
The Social World of Twitter: Topics, Geography, and Emotions

Daniele Quercia§, Licia Capra‡, Jon Crowcroft§
§The Computer Laboratory, University of Cambridge, UK

‡Department of Computer Science, University College London, UK
dq209@cl.cam.ac.uk, l.capra@cs.ucl.ac.uk, jac22@cl.cam.ac.uk

Abstract

Debate is open as to whether social media communities
resemble real-life communities, and to what extent. We
contribute to this discussion by testing whether estab-
lished sociological theories of real-life networks hold in
Twitter. In particular, for 228,359 Twitter profiles, we
compute network metrics (e.g., reciprocity, structural
holes, simmelian ties) that the sociological literature has
found to be related to parts of one’s social world (i.e., to
topics, geography and emotions), and test whether these
real-life associations still hold in Twitter. We find that,
much like individuals in real-life communities, social
brokers (those who span structural holes) are opinion
leaders who tweet about diverse topics, have geographi-
cally wide networks, and express not only positive but
also negative emotions. Furthermore, Twitter users who
express positive (negative) emotions cluster together, to
the extent of having a correlation coefficient between
one’s emotions and those of friends as high as 0.45. Un-
derstanding Twitter’s social dynamics does not only have
theoretical implications for studies of social networks
but also has practical implications, including the design
of self-reflecting user interfaces that make people aware
of their emotions, spam detection tools, and effective
marketing campaigns.

1 Introduction
In 1983, political scientist Benedict Anderson published a
book titled “Imagined Communities” in which he argued that
the sense of community commonly referred to as citizenship
“is imagined because the members of even the smallest nation
will never know most of their fellow-members, meet them,
or even hear of them, yet in the minds of each lives the
image of their communion” (Anderson 1983). As we shall
see in Section 2, the literature tends to find communities
created by electronic means of communication (including
Facebook and Twitter) similar to Anderson’s imagined nation-
state community (Anderson 1983) - members of electronic
communities may have never met in person, yet to some
degree regard themselves as part of a larger whole (Gruzd,
Wellman, and Takhteyev 2011).

To quantitatively assess the extent to which social me-
dia communities resemble real-life ones, we test whether
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established sociological theories of real-life (offline) social
networks still hold in Twitter. In so doing, we make four main
contributions:

• We compile a list of the network metrics that the literature
has found to be related to parts of one’s social world (more
specifically, related to topics, geography and emotions).
These metrics include reciprocity, simmelian ties, and net-
work constraint. We compute these metrics for 228,359
Twitter profiles we have crawled (Section 3).

• (On Topics). We classify the topics of 31.5M tweets and
study the relationship between topical diversity and the
previously computed network metrics (Section 4). We find
that social brokers in Twitter are opinion leaders who take
the risk of tweeting about different topics (influential Twit-
terers tend to be specialized in specific topics instead (Cha
et al. 2010)).

• (On Geography). We geo-reference Twitter user-specified
locations, compute a measure of geographic span (i.e.,
geographical dispersion of one’s followers), and test its
relation to network metrics (Section 5). We find that the
majority of users have geographically local networks. Also,
for each egonetwork, we consider four alternative versions
(each with ties of increasing social strength) and learn that,
the stronger the considered ties, the more geographically
local the corresponding networks.

• (On Emotions). We determine the extent to which our
tweets express emotions and test the relationship between
network metrics and emotions (Section 6). We find that
social brokers express not only positive but also negative
emotions, and that users who express positive (negative)
emotions strongly associate with each other.

We conclude by discussing how one could build practical
applications upon this work (Section 7).

2 Related Work
The vast majority of empirical work on information advan-
tage in networks is “content agnostic” (Hansen 1999) - the
actual information flowing between connected individuals is
rarely observed. Research has focused on network structure
instead, and has consistently linked it to information advan-
tage. However, as Burt writes, these studies bear limitations:
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“The hubs in a social network were argued to have advan-
taged access to information and control over its distribution
[. . . ] However, the substance of advantage, information, is
almost never observed [. . . ] The next phase of work is to
understand the information-arbitrage mechanisms by which
people harvest the value buried in structural holes [. . . ] More
generally, the sociology of information will be central in the
work [. . . ]” (Burt 2005).

