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Abstract 
Many studies have shown that social data such as tweets are 
a rich source of information about the real world including, 
for example, insights into health trends. 

A key limitation when analyzing Twitter data, however, is 
that it depends on people self reporting their own behaviors 
and observations.  In this paper, we present a large scale 
quantitative analysis of some of the factors that influence 
self reporting bias.  In our study, we compare a year of 
tweets about weather events to ground truth knowledge 
about actual weather occurrences.  For each weather event 
we calculate how extreme, how expected, and how big a 
change the event represents.  We calculate the extent to 
which these factors can explain the daily variations in tweet 
rates about weather events.  We find that we can build 
global models that take into account basic weather 
information, together with extremeness, expectation and 
change calculations to account for over 40% of the 
variability in tweet rates.  We build location specific (i.e., a 
model per each metropolitan area) models that account for 
an average of 70% of the variability in tweet rates. 

Introduction   
Many recent studies have shown that large-scale social 
media analysis is a rich source of information about real-
world events and trends.  For example, Paul and Dredze 
(2011) analyze Twitter to better understand trends in 
health, such as what drugs are used to treat common 
ailments.  Others have used similar analyses of social 
media to predict box office ratings of movies and detect 
occurrences of earthquakes (Asur and Huberman 2010; 
Sakaki, Okazaki and Matsuo 2010).  Each of these studies, 
in essence, is treating social media as a signal to measure 
the relative real-world occurrence of events.  For example, 
if more people tweet about flu symptoms this week as 
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compared to last week then we will believe the real-world 
occurrence of the flu has increased. 

A critical challenge to using social data to compare and 
contrast real-world events and trends, however, is the bias 
introduced by the self-reported nature of social media.  It is 
commonly understood that the frequency of discussion 
about events on social media does not directly reflect the 
true frequency of event occurrence in the real-world, but 
instead is a complex function of individual experience 
combined with what each individual believes would 
interest their friends or followers (Java et al. 2007; 
Naaman, Boase and Lai 2010).  As an extreme example, 
very few people ever tweet about simple occurrences such 
as breathing and drinking water, and yet these are 
obviously much more frequent than highly tweeted events 
such as natural disasters and celebrity sightings.  
The implications of this self-reporting bias are significant.   
Researchers can assume only that this bias is constant for a 
given kind of event, but can say little about the bias across 
different kinds of events.  As a result, researchers study 
trends in an event’s occurrence across time and across 
geographies but can make few inferences about the 
relationship between distinct events through social media 
analysis.   

Unfortunately, this prevents us from addressing many 
interesting questions: Do more people enjoy playing ball at 
the neighborhood park or jogging around the track? (Or are 
people simply more likely to tweet about ball games 
because it’s a group activity?)  Are STDs a smaller health 
problem than other diseases?  (Or do people avoid tweeting 
about STDs out of embarrassment?) Are people who play 
video games more or less likely to watch a movie in the 
cinema?  Each of these is a question that we might 
fruitfully address using social media data; and the answers 
have the potential to influence important decisions being 
made by individuals, governments, corporations and other 
organizations about priorities, policies and spending.  
Unfortunately, each of these questions requires us to 
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analyze the relative frequencies and relationships in 
people’s self-reporting behavior and cannot be answered 
without a better quantitative understanding of self-
reporting bias:  what is it about an event that makes it more 
or less “tweetable”? 
This paper provides a first large-scale, quantitative analysis 
of some of the factors that influence self-reporting bias by 
comparing a year of tweets about weather events in cities 
across the United States and Canada to ground-truth 
knowledge about actual weather occurrences.  In our study, 
we focus on three potential factors that seem likely to 
affect tweet rates:  How extreme is the weather?  How 
expected is the weather given the time-of-year? How much 
did the weather change?   
We find that we can build global models that take into 
account basic weather information, together with 
extremeness, expectation and change calculations to 
account for over 40% of the variability in tweet rates.  We 
build location-specific (i.e., a model per each metropolitan 
area) models that account for an average of 70% of the 
variability in tweet rates. 
It is worth noting that our goal is not yet to find techniques 
or analyses to compensate or reverse-engineer any self-
reporting bias in social media.  Instead our primary 
contribution is to present a methodology for the 
quantitative analysis of such bias, so that we can now 
begin to understand the extent to which it exists and the 
factors that influence it. 
In the rest of this paper, we first review related work, 
followed by a description of the processing and preparation 
of our Twitter and weather report datasets.  We then 
present our experiments and results, discuss open issues 
and conclude. 

