
Catching the Long-Tail:
Extracting Local News Events from Twitter

Puneet Agarwal, Rajgopal Vaithiyanathan, Saurabh Sharma and Gautam Shroff
TCS Innovation Labs - Delhi

Tata Consultancy Services, 154B, Block A, Sector 63, Noida, Uttar Pradesh 122106, India
puneet.a@tcs.com, rajgopal.v@tcs.com, saurabh38.s@tcs.com, gautam.shroff@tcs.com

Abstract

Twitter, used in 200 countries with over 250 million
tweets a day, is a rich source of local news from around
the world. Many events of local importance are first re-
ported on Twitter, including many that never reach news
channels. Further, there are often only a few tweets
reporting each such event, in contrast with the larger
volumes that follow events of wider significance. Even
though such events may be primarily of local impor-
tance, they can also be of critical interest to some spe-
cific but possibly far flung entities: For example, a fire
in a supplier’s factory half-way around the world may
be of interest even from afar. In this paper we describe
how this ‘long tail’ of events can be detected in spite of
their sparsity. We then extract and correlate information
from multiple tweets describing the same event. Our
generic architecture for converting a tweet-stream into
event-objects uses locality sensitive hashing, classifi-
cation, boosting, information extraction and clustering.
Our results, based on millions of tweets monitored over
many months, appear to validate our approach and ar-
chitecture: We achieved success-rates in the 80% range
for event detection and 76% on event-correlation; we
also reduced tweet-comparisons by 80% using LSH.

Introduction
A business enterprise can potentially be affected by events
that impact any entity in its eco-system, such as customers,
partners, governments, competitors, etc.: For example, a fire
in the factory of a remotely located supplier half-way around
the world can disrupt an enterprise’s supply-chain, causing
delays and losses. Twitter has become a rich source of break-
ing news, including news that is local and possibly of limited
interest to a wider global audience; in fact, such events may
in fact never make it to any news channel, certainly not a
global one.

Since the number of messages per event is small, we
cannot hope to detect such events by observing trends on
keywords, as do most techniques for event detection from
Twitter. Correlation of tweets is another challenge if dif-
ferent words are used to describe the same event, cor-
relation between messages through word-to-word similar-

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ity does not work. Extraction of properties (e.g. time-of-
occurrence, location, etc,) is required to further correlate
such potential events and merge them to create structured
event-objects. Popular techniques of information-extraction
fail to give good results because of the informal language
used in tweets. Last but not the least, a common event struc-
ture is required to represent different types of events so that
a single system could consume them all.

In this paper we describe our architecture for, and expe-
rience with detecting sparsely discussed news events from a
voluminous stream of Twitter messages. We begin with an
overview of related work and then present our approach for
detecting and correlating events. The following sections de-
scribe each of the components of the proposed architecture.
The section on Experiments presents our results as obtained
on tweets spanning a period of approximately 9 months. We
conclude with a summary of our major findings and pro-
posed future work.

Related Work
We have been motivated by the need to detect local news
events that nevertheless may be of tremendous operational
value when correlated with the internal operations and trans-
actions of even a far-flung enterprise, as described in (Shroff,
Agarwal, and Dey 2011). One of the pre-requisites for such
a system, as also mentioned therein, is the ability to de-
tect structured event-objects containing precise information
about each event, which is what we contribute in this paper.

Recent publications on event detection from Twitter can
be segregated based on (a) nature of events or (b) the de-
tection techniques used. Events can be very specific such as
natural calamities, accidents, marketing or cultural events.
For example, (Sakaki, Okazaki, and Matsuo 2010), shows
how to detect earthquakes. On the other hand, events can
be generic, often referred to as ‘breaking news’ as dis-
cussed in (Phuvipadawat and Murata 2010), and (Weng and
Lee 2011). One approach is to detect events from clustered
tweets as discussed in (Becker and Gravano 2011); another,
as in (Weng and Lee 2011) is by extracting features from
individual tweets followed by clustering.

We focus on specific events rather than generic ones (in
particular, fire-in-factory and labor-strike). Since each tweet
is very short it usually covers only one aspect of an event
(e.g., its location, or severity etc.). Therefore merely clus-

379

Proceedings of the Sixth International AAAI Conference on Weblogs and Social Media



Figure 1: Logical Architecture for Creation of Event-Objects

tering tweets based on word-similarity only groups tweets
describing the same aspect of the event. We therefore first
classify each tweet using a supervised classifier to discard
irrelevant tweets, and then group the positive tweets, first
based on similarity and later based on semantic information
extracted from them. We also employ locality sensitive hash-
ing (Rajaraman and Ullman 2010) to improve processing ef-
ficiencies. Thus, compared to related work that usually rely
on a single clustering step, we combine the use of LSH, a
supervised classifier, and post-information-extraction clus-
tering. As a result, we do not have to wait for more tweets
to arrive before detecting an event, unlike if we had used a
single clustering step.