To date, few works go beyond structure. In their 2011 arti-
cle “The Diversity-Bandwidth Tradeoff”, Aral and Alstyne
combined social network and performance data with direct
observation of the information content flowing through e-
mail communication and found that total volume of novel
information increased not only with network size and network
diversity (as one would expect), but also with frequency of
communication. In other words, novel information is gathered
both through a diverse network structure and from frequent
communication (from what they called “thick edges”).

To determine whether information content flowing be-
tween users is novel or not, researchers have extracted topics
from it and considered topical diversity as a measure of nov-
elty. Since emotions differ from topics but still reflect the
exchanged information, Kivran-Swaine and Naaman stud-
ied how emotions are shared by 628 Twitter users (Kivran-
Swaine and Naaman 2011). They found that those who ex-
press emotions tend to have more followers and sparser net-
works.

In addition to topics and expression of emotions in net-
works, researchers have considered the impact of geogra-
phy on formation of ties. Only few months ago, Takhteyev,
Gruzd, and Wellman studied the geographic distribution of
3K Twitter egonetworks and showed that, despite the seem-
ing ease with which long distance ties can be formed, ties
are constrained by distance and, as a result, most of them are
geographically local (Takhteyev, Gruzd, and Wellman 2012).

From this brief literature review, one concludes that, de-
spite some preliminary related work, we hitherto lack a de-
tailed understanding of how geographically-constrained Twit-
ter users share information about diverse topics and express
emotions under a variety of network conditions. There has
not been any study of how topics, geographical features, and
expression of emotions are related to network structure for
the same set of Twitter users. In this paper, we aim to close
this gap: we do so by compiling a set of network metrics
(Section 3) whose hypothesized associations with topical di-
versity (Section 4), geography (Section 5), and expression of
emotions (Section 6) will then be verified.

3 Network Metrics
To begin with, one has to decide how to crawl the Twitter
graph. Ideally, to obtain unbiased network metrics, one has
to crawl either the complete graph (which the rate-limited
Twitter API makes difficult) or individual egonetworks - in
that case, for each ego, one would have the complete set of
edges and, as such, the resulting network metrics will suffer
from little bias. We opt for the second option and, to control
for any variability in the use of language across geographic
areas, we have preferentially chosen Twitter profiles from

Figure 1: Topology of X’s egonetwork. Ties in green are X’s
Simmelian ties.

London, which has been chosen because the higher the adop-
tion rate of a service, the lower the demographic bias, and
London was the top Twitter-using city in the world until the
beginning of 2010 (Butcher 2009). We chose three popular
London-based seed profiles of news outlets: the free subway
newspaper Metro, the center-left newspaper The Independent,
and the tabloid The Sun. These news outlets cover the entire
UK political spectrum and have high penetration rates in the
city.

Egonetworks. A user’s egonetwork consists of the user
(“ego”), the “alters” to whom the ego is linked, and the fol-
lowing/follower relationships between ego and alters and
those among alters. In Figure 1, X’s egonetwork has six alters
(A − F ), X has a unidirectional relationship with E (X is
followed by E) and a bidirectional relationship with A (X
both follows A and is followed by A); furthermore, E has a
undirectional relationship with A, which is totally indepen-
dent of their relationships with X, yet E → A is still part of
the egonetwork as it is between two of X’s alters.

Crawling. We crawled Twitter from 27 September to 30
December 2010 and selected users who have made their
profiles publicly available (our crawling indicated that ap-
proximately 99.7% of users have done so) and have posted
at least one hundred tweets (because of API limitation, we
crawl up to 200 tweets for each user). In so doing, we have
gathered: 258,895 profiles (for the 1,021 egos and 257,964
alters); 31,565,708 tweets for 240,982 users; and 10,254,969
network edges (follower relationships).

Validation of crawled data. One concern with data such as
ours is that not all profiles necessarily belong to real people to
which sociological norms could be expected to apply: some
“users” might be businesses and organizations. To determine
what profiles might not belong to real people, we crawled the
TrstQuotient score provided by Infochimps.com. This score
is in the range [0, 100] and reflects the extent to which a user
is “normal” (for example, based on its number of followers)
- very low TrstQuotients are indicative of abusive or spam
accounts. The resulting distribution of TrstQuotient values
of the egos from our dataset is a skewed normal distribution
(µ = 57.7, σ = 21.4), which fortuitously indicates that the
vast majority of egos in the dataset have a very high TrstQuo-
tient value and are thus likely to be real users. We then filter
away profiles with very low TrstQuotient (those in the first
quartile) and are left with 228,359 profiles and, still, 1,021
egos.