Related Work 
Over the last several years, much research has focused on 
understanding real-world events and trends through 
studying of the digital footprints of human activity.  Earlier 
work began with studies of search engine query logs, such 
as Google Flu Trends analysis of query logs to detect rates 
of influenza (Ginsberg et al. 2008).  This use of search 
query logs is well characterized in Goel et al.’s (2010a) 
study of the predictive value of search query logs 
compared to domain-specific data sets, and Goel et al 
(2010b)’s study on predicting consumer behavior through 
search queries.   

The use of large-scale analysis of digital activities to 
predict or characterize real-world phenomena has extended 
to analysis of social media, such as Twitter and Facebook. 
In addition to the passive analysis of social media to 
understand health trends, predict box office returns, and 
detect earthquakes, Sheth (2009) proposes modeling 

humans as being actively in-the-loop of a citizen sensor 
network.  Similar analyses are now being made of location-
based social networks—also reliant on self-reporting of 
location via check-ins—to better understand patterns of 
human mobility for traffic forecasting, urban planning and 
other applications (Cheng et al. 2011).  All of these works 
demonstrate a need for a better understanding of the self-
reporting bias inherent in social media. 

While not studied in the context of social networks, self-
reporting bias has been studied in other contexts. 
Donaldson and Grant-Vallone (2002) report on self-
reporting bias in the context of organizational behavior 
research, and suggest that not properly accounting for such 
bias can lead to misleading empirical results.  In this 
context, self-reported data is argued to be suspect because 
it is subject to response biases as well as method biases 
(Podsakoff, Mackenzie, Lee and Podsakoff 2003).  While a 
common technique to mitigate the biases is to gather self-
reported data through the experience sampling method 
(e.g., through active polling of a respondent through 
mobile phones, as in Intille et al. 2003), such techniques 
are not applicable in passive analysis of social media. 

Data Preparation 
We derive our weather-related social media data set from a 
full archive of 12 months of Twitter captured between 
Jun 1, 2010 and Jun 30, 2011—because of data corruption, 
we are not using Twitter data captured during Mar. 2011.  
From this data set, we compute the daily rate of weather-
related tweets in 56 different metropolitan areas. We 
compare these tweet rates to weather features of extremity, 
expectation and change calculated from historical weather 
data provided by the National Oceanic and Atmospheric 
Administration of the United States.   

In this section, we describe how we identified weather-
related tweets and associated them with specific cities, as 
well as how we compute features about ground-truth 
weather information. 

Identifying Weather-related Tweets 
For our analysis in this paper, we are interested in 
discovering the rate of weather-related tweets that occurred 
per-day across metropolitan areas.  We will not attempt to 
distinguish tweets about different kinds of weather. 

We start by filtering the full archive of tweets for tweets 
that contain at least 1 weather-related word from a list of 
179 weather-related words and phrases.  This list was built 
by hand from weather glossaries, augmented with synonym 
data derived from search queries (e.g., queries clustered by 
co-clicks) and a previous LDA analysis of tweets.  This 
first step extracts a super-set of weather-related 
tweets (~130M messages). 
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Next, we use a supervised learning technique to build a 
classifier for weather-related tweets.  Two annotators hand 
labeled a random sample of 2000 tweets as either being or 
not being weather-related.  Our labeling criteria specified 
that a tweet should be likely to be a report or comment on 
current weather conditions.  We use 1800 labeled tweets 
for training our classifier and 200 labeled tweets for 
validation.  Table 1 shows example weather-related and 
non-weather-related tweets. 

 
Table 1: Example weather-related tweets and non-weather 
related tweets from our super-set selection.  The original 

weather-related term is shown in bold. 

Tweet Text Weather-
related? 

