sin-
gle page is to be found. Hence, focused crawling algorithms
are more akin to breadth-first search than to the greedy navi-
gation scheme our task requires. Nonetheless, the same node
features we find to be of central importance in our task—
relevance (i.e., similarity to the target) and ‘hubness’ (i.e.,
degree)—matter most in focused crawling, too.

Finally, a fairly large body of work deals with the analy-
sis of the click trails of humans navigating the Web and the
development of assistive browsing tools. An early such tool
was ‘WebWatcher’ (Joachims, Freitag, and Mitchell 1997);
it highlights hyperlinks based on user goals inferred from an
initial keyword query and subsequent clicks. The notion of
information scent (Chi et al. 2001) has been popular in mod-
eling human navigation behavior; e.g., ‘ScentTrails’ (Olston
and Chi 2003) is a framework that blends query- and navi-
gation-based search smoothly, inspired by the intuition that
navigating becomes useful whenever keyword queries are
infeasible or unsuccessful. The development of navigation-
based search algorithms is further justified by Teevan et al.
(2004), who demonstrate that users prefer clicking to query-
ing even when the exact search target is known. Also, White
and Huang (2010) show that, even once a query has been
issued, further navigation starting on the search-engine re-
sult page is attractive because it adds value to the content of
the search results themselves. What distinguishes the present
work from previous research on click-trail analysis is that
those tools are tested in small-scale experiments—e.g., 8
users (Chi et al. 2001)—, and that they focus on the col-
laboration of humans and computers. On the contrary, we
conduct a large-scale comparison of the two, each acting on
their own. This allows for a more controlled analysis, the re-
sults of which may in turn help to improve future collabora-
tive tools; e.g., the above frameworks are essentially based
on content similarity, while our analysis shows that addi-
tional features such as node degree are also useful.

Discussion
This paper investigates the question whether structured
knowledge and high-level reasoning are necessary for nav-
igating a rich information network such as Wikipedia—
a legitimate question, given that connections are often-
times latent, i.e., not manifest in plain content words. Re-
call the introductory example mission from MOZART to
TERMINATOR with the solution path 〈MOZART, AUSTRIA,
SCHWARZENEGGER, TERMINATOR〉. The word overlap of
the articles on AUSTRIA and TERMINATOR is small, so the
plain TF-IDF cosine might not fire in this case. While this
problem can probably in many cases be mitigated via gen-
eralization techniques such as Latent Semantic Analysis
(Landauer and Dumais 1997), this is not even necessary:
as shown, even simple agents with bare-bones word-count
knowledge and no generalization, let alone reasoning skills,
can outperform humans.

Due to the verbose nature of Wikipedia articles, cases as
above, in which a semantic connection is not realized ver-

368

bally, might be rare. Also, even if the agent misses the AUS-
TRIA opportunity, any other neighbor of MOZART that in-
creases the similarity to TERMINATOR is likely to be a good
choice, too. This follows from the homophily present in Wi-
kipedia: previous work (West and Leskovec 2012) showed
that Wikipedia links are distributed in a way that theoreti-
cally allows similarity-based navigation to find short paths.

Degree information can further help to increase perfor-
mance, but care must be taken how it is incorporated. When
a search begins, it is often beneficial to visit a hub with many
links to diverse parts of the graph, but since many targets are
reachable only via topic-specific articles of low degree, nav-
igating according to degree only is bound to fail. Our feature
analysis shows that degree should be weighted less strongly
(and similarity more strongly) on later path positions.

What adds to making the automatic agents better than hu-
mans is that the latter often miss good opportunities. Even
when the target is only one hop away, they pick the re-
spective link with a probability of only 83% (cf. preci-
sion in Fig. 2). A possible explanation of this effect would
be that humans typically have commonsense expectations
about what links may exist and, based thereupon, form high-
level plans regarding the route to take before even mak-
ing the first click. Following through on their premeditated
plans, subjects might often just skim pages for links they
already expect to exist, thereby not taking notice of short-
cuts hidden in the abundant textual article contents. For in-
stance, in the above example, there might for some rea-
son be a link from AUSTRIA directly to TERMINATOR, but
as the searcher has set her mind on the more reasonable
chain through SCHWARZENEGGER, she may not even be-
come aware of that link’s existence. We also hypothesize
that humans’ deeper understanding of the world is the reason
why their searches fail completely (i.e., take an extremely
long time) less often: instead of exact, narrow plans, they
sketch out rough, high-level strategies with backup options
that are robust to contingencies. Analyzing subjects’ strat-
egy-making behavior to decide to what extent these hypothe-
ses are true remains an interesting avenue of future research.