Four versions of each egonetworks. Twitter itself provides
no information about the strength of a relationship other than
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the binary following/follower relationship. Whilst in many
ways this is sufficient to determine an affinity between any
given pair of users, in this study we also consider stronger ties
by examining symmetric ties (reciprocal relationships) and
exchange of @replies messages. Considering different
types of ties might yield drastically different results in terms
of resemblance of the Twitter network to real (offline) social
networks. To test whether this is true, for each egonetwork, in
addition to the original version, we build three other versions:

Reciprocal. This version considers only bidirectional edges -
edges between pairs of users who follow each other. The re-
sulting egonetworks are undirected graphs made of 24.1%
of the original ones.

1-way Interaction. These egonetworks reflect stronger rela-
tionships between users by creating directional links from
a user to another - from a user who sent an @reply to
another user. These egonetworks include a total of 4.4%
of the original set of edges.

2-way Interaction. Finally, 2-way interaction networks are
the most selective and consider only those users who have
exchanged an @reply with each other. This filtering re-
sulted in having just 0.6% of the original set of edges.

In filtering edges, our use of only the last 200 tweets for
a user means that only 4.4% of the original edges were sup-
ported by an @reply and made it through to the filtering. This
means that the conclusions drawn from the 1-way interac-
tion and 2-way interaction networks cannot be considered
as thorough as those drawn from the original and reciprocal
networks. However, we will see that both 1-way and 2-way
interaction networks offer insights that confirm what has
been found in previous studies on the impact of tie strength
in Twitter (Huberman, Romero, and Wu 2008).

Following, Followers, and Status. The simplest network
metrics we consider are number of Twitter followers (in-
degree), number of following (out-degree), and network sta-
tus, which, in Twitter, is computed as the ratio between num-
ber of followers and number of following (Cha et al. 2010).

Reciprocity. The first egonetwork metric we consider is its
reciprocity r, which is the proportion of its edges that are
bidirectional (reciprocal). It ranges in [0, 1] - high values
correspond to socially closely-knit egonetworks, while low
values correspond to linked users who each belong to differ-
ent communities. Particularly low reciprocity values could
be indicative of a celebrity’s egonetwork (high in-degree, low
out-degree network: many followers but few symmetric ties)
or a spammer’s egonetwork (low in-degree, high out-degree
network: many friends but few symmetric ties). Reciprocity
of our egonetworks is normally distributed (Figure 2a), with
almost all egonetworks exhibiting roughly the same degree
of reciprocity; on average, 22% of edges in an egonetwork
are mutual (µ = 0.219, σ = 0.070).

Simmelian Ties. Reciprocity is a measure that considers
dyadic relationships. However, social scientists have con-
sistently shown that also triadic relationships are important
as they offer far greater insights into the connectedness of

egonetworks (Tortoriello and Krackhardt 2010). To also con-
sider triadic relationships, we examine those ties called “sim-
melian ties”. These are, by definition, ties embedded in closed
triples. In Figure 1, the triad in green (X ↔ A ↔ B) con-
sists of Simmelian ties as it is a triad that includes the ego;
by contrast, the triad in red (C ↔ D ↔ E) consists of edges
that are not Simmelian (they are among alters and do not
include the ego). In 1908, the sociologist Simmel argued that
the fundamental building block of social relations is not the
dyad but the triad. A dyadic relationship is quantitatively
different from a relationship embedded in a group, and this
difference cannot be explained only by the dyad’s tie strength.
To see why, consider the relationship between two partners
who just met. This is a dyadic relationship and changes if, af-
ter a while, the couple will have a baby - then the relationship
becomes a “simmelian tie”, and the nature of the relation is
best explained if it is considered to be embedded in the triadic
relationship. David Krackhardt and colleagues have shown
that simmelian ties matter for different reasons (Tortoriello
and Krackhardt 2010): (a) cooperation - pairs of individuals
are more likely to cooperate if their relationship is embedded
in a triad; (b) tie decay - decay rate of simmelian ties is far
slower than that of symmetric ties and that of asymmetric
ties (the latter are the fastest to decay); (c) innovation - the
more simmelian ties one has, the more productive (as per,
for example, number of patents) one is. To paraphrase this
research in the context of Twitter, for each egonetwork, we
examine the proportion of its mutual ties that are simmelian.
The corresponding frequency distribution is log-normal (Fig-
ure 2b) - many egos have no Simmelian ties, but those that
do tend to have only a very small number of them.