Woke up to a sunny 63F (17C) 
morning. It's going to be a good day :) 

Yes 

Japan, Germany hail U.N. Iran 
sanctions resolution+ 

No 

The rainy season has started. Yes 

The inside of our house looks like a 
tornado came through it. 

No 

 
We use a simple classifier that estimates the probability 

of a tweet being weather related as 

  

where  is the set of features derived from the tweet text, 
 is the empirical probability of a tweet being 

weather-related given that it contains a feature .  We 
calculate  empirically from our labeled 
training data using +1 smoothing: 

 
where  and  are, respectively, the count of 
weather-related tweets containing the feature  and the 
count of all tweets containing the feature  in our training 
data.  To generate features for a tweet, we first apply a 
simple stemmer to the text that removes all -s and -ing 
suffixes from words.  Then we generate a feature  to 
represent every unigram token in the stemmed tweet text.  
We also generate a feature  for each pair of tokens co-
occurring in the tweet.  With these features, our classifier 
distinguishes weather-related tweets by learning, for 
example, that the words “seasons”, “outside”, and 
“humidity” are correlated with weather-related tweets, 
whereas words such as “health” and “clear” are signals that 
tweets are not weather-related.  Using co-occurrences of 
tokens allows the classifier to learn that the word “heat” 
co-occurring with “score”, “play” and other basketball 
related words is unlikely to be weather related (These 

tweets are instead more likely mentioning the Miami Heat, 
a basketball team). 

Our classifier achieves an F-Score of 0.83, with a 
precision of 0.80 and recall of 0.85.  After using our 
classifier to filter our super-set of tweets, we are left with 
approximately 71M tweets classified as being weather-
related.  We also experimented with variations of this 
classification technique, including using a more 
sophisticated Porter stemmer, and using n-gram features 
instead of co-occurrences.  We found the Porter stemmer to 
provide minimal improvement, and found features based 
on token co-occurrences to be significantly better than bi-
gram and tri-gram features. 

Identifying the Location of Tweets 
In order to compare a weather-related tweet to ground-truth 
weather information, we must identify the general 
geographic area that the tweet is referencing.  Since only a 
small percentage of tweets are explicitly geo-coded, we use 
the textual user-provided location field in a user’s Twitter 
profile to identify the region-of-interest for a tweet. 

Unfortunately, the user-provided profile locations are in 
general not easily interpretable (Hecht et al. 2011).  The 
same location may be referred to using multiple names 
(e.g., “New York City”, “Manhattan”, “NYC”), or 
identified at different granularities (e.g., a broad name such 
as “NY/NJ”, a medium-granularity name such as 
“Brooklyn, NY” or a fine-grained name such as 
“Bushwick, Brooklyn”).  In some cases, the location is a 
nickname for a location (e.g., “D{M}V” for the DC-
Maryland-Virginia area, or “The Big Apple” for New York 
City) or a nonsensical phrase (e.g., “everywhere” or “none 
of your business”). 

Our desire is to normalize the textual and sometimes 
arbitrary user-provided location information into concrete 
geo-coded coordinates that are more useful in analyses.  To 
do so, we analyze 1 month of the full Twitter archive to 
find tweets that include both a user-provided location field 
and explicitly geo-coded coordinates.  We use this subset 
of tweets to learn a mapping from user-provided location 
fields to latitude-longitude coordinates. 

We first capture the distribution of geo-coded points 
associated with each unique location field in our data-set.  
Through manual inspection, we find that the median geo-
coded point provides the most accurate mapping to the 
location field.  Alternatives, such as selecting the center of 
a Gaussian inferred from the geo-coded points, are often 
inaccurate due to outliers in the location fields.   

In addition, we discard location fields that cover too 
broad an area or were too ambiguous (based on the 
distribution of geo-coded points associated with a field), or 
had too little support in our data set.  Then, we merge 
location fields with similar geo-mappings together to 
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create clusters for roughly metropolitan-sized areas.   Table 
2 show a sample of the location fields clustered together, 
as well as locations that we discarded as being too 
ambiguous.  In total, we are able to infer a geo-coding 
mapping for over 13,000 location fields and over 2,700 
distinct clusters around the world. 