Our evaluation is restricted to Wikipedia, since one of the
principal goals of this paper is to compare automatic to hu-
man navigation and since, to the best of our knowledge, Wi-
kipedia is the only network for which large-scale goal-di-
rected human browsing data is available. (Vast numbers of
click trails are also collected, e.g., by browser toolbars, but
most such trails are not goal-directed, and even for those that
are, the target is not explicitly known.) We expect that our
algorithms are equally applicable to other information net-
works with rich content, e.g., social, citation, or peer-to-peer
networks, or even the ‘deep Web’. While further experimen-
tation is required to confirm this intuition, we anticipate that
our algorithms could be used to design search interfaces that
combine the strengths of humans and computers in a sym-
biosis of intuition and precision.

We deem our reinforcement learning approach particu-
larly attractive, as it reasons directly about actions. Thus, if
it is to be used to navigate more general networks than Wiki-
pedia, it is possible to include additional actions other than
link clicks, e.g., submitting a form, posting a question to a

Q&A site, requesting help through a crowdsourcing service,
or querying the user for feedback. Extending our algorithm
this way is certainly not trivial but might be a promising
step towards creating smarter programs with the ability of
exploring and acting on the Web more autonomously.

Acknowledgements. This research was in part supported by

NSF CNS-1010921, IIS-1016909, IIS-1149837, Albert Yu & Mary

Bechmann Foundation, Boeing, IBM, Lightspeed, Samsung, Ya-

hoo, Alfred P. Sloan Fellowship, Microsoft Faculty Fellowship.

References
Adamic, L. A.; Lukose, R. M.; Puniyani, A. R.; and Huberman,
B. A. 2001. Search in power-law networks. Phys. Rev. E 64(4).

Chakrabarti, S.; Van den Berg, M.; and Dom, B. 1999. Focused
crawling: a new approach to topic-specific Web resource discovery.
Computer Networks 31(11-16).

Chi, E. H.; Pirolli, P.; Chen, K.; and Pitkow, J. 2001. Using infor-
mation scent to model user information needs and actions and the
Web. In CHI-01.

Dodds, P. S.; Muhamad, R.; and Watts, D. J. 2003. An experimental
study of search in global social networks. Science 301(5634).

He, B.; Patel, M.; Zhang, Z.; and Chang, K. C.-C. 2007. Accessing
the deep Web. CACM 50(5).

Joachims, T.; Freitag, D.; and Mitchell, T. 1997. WebWatcher: A
tour guide for the World Wide Web. In IJCAI-97.

Kleinberg, J. 2000. Navigation in a small world. Nature 406(6798).

Landauer, T., and Dumais, S. T. 1997. A solution to Plato’s prob-
lem: The Latent Semantic Analysis theory of acquisition, induc-
tion, and representation of knowledge. Psych. Rev. 104(2).

Lerman, K., and Jones, L. A. 2007. Social browsing on Flickr. In
ICWSM-07.

Liben-Nowell, D.; Novak, J.; Kumar, R.; Raghavan, P.; and
Tomkins, A. 2005. Geographic routing in social networks. PNAS
102(33).

Milgram, S. 1967. The small world problem. Psychology Today 2.

Milne, D., and Witten, I. H. 2008. An effective, low-cost measure
of semantic relatedness obtained from Wikipedia links. In WIKIAI-
08.

Olston, C., and Chi, E. H. 2003. ScentTrails: Integrating browsing
and searching on the Web. TCHI 10(3).

Rummery, G. A., and Niranjan, M. 1994. On-line Q-learning using
connectionist systems. Technical report, University of Cambridge.

Şimşek, Ö., and Jensen, D. 2005. Decentralized search in networks
using homophily and degree disparity. In IJCAI-05.

Sutton, R. S., and Barto, A. G. 1998. Reinforcement Learning: An
Introduction. Cambridge University Press.

Teevan, J.; Alvarado, C.; Ackerman, M. S.; and Karger, D. R. 2004.
The perfect search engine is not enough: a study of orienteering
behavior in directed search. In CHI-04.

West, R., and Leskovec, J. 2012. Human wayfinding in information
networks. In WWW-12.

West, R.; Pineau, J.; and Precup, D. 2009. Wikispeedia: An online
game for inferring semantic distances between concepts. In IJCAI-
09.

White, R. W., and Huang, J. 2010. Assessing the scenic route:
Measuring the value of search trails in Web logs. In SIGIR-07.

Yue, Y.; Finley, T.; Radlinski, F.; and Joachims, T. 2007. A support
vector method for optimizing average precision. In SIGIR-07.

369