Network Constraints. Reciprocity and proportion of Sim-
melian ties are both – in different ways – measuring how
“mutual” (closely-tied) an egonetwork is. Next we consider
the presence of structural holes in an egonetwork. In his book
“Structural Holes: The Social Structure of Competition”, soci-
ologist Ron Burt put forward the idea that innovation is tied
to structural empty spaces (structural holes) in networks. In
knowledge-based workplaces, the highest-ranked ideas come
from managers who have contacts outside their immediate
work groups, and that is because their contacts span structural
holes (gaps between discrete groups of people). By contrast,
those whose contacts are all connected with one another have
no access to structural holes and no opportunities to broker
connections. Brokerage opportunities are computed with a
measure called network constraint, which reflects the extent
to which an ego’s connections are concentrated on a clique
of interconnected alters, meaning little access to structural
holes (Burt 1992). Higher constraint means less brokerage
opportunities, whilst lower constraint means more access to
structural holes and brokerage opportunities. We compute
network constraint as per Burt’s original formulation (Burt
1992). The constraint between a pair of users (i, j) is:

cij = (pij +
∑
q

piqpqj)
2 × 100 q 6= i, j (1)

where pij is defined as the proportion of user i’s “time
and energy” spent on user j, and is measured as pij =
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(a) Reciprocity (b) Simmelian Ties (c) Constraint

Figure 2: Three of the network metrics under study: (a) net-
work reciprocity; (b) simmelian ties; and (c) network con-
straint. For reasons of space, these plots show the shape of
the distributions; for the actual magnitude and values (e.g.,
mean, standard deviation), one should refer to the text.

zij/
∑

q ziq.The notion of “time and energy” is thus spec-
ified as a weight zij between a pair of users, which could
also be binary, like in our case where zij = 1 iff there ex-
ists an edge (i, j). After computing pij and cij , we compute
the logarithm of the aggregate constraint Ci of i’s network:
Ci = ln

∑
j cij . The logarithm is used because the distribu-

tion of constraint is skewed. The resulting frequency distribu-
tion of the log-transformed constraint is a “skewed” normal
distribution (Figure 2c).

Correlations of Network Measures. Having a variety of
network metrics at hand, one might now wonder whether
these metrics reflect very similar aspects or whether they
reflect aspects that significantly differ from each other. One
expects a strong positive correlation between reciprocity and
proportion of Simmelian ties. That is because reciprocity is
a proportion of reciprocal ties in the network and a triad (of
Simmelian ties) consists of three reciprocal ties. Indeed, in
our dataset, we find a significant correlation coefficient of
r = 0.58 between reciprocity and proportion of Simmelian
ties. By contrast, there is no correlation between any of the
other pairs of network metrics - that is, there is no correla-
tion between reciprocity and network constraint and between
proportion of Simmelian ties and network constraint. We
thus take all of these network metrics and to test their asso-
ciations with topical diversity (Section 4), geographic span
(Section 5), and expression of emotions (Section 6), so to
shed more light into the research question we are attempting
to answer.

4 Networks and Topical Diversity
Individuals with less constrained networks have greater ac-
cess to structural holes and therefore greater brokerage op-
portunities (Burt 1992). The literature suggests that access
to structural holes is highly beneficial in terms of exposure
to diverse ideas: “people whose networks span structural
holes have early access to diverse, often contradictory, infor-
mation and interpretations, which gives them a competitive
advantage in seeing good ideas [. . . ] people connected across
groups are more familiar with alternative ways of thinking
and behaving.” (Burt 2005). We posit that these “alternative”
viewpoints manifest themselves on Twitter as egos tweet-
ing on a diverse range of topics. A user who tweets mainly
about politics would have a lower diversity than a user who
is conversant in a more wide range of topics such as sport,

entertainment and technology. Since we are interested in de-
termining whether the diversity in a user’s tweets can be used
to determine their brokerage opportunities, the hypothesis we
will test is:

Hypothesis 1 - Tweeters with higher diversity have
higher brokerage opportunities.