We apply this location mapping to our set of weather-
related tweets and discard locations that do not have a 
sufficiently high number of tweets (~100s of tweets per 
day), and limit our analysis to locations occurring in the 
United States, to match the availability of weather stations 
in our dataset. To better compare tweet rates across 
different locations, we normalize the rate of weather-
related tweets in a particular location by the median count 
of weather-related tweets made in that location.  The result 
is a dataset of the daily weather-related tweet rate for 56 
metropolitan areas in the United States, with over 8M 
weather-related tweets during our 12 month analysis. 

 
Table 2: Sample of discovered Twitter location clusters 

Location cluster Example members 

New York “NYC”, “Yonkers”, “manhattan,” 
“NY,NY”, “Nueva York”, “N Y C”, 
The Big Apple” 

Los Angeles “Laguna beach”, “long beach”, 
“LosAngeles,CA”, “West Los 
Angeles, CA”, “Downtown Los 
Angeles”, “LAX” 

Filtered out due to 
ambiguity (large 
area) 

“World”, “everywhere”, “USA”, 
“California”, … 

 

Historical Weather Data 
Our historical weather data consists of several datasets 
aggregated and distributed by the National Oceanic and 
Atmospheric Administration (NOAA) of the United States.  
Our primary weather data set is derived from hourly 
weather reports that include temperature, wind, 
atmospheric pressure, precipitation, and other occurrence 
information for discrete events (e.g., tornados, fog, and 
thunderstorms).  In some of our calculations of 
expectation, we also use the 30-year weather norms 
provided by NOAA.  This norms dataset provides 
statistical information (average and std.dev.) about 
temperature and precipitation for every day of the year. 

From the hourly weather reports, we calculate daily 
summaries that include the daily minimum, mean and 
maximum observed temperatures, maximum observed 

wind speeds, daily precipitation rates, snowfall, visibility, 
cloud height, etc.  In total, we collect 9 continuous 
measures of daily weather at a location, as well as a list of 
discrete weather events that occurred. For each daily 
summary of weather data at a location, we calculate how 
extreme and expected the weather is along the given 
dimension, as well as how much it has changed in 
comparison to previous days.   
Expectation: Expectation captures how normal the 
observed weather is at a location, given the context of the 
time-of-year.  For this, we use the 30-year weather norms 
dataset provided for temperature and precipitation data, 
and calculate where the observed weather falls in the 
percentile distribution for the given day.  Unfortunately, 
the weather norms dataset does not include norms for other 
weather measures or for weather events. 

This measure is intended to identify events that are 
interesting and “tweetable” because they are unusual given 
the time context of when they occur, though they might be 
considered to be normal events in other contexts.  For 
example, a warm winter day might be considered unusual 
and thus interesting, even though the temperature would be 
considered normal in the spring. Note that because we do 
not have weather forecast data (only weather 
measurements), we do not attempt to capture the surprise 
when a weather forecast turns out to be incorrect. 
Extremeness: Our measure of how extreme the weather is 
on a particular day is intended to capture where the day’s 
weather lies between being, for example, the hottest or the 
coldest day of the year.  We calculate extremeness at 
multiple time scales, comparing weather observations to 
the previous 1 month, 3 months, 6 months and 12 months 
of data.   

This measure of extremeness is intended to identify 
events that are interesting and “tweetable” because they 
occur infrequently, even though they might be expected 
given the context.  For example, a hot day in mid-June 
might be expected because of the summer season, and yet 
still be considered extreme because it is so much hotter 
than other days throughout the year. 
Change: Our measure of change captures how different 
the observed weather data is from previous days’ weather.  
For each day, we compare the given measure to the 
weather from 1 day, 3 days and 7 days earlier.    

This measure is intended to identify events that are 
interesting and “tweetable” because of their contrast with 
recent weather history.  For example, a slightly colder day 
in the spring might not be unexpected given historical 
norms, nor extreme given the annual weather information, 
but might still be an interesting event if it suddenly 
following a series of warm days. 

Calculating these abstract features of extremeness, 
expectation and change serves two purposes.  First, it acts 
as a normalization of weather data across locations.  While 
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110°F may be a record-breaking high temperature in some 
locations, it might be just a normal summer day in other 
locations.   Secondly, it provides a simpler abstraction 
intended to bridge the underlying multitude of weather 
with more intuitive notions of what may make an event 
more interesting to followers and friends in a social 
network. 