Topical Analysis. To verify this hypothesis, the first step is
to categorize each tweet into a set of discrete topics. We do
so using three APIs. Had only a single API been used, bias
might have been introduced into the pre-classification; the
performance of one API may differ from that of another for
certain topics, for example. For this reason, we have used
these three APIs:

• Alchemy API (http://www.alchemyapi.com/) is a
suite of natural language processing tools and is capable
of assigning a plain English category to any given string
of text (a tweet, for instance), along with a certainty score
from 0.0 to 1.0, which represents the API’s degree of be-
lief that the text pertains to that category. Since Twitter
users often tweet URLs relevant to the topics they dis-
cuss, we classify not only their tweets, but also the links
they broadcast. Alchemy can choose from the following 12
topics: Arts Entertainment, Business, Computer Internet,
Culture Politics, Gaming, Health, Law Crime, Recreation,
Religion, Science Technology, Sports, and Weather.

• OpenCalais API (http://www.opencalais.com/)
comprises a suite of tools developed by Thompson
Reuters that includes named entity extraction and text
classification. When provided with a block of text,
the API returns up to three topics, each with a be-
lief score between 0.0 and 1.0. OpenCalais’s top-
ics differ from Alchemy’s and are as follows: Busi-
ness Finance, Disaster Accident, Education, Entertain-
ment Culture, Environment, Health Medical Pharma, Hos-
pitality Recreation, Human Interest, Labor Law Crime,
Politics, Religion Belief, Social Issues, Sports, Technol-
ogy Internet, War Conflict, and Weather.

• Textwise SemanticHacker API
(http://textwise.com/) consists of tools for
performing semantic analysis on bodies of text. It takes
either a string of text or a URI (in which case, text is
mined from the document defined by the URI), and returns
a set of categories that pertain to it. As with Alchemy and
OpenCalais, each these categories is paired with a belief
score from 0.0 to 1.0. The main categories are eleven: Arts,
Health, Science, Business, Home, Society, Computers,
Recreation, Sports, Games, and Reference.

Topical Diversity. Having computed the topical distribution
of each individual tweet, we can now estimate an entire pro-
file’s topical diversity and do so by using the Shannon diver-
sity theorem (entropy): H ′ = −

∑S
i=1 pi ln pi, where S is

the number of topics and pi is the relative proportion of the
ith topic among the user’s tweets. As our work has separately
detailed (Quercia, Askham, and Crowcroft 2012), the values
of topical diversity for the three APIs are strongly correlated
at profile level (minimum correlation being r = 0.94) and, as
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Network Constraint Reciprocity Simmelian Following Followers Status
(no access to structural holes)

Original Reciprocal 1-way
Msg

2-way
Msg

Diversity -0.14 -0.22 -0.42 -0.48 0.10 0.13 0.11 0.03 0.21

Table 1: Correlation coefficients r between network properties and topical diversity of tweets. Highlighted are those results that
are statistically significant (p-values < 0.01).

such, we next report the results produced by the classification
of Alchemy API only. The resulting distribution is power-law:
most users have low diversity, while few users engage in dis-
cussions on a wide range of topics. That is unsurprising, as it
is expected of individuals to primarily tweet about the subset
of topics in which they are interested or knowledgeable.

Hypothesis testing. By computing the correlation coeffi-
cients between topical diversity and network measures (Ta-
ble 1), we learn that users who tweet about diverse topics
tend to:

• Have greater access to structural holes. The coefficients for
all network constraints are negative, with a coefficient for
the 2-way interaction networks as low as -0.48. Figure 3a
plots topical diversity against network constraint.

• Enjoy higher network status. Highly-diverse users are not
characterized by a considerable number of followers or
following, but by having higher network status (the number
of followers is higher than number of following).

The hypothesized relationship between topical diversity
and access to broker opportunities is confirmed, and that
corroborates the theory that network diversity provides in-
formation advantage in part by providing access to diverse
pools of expertise. As such, in Twitter, a basic premise of
brokerage theory is supported: that disconnected network
neighborhoods house dissimilar expertise and knowledge,
which brokers tap into by reaching across structural holes.

5 Networks and Geographic Span
Previous studies such as “Imagining Twitter” (Gruzd, Well-
man, and Takhteyev 2011) have questioned whether Twitter
can be considered a community in the traditional sense, given
that Twitter “friends” may never have even met in person and
social media are increasingly reorganizing the society into
so-called “imagined communities” (Gruzd, Wellman, and
Takhteyev 2011). Yet, relationships are still constrained by ge-
ographic propinquity (Takhteyev, Gruzd, and Wellman 2012).
Thus we now consider geographic aspects. Since highly recip-
rocal egonetworks indicate more intimate clusters, whereas
networks with low reciprocity consist primarily of strangers,
we hypothesize that:

Hypothesis 2 - Closely-knit networks are less geograph-
ically dispersed.

Geographic Span. To verify this hypothesis, the first step
is to measure how geographically dispersed an egonetwork
is. The dispersion can only be computed for those egonet-
works where the locations of the ego and (a considerable

part of) the alters are known. 157K users specified geo-
graphic locations (mostly city names) and converted these
home locations into longitude-latitude pairs using the Ya-
hoo! PlaceMaker API1. With this data at hand, we are now
able to compute the geographic span of an ego’s alters (On-
nela et al. 2011) - higher span reflects more geographically
dispersed networks, whilst low span indicates a geographi-
cally local network. In a way similar to (Onnela et al. 2011),
we compute the geographic span of an egonetwork G as
the average Euclidean distance of each alter from the ego
DG = (1/nG)

∑
i∈V

√
(Xv̂ − xi)2 + (Yv̂ − yi)2, where

DG is the geographic span of egonetwork G; nG is the num-
ber of alters in the egonetwork for whom a location can be
inferred; (Xv̂, Yv̂) is the location of the ego; (xi, yi) is the lo-
cation of the ith alter; V is the set of all alters whose location
is available; and the sign ‘-’ is not the arithmetic subtraction
but is the difference operator for angular measurements.

We computed the distribution of the geographic span for
the 784 egonetworks for which location information was
available. The distribution is log-normal: few users have a
very nucleated span, most of them are fairly distributed to
some degree, with a few being exceptionally large. By then
looking at the four different versions of egonetwork we con-
structed, we find that the stronger the ties in a network, the
lower the network’s geographic span - the geometric aver-
age of geographic span is 23.5 for reciprocal egonetworks,
14.4 for 1-way interaction egonetworks, and 7.84 for 2-way
interaction egonetworks.

Hypothesis testing. We next compute the correlation coeffi-
cients between network measures and geographic span, and
find that users with geographically local networks tend to:

• Have more socially constrained networks. Higher network
constraints are associated with more intimate networks,
which in turn, as one expects, tend to be geographically lo-
cal (the corresponding correlations are negative). Also, the
stronger the ties, the more important geography: the cor-
relation between network constraint and geography goes
from -0.11 for original egonetworks to -0.21 for the more
“social” 2-way interaction egonetworks (Table 2).
• Not to be characterized by reciprocal networks. We found

no correlation between geographic span and network reci-
procity. However, by plotting geographic span against net-
work reciprocity, a parabolic shape is visible (Figure 3b),
showing that there are two linear relationships of oppo-
site signs, which meet at the average value of reciprocity
(i.e., at the normalized reciprocity r̃ = 0). This means
that networks that deviate from the typical (average) value
1http://developer.yahoo.com/geo/placemaker/
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(a) Diversity vs. Constraint (b) Geo Span vs. Reciprocity (c) Sentiment: Ego vs. Alters

Figure 3: Plot of binned values for: (a) normalized topical diversity against (log-transformed) network constraint; (b) normalized
geographic span against normalized network reciprocity; and (c) average sentiment of an ego and that of the ego’s alters.

Geo Span Network Constraint Reciprocity Simmelian Following Followers Status
(no access to structural holes)

Reciprocal 1-way Msg 2-way Msg
Mutual -0.11 0.02, any r

0.40, r > 0
-0.29, r < 0

0.10 -0.01 -0.06 -0.08

Unicast -0.19 0.05, any r
0.32, r > 0
-0.24, r < 0

0.02 0.11 0.08 -0.01

Bicast -0.21 0.06, any r
0.40, r > 0
-0.18, r < 0

0.02 0.00 0.02 0.03

Table 2: Correlation coefficients r between network properties and geographic span of egonetworks. Highlighted are those results
that are statistically significant (p-values < 0.01).

of reciprocity (the minority) are geographically dispersed,
while those with typical reciprocity (the majority) are local
(minimum geographic span). This suggests that a minority
of profiles shows anomalous reciprocity levels. We will
see how this can be exploited for detecting accounts that
are unlikely to belong to real people (Section 7).