Analysis and Results 

Tweet Rates and Weather Reports 
In this subsection, we take a basic, “zoomed in” look at the 
kind of correlation we are looking for between tweet rates 
and weather reports.  Figure 1 shows the weather-related 
tweet rate and daily temperature for San Diego, CA during 
the period of Sep. 1-Oct. 15, 2010.  Here, we see two peaks 
in the tweet rate, on the hottest day in this period (Sep. 27) 
and the first thunderstorm of the season (Sep. 30).  We can 
verify that these peaks of tweets are related to the weather 
events by inspecting the words being used in tweets.  Here, 
we clearly see the relationship: on Sep. 27, the top tokens 
being tweeted are “weather”, “heat”, “temperature”, 
“hotter” and “hottest”.  A few days later, on Sep. 30, the 
top tokens being tweeted are “rain”, “weather”, “lightning” 
and “thunder”.  

While this example demonstrates a relationship between 
the content of weather-related tweets and the actual 
weather, it hints at a more complex relationship between 
the weather and the rate at which there are tweets about the 
weather.  For example, the local peak in daily temperature 
on Sep. 3 seems to have little impact on the tweet rate.   In 
the rest of this analysis, we will try to tease out some of 
this more complex relationship. 

Linear Regression 
To more deeply explore the relationship between a set of 
weather-derived features and the daily rate of weather-
related tweets, we learn a linear model: 

  
where  is the rate of weather-related tweets, and  are 
features derived from the ground-truth weather 
observations.  The  features include the daily weather 
observations, expectation, extremeness, and change 
features.  We also include the absolute value and squared 
value of these features.  We fit the model parameters  and 

 using a least-squares regression with L2 regularization.  
We solve the model using an off-the-shelf implementation 
of an L-BFGS algorithm provided in Microsoft Solver 
Foundation, a library for mathematical programming and 
optimization. 

Unless otherwise noted, we fit a global model across all 
our data (~365 days * 56 cities).  For each model, we 
report the  correlation between the predicted value  and 
the observed weather-related tweet rate, .  Table 3 
summarizes the results of the global models we build 
throughout the rest of this section. 

Correlating Basic Weather Data and Tweet Rates 
As a baseline, we first build a model to predict weather-
related tweet rates per city based solely on observed 
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Figure 1: Weather-related Tweet rate and temperature in San 
Diego, CA from Sep. 1-Oct 15, 2010 

Table 3: correlations for our various global models 

Model Features Parameter  
correlation 

Basic weather - 0.30 
Expectation Only - 0.12 
Expectation+Basic - 0.33 
Extremeness Only 1 mo. comparison 0.20 
 3 mo. comparison 0.24 
 6 mo. comparison 0.26 
 12 mo. comparison 0.30 
 All 0.36 
Extremeness+Basic All 0.40 
Change Only 1 day 0.21 
 3 day 0.23 
 7 day 0.21 
 All 0.28 

Change+Basic All 0.35 
Basic+Extremeness+  
Change 

All 0.43 

Expectation+ 
Extremeness+Change 

All 0.42 

Basic+Expectation+ 
Extremeness+Change 

All 0.43 
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weather data (e.g., temperature, precipitation but not 
derived features of extremeness, and expectation).   

We find that, across all our data points, the  
correlation for this basic model is 0.30.  That is, 30% of the 
variability in daily tweet rates can be accounted for by 
variations in basic weather data.   Inspecting the learned 
model parameters, we find that the regression model has 
placed much of its weight on parameters related to the 
maximum temperature, wind speed, snowfall and 
precipitation.  Other features, including the visibility, cloud 
height, and pressure receive much less weight.   

Figure 2 shows the per-location  correlations for this 
model.  We see that this simple model serves some 
locations well—at the high end, our models have over a 
0.45 correlation with Washington, D.C. and Knoxville, 
TN.  However, the model completely fails in predicting 
tweet rates for several other cities, achieving a negative 
correlation rate for 4 locations, including San Francisco 
and Puerto Rico.  