6 Networks and Emotions
We have seen that there are strong relationships between
network measures and the two properties of what people say
(topical diversity) and where people are (geographic span).
Another property that has been recently studied is how people
share emotions online (Kivran-Swaine and Naaman 2011).
Back in 1986, McMillan and Chavis (1986) posited that a
“shared emotional connection” is integral for an individual
to feel a sense of belonging to a community (McMillan and
Chavis 1986). The prevailing belief amongst psychologists
is that social sharing of emotion is a cathartic and bonding
act, and that the extent to which emotions are shared within
a social network is associated with the strength of the ties
within that network (McMillan and Chavis 1986; Granovetter
1973; Kivran-Swaine and Naaman 2011). In other words,
individuals are more likely to share emotions with their close
friends than with strangers. Therefore, we would expect that
users who are more inclined to share their emotions have

more intimate networks – featuring a high proportion of
mutual or Simmelian ties. So our next working hypothesis is:

Hypothesis 3 - Tweeters are more likely to share their
emotions in more closely-knit ego-networks.

Another aspect associated with emotions is whether and, if
so, how they are clustered in a network. Fowler and Christakis
undertook a study of emotional clustering amongst partici-
pants in the Framingham Heart Study in Framingham (Fowler
and Christakis 2008). Individuals were assessed according
to the Center for Epidemiological Studies depression scale
(CES-D) in which participants were asked how often they ex-
perienced certain positive feelings during the previous week,
such as “I was happy” or “I enjoyed life”. The researchers
found that “People who are surrounded by many happy peo-
ple and those who are central in the network are more likely
to become happy in the future”. Their findings are twofold:
(a) that happy individuals tend to cluster together; and (b) that
individuals spread happiness. To test whether the first finding
(i.e., clustering) also applies to Twitter, we test whether an
ego’s sentiment and the average sentiment of the ego’s alters
are correlated. So a further hypothesis about emotions is:

Hypothesis 4 - Users who express positive (negative)
emotions have alters who do likewise.
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Network Constraint Reciprocity Simmelian Following Followers Status
(no access to structural holes)

Original Reciprocal 1-way
Msg

2-way
Msg

Emotion
LIWC 0.05 0.07 0.16 0.18 0.02 -0.07 -0.07 0.02 0.06

MaxEnt 0.06 0.07 0.24 0.27 0.01 -0.13 -0.07 0.02 0.02
Sentiment

LIWC -0.23 -0.25 -0.06 -0.05 0.12 -0.04 0.23 0.15 0.02
MaxEnt -0.18 -0.24 -0.19 -0.12 0.13 0.05 0.19 0.15 0.06

Table 3: Correlation coefficients r between network properties and expression of emotion and sentiment in tweets. Highlighted
are those results that are statistically significant (p-values < 0.01).

To put the two hypotheses related to test, we need to classify
the sentiment of tweets first.

Sentiment Classification. We measure the sentiment of a
profile using two classifiers: Word Count and Maximum En-
tropy. Word Count relies on a dictionary called “Linguistic
Inquiry Word Count”. LIWC is a standard dictionary of 2,300
English words that capture 80% of the words used in every-
day conversations and reflect people’s emotional and cog-
nitive perceptions. After removing stop-words from tweets,
we count, for each profile, the number of words that are pos-
itive and those that are negative (words matching the two
categories of ‘positive emotions’ and ‘negative emotions’
as defined in LIWC) and aggregate both counts to produce
the LIWC score, which is similar to the score proposed by
Kramer (Kramer 2010):

SentimentWC
i =

pi − µp

σp
− ni − µn

σn
(2)

where pi (ni) is the fraction of positive (negative) words for
user i; µp (µn) is the average fraction of positive (negative)
words over all users; and σp (σn) is the corresponding stan-
dard deviation. The normalization using means and standard
deviations accounts for the unbalanced distribution of pos-
itive and negative words of the English language (Kramer
2010). Maximum Entropy, instead, is a machine learning
technique that has been proven to be effective in a number
of natural language processing applications, including senti-
ment classification of tweets (Barbosa and Feng 2010). We
use MaxEnt to classify tweets and then compute a profile’s
sentiment using, again, formula (2).

Effectiveness of classifiers. Having the two classifiers
at hand, we previously measured how well they per-
formed (Quercia et al. 2011; 2012). Upon 10-fold cross vali-
dation, we found that the two classifiers showed very similar
tweet-level accuracy upon the tweets they were able to clas-
sify (precision is around 66%) but exhibited different recall,
in that, LIWC left more tweets unclassified than what Max-
Ent did (recall was 38% for LIWC and 68% for MaxEnt).
However, these results are for single tweets. At profile level,
the two classifiers performed very similarly instead, and their
classifications were strongly correlated (Pearson correlation
coefficient of r = .73): each profile, on average, was consid-
ered to be positive/negative to a very similar extent by both
classifiers.