Correlating Expectation and Tweet Rates 
Next, we study the relationship between our measures of 
expectation, how normal weather is given the location and 
time-of-year context, and tweet rates.  We build linear 
regression models using expectation and basic weather 
data together, as well as expectation data alone.  In the 
latter case, we find an value of only 0.12, and in the 
latter, an  value of 0.33.  This indicates that our 
expectation measure adds little information about likely 
tweet rates beyond what is already contained in basic 
weather data.  This implies that the likelihood of tweeting 
is not affected strongly by how normal the weather is given 
the time of year. 

Correlating Extremeness and Tweet Rates 
To study the relationship between extremeness and tweet 
rates, we build several independent models to explore the 

effect of calculating extremeness over the 1-month, 3-
month, 6-month and 12-month time-frame affects the 
correlation of our models with tweet rates (Table 3).  
Overall, we find that extremeness can independently 
explain more of the variation in weather-related tweet rates 
than basic weather alone.  Calculating extremeness over a 
longer period (12-month) is more informative than 
calculating it over shorter time periods (6 mo. or 3 mo.).  
We also find there is a large overlap between the 
information content of extremeness and basic weather—
together their  correlation is only 0.40. 

Correlating Delta Change and Tweet Rates 
Finally, we analyze the relationship between delta-change 
in weather and tweet rates.  As in our study of 
extremeness, we measure delta-change over multiple time-
scales, including change over 1 day, 3 days and 7 days.  
Table 3 shows the  correlation resulting from our 
experiments. Overall, we see that there is little difference 
in the amount of information gained from building these 
delta-change models over different time scales.  Each 
model’s  correlation is approximately 0.22.  The three 
models in our experiments do combine, however, to 
provide a higher  correlation of 0.28. 

Combining Extremeness, Expectation, and Delta 
Change Models 
Combining our models, we find that our derived features of 
extremeness, expectation and delta change provide an  
correlation of 0.42, and adding basic weather information 
provides little additional benefit.  

Per-Location Models 
Throughout our analyses, we find that there is a high 
variance in the  correlations between our global models 
predictions and individual location’s weather tweet rates, 
as shown in Figure 2.  Moreover, we see that it is the same 
locations that have consistently lower or higher correlation 
scores than average, regardless of the model used.  A 
preliminary investigation of the general Twitter behaviors 
in, geographic location of, and weather at these locations 
did not find any clear explanations for the differences in 
model performance. 

In Table 4, we show how our models behave when 
trained not globally but separately per location.  We find 
that these models, trained on individual locations (i.e., 
metropolitan areas), are significantly more accurate, with 
average  correlations of over 0.70, indicating that there 
are likely to be additional location-specific characteristics 
that our global models could take into account to improve 
performance.  Figure 3 shows the distribution of R^2 
correlation across locations.  Compared to the data in 

-0.4

-0.2

0

0.2

0.4

0.6

R^
2 

Co
rr

el
at

io
n 

Locations 

Expect+Extreme+Chang

e+Basic

Extreme (All)

Basic Weather Model

Figure 2: The distribution of R^2 correlations across 
locations for 3 global models 

175



Figure 2, we see that not only have the R^2 correlations 
improved, but the slope of the curve has also flattened, 
indicating that the best and worst modeled locations are 
now more similar.  Inspecting the underlying data, we see 
that while there are still cities modeled more poorly than 
others, they are no longer the same locations (e.g., 
Washington DC and Puerto Rico) that were being poorly 
modeled with our global models.  We are currently 
investigating this further to see how we can learn from the 
behavior of these local models to improve our global 
modeling. 

 
Table 4: Mean R^2 Correlation of local models 

Model Features  
correlation 

Basic weather 0.45 
Expectation+Basic 0.70 
Extreme+Basic 0.70 
Change+Basic 0.71 

Discussion 

Additional Factors Likely to Effect Tweet Rates 
In addition to the factors of extremeness, expectation and 
delta-change, there are several other major factors that we 
did not account for in this study. 
� Sentiment: The sentiment about an event is likely to 

have a significant impact on the likelihood of tweeting 
about it.  Garcia and Schweitzer (2011) found in their 
analysis of Amazon product reviews have shown that 
product reviews have a skewed sentiment --- for 
example, positive reviews are more likely to be very 
positive than mildly positive.  A similar relationship 
between expressed sentiment and the likelihood of 
people tweeting about a real-world event could be an 
important factor in interpreting social media. 