Emotion Words. In addition to the sentiment of a user’s
tweets, we are interested in the extent to which a user’s tweets
are emotionally charged (regardless of positivity or negativ-
ity). The emotion score for a user i is defined as:

ei =
|Pi|+ |Ni|
|Ti|

that is, the proportion of words in the user’s tweets that are
positive (|Pi|/|Ti|) or negative (|Ni|/|Ti|) over the total num-
ber of tweets |Ti|. The distribution of emotion words is nor-
mal.

Hypotheses testing. From Table 3, one sees that LIWC and
MaxEnt classifications produce the same correlations. The
presence of emotion words does not correlate with any net-
work metric other than network constraint, and it does so only
for networks with strong ties, which are formed by looking at
who exchanges messages with whom (1-way interaction and
2-way interaction networks). In those cases, emotion words
tend to be expressed in more constrained and intimate net-
works. As for sentiment, a more detailed picture emerges. We
find that negative emotions are expressed in less constrained
networks. This result complements two recent findings in
Twitter. The first is that Tweeters have a greater tendency
to share emotion in sparser networks (Kivran-Swaine and
Naaman 2011), and the second is that Tweeters who are in-
fluential tend to freely express negative emotions (Quercia
et al. 2011). Here we see that also those who have access to
brokerage opportunities tend to express negative emotions.

To test our second hypothesis (i.e., to determine whether
the clustering of mood within egonetworks exists), we plot
one’s sentiment versus the average sentiment of one’s alters
(Figure 3c) and find fairly conclusively that there is indeed a
clustering of emotions, with correlation coefficients as high
as r = 0.45.

7 Conclusion
We have presented a number of insights that make it possible
to compare social dynamics in Twitter to those in physical
communities. Much like the real-world, those who have bro-
kerage opportunities in Twitter tend to cover diverse topics;
the majority of users have geographically-constrained net-
works; and “happy” (“sad”) users do cluster together. These
findings are not surprising as social media sites have been
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built around people (not around content), and the social be-
havior we have evolved over thousands of years is what drives
the actions in those sites. For the first time, we can accurately
capture social interaction, and many of our theories can now
be quantitatively tested.

Understanding social dynamics in Twitter benefits not only
researchers who are interested in social dynamics but also
has practical implications:

(a) Quantified Self. One could imagine user interfaces
that show how one’s profile approaches (or deviates from)
the expected values of topical diversity, geographic span,
and expression of emotions, making users aware of their
actions. This is important because our conscious brains are
not designed to process huge amounts of information and, as
such, most of our behaviour is driven by our non-conscious
brain (Kahneman 2011).

(b) Spam Detection. Based on network reciprocity lev-
els, one could identify which users are unlikely to be real
users. To test this assertion, we take the unfiltered 258,895
Twitter profiles we have crawled and gathered each profile’s
TrstQuotient score provided by Infochimps.com (low value
are indicative of abusive or spam accounts, high values are
associated with real people). We formulate a task of predict-
ing spam accounts as a binary classification problem, where
the response variable is whether a profile is in the bottom or
top quartile of TrstQuotient scores. After excluding the two
middle quartiles, we are left with a balanced sample (the re-
sponse variable is split 50-50), and the accuracy of a random
prediction model would be 50%. Using a logistic regression
to perform the binary classification on input of geographic
span, we are able to correctly classify 87% of accounts.

(c) Marketing. It is tempting to think that a user connects
to a very diverse set of people and that Twitter allows us
to connect to thousands of individuals. A different picture
has however emerged: similar users connect with each other
(e.g., users who are connected tend to express emotions in the
same way). Identifying a user’s restricted social circle will
move marketing campaigns away from simply segmenting by
demographics and psycho-graphics and interrupting people
to grab their attention (the dominant form of marketing for
the last 50 years). It will move them towards segmenting by
social network structure (e.g., social brokerage) and support-
ing conversations of small social circles about businesses.
When it comes to spreading ideas, one needs to target users’
closest ties who hold a disproportionate amount of influence.

The main limitation of this study (which calls for further
work) is that our results do not speak of causality and are
based on the last 200 tweets of each profile. To fix that, one
could crawl Twitter over multiple time intervals, use a cross-
lag analysis to examine potential causal relationships, and
study how topical diversity, geographic properties, expression
of emotions, and network properties evolve over time.
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