� Privacy concerns, embarrassments and safety: 
There are many events, such as medical issues and 
crime reporting, where there is likely to be a 
disincentive to publicly report an otherwise interesting 
event.  We believe that the impact of such privacy-
related concerns is important to understanding the 
“tweet-ability” of events in general.  However, our 
specific selection of the weather domain, with little if 
any privacy concerns, as our first ground-truth 
comparison did not provide an opportunity to study 
such concerns. 

� Population segments: In their study, Naaman, Boase 
and Lai (2010) found that some Twitter users (“me-
formers”) are significantly more likely to tweet about 
mundane activities and events, as compared to others 
(i.e., “informers”).  Modeling how many individuals 
are tweeting, which population segment, and their 
Twitter behaviors may be important. 

� Mobile devices: The market penetration and usage of 
mobile devices may have an impact on the relative 
frequency of in situ tweets in a metropolitan area, and 
thus affect the likelihood that Twitter users report on 
weather events that they experience. 

� Time-of-Day, day-of-week, holiday, and other 
effects of time:  Our underlying weather features 
represented the weather to the granularity of a single 
day, and do not differentiate among weather events 
that occur during working hours, lunch-time, evening 
hours, commuting hours, etc.  Nor do we discriminate 
among the different days when a weather event might 
occur (e.g., weekend vs. weekday).  It is plausible that 
weather events that occur when people are likely to be 
outdoors, or events that interact or interfere with 
periodic or one-time activities would be more likely to 
be noticed and reported in social media. 

Other Sources of Bias 
In this paper, our examination of reports of objective 
events (weather) studies self-reporting bias introduced 
when a user must choose whether or not to tweet.  
However, this study does not address other sources of bias.  
For example, we do not study the bias introduced by social 
pressure to conform or the bias introduced by privacy 
concerns. Nor do we address the issue of population bias 
introduced by focusing on a population of Twitter users 
instead of the public as a whole.  Furthermore, we do not 
study the effect of bias due to individual characteristics—
e.g., an individual’s propensity to tweet about mundane vs. 
extraordinary events—or specific social network 
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characteristics; or due to external factors (e.g., priming 
effects).   We leave these and other factors to be studied in 
future work. 

Other Sources of Ground Truth 
This paper is the beginning of a broader investigation into 
the properties of real-world events and trends that make 
them more or less likely to be discussed in social media.  
In addition to improving our understanding of when and 
why people tweet about weather events, we are also 
planning to gather and analyze additional ground-truth data 
from other domains, such as sports events and concerts.   

In the process, we expect we will have an opportunity to 
test the influence of additional factors, such as sentiment, 
as well as investigate to what degree, if any at all, our 
findings may be applicable across domains.  In this 
context, it is worth mentioning that studies of method 
variance in behavioral sciences have been found to depend 
heavily on constructs and domains (Cote and Buckley 
1987). 

Conclusions 
In this paper, we compared ground-truth data about a year 
of weather data across the United States to weather-related 
tweets.  We studied the correlation between daily tweet 
rates and the expectation, extremeness, and the change in 
observed weather.  We find that we can build global 
models that take into account basic weather information, 
together with extremeness, expectation and change 
calculations to account for over 40% of the variability in 
tweet rates.  We can build location-specific (i.e., a model 
per each metropolitan area) models that account for an 
average of 70% of the variability in tweet rates. 

Of the three factors we studied—expectation, 
extremeness, and the change in weather—we found that 
extremeness provided the most value in accounting for the 
variability of Tweet rates.    The N-day change in weather 
was the second most important factor, and expectation 
based on time-of-year provided relatively little value.  In 
the future, we plan to further investigate the relationship 
between these and other underlying factors of events and 
their associated tweet rates across domains. 

This is, to our knowledge, the first large-scale 
quantitative analysis of the correlation between features of 
real-world events and the biases of their representation in 
social media. 
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