We extract information from tweets using modifications
of standard techniques: Natural language processing for in-
formation extraction from well-formed English prose have
been fairly successful (Finkel, Grenager, and Manning
2005), (Kristina et al. 2003). However, information extrac-
tion from the informal language used in Twitter has still not
been possible with similar level of accuracy. One approach
to address this issue is to reapply some of the techniques of
traditional NLP with little modifications; alternatively one
could first expand the short text using normalization tech-
niques as proposed by Xue et al (Xue, Yin, and Davison
2011) and then perform extraction information. In our sce-
nario we found that the first approach works better.

Overview

The derivation of event-objects as shown in Figure 1 is a four
step process beginning with the detection of a candidate-
message reporting an event. A text matching algorithm then
correlates these with other messages. Next aspects of the
event are extracted from each cluster of tweets. Finally, be-
fore storing a potential event-object in the database, each
potential event-object is merged with others based on its
properties, such as time-of-occurrence and location. The
input to this process is a subset of all the tweets occur-
ring in Twitter, which can be obtained by specifying filter
words, in the API made available by the website. Filter-
words used for Fire-in-Factory tweet-stream are {“Fire”,
“Blaze”, “Factory”, “Plant”, “Mill”}. Likewise for Labor-
Strike {“Strike”, “Union”, “Labor”, “Labour”, “Staff”,
“Management”, “Workers”, “Employee”}.

Detection

To detect the messages that report occurrence of an event, we
used a two step process. In the first step we reject tweets that
follow a specific pattern using regular expressions, and the
second step is supervised classification and boosting. Reg-
ular expressions are written based on prior domain knowl-
edge. In case of both fire-in-factory and labor-strike we
could discard about 80-90% of messages through this step.

The regular-expressions fails to discard messages such as
“If I take one more leave, my boss would fire me from the
factory”. We therefore experimented with supervised classi-
fication using both naive Bayes and SVMs. In contrast with
previous approaches that first cluster similar tweets and then
classify each bunch, we chose to classify every tweet as
either reporting an event or not. As a result we could dis-
cover more aspects of the same event and reduce the chance
of missing an event. Our classifier uses the following fea-
tures: Feature Set 1: Parse every tweet with Stanford NER
- (Finkel, Grenager, and Manning 2005), which annotates
proper-names for organizations, locations and people, in a
given text. Occurrences of location, organization or person
are taken as a features. Similarly occurrences of a URL in
the tweet is also taken as a feature.

Feature Set 2: Check for occurrence of numbers, associate
every number with a range, and identify every such range as
a feature.

Feature Set 3: Having removed pre-configured stop-words
and after necessary stemming we identified all the remaining
words of every message as features.

Message Correlation

Each tweet usually describes only one aspect of an event.
It is observed that as time passes newer tweets with the lat-
est information about an event begin appearing. We there-
fore compare every incoming tweet after classification with
tweets of last 24 hours and bunch together the matching
ones, and call this process Message-to-Message correlation.

If a new tweet is naively compared with all tweets in the
past few hours, this could lead to a bottleneck, especially if
the rate at which pairwise message-to-message correlation
is possible cannot match the arrival rate of newer tweets.
Instead we avoid exhaustive pairwise comparisons using
Locality Sensitive Hashing (LSH) (Rajaraman and Ullman
2010) to discover potentially similar tweets in linear time.

LSH groups incoming messages into b buckets, which in-
clude those created for previous tweets as well as new buck-
ets Tweets falling in the same bucket are assumed to be po-
tentially matching. The set of unique tweets across b buck-
ets form the set of potentially matching tweets; the incoming
tweet is compared with each of these. Prior tweets having at
least 75% similarity with the incoming tweet are considered
to be matching. If the incoming tweet does not match with
any of the tweets in the set of potentially matching tweets,
a new event is created for the incoming tweet. Such sets of
matching tweets define partial-events, to be further corre-
lated based on semantic information.

380



Information Extraction
In this step we extract information from the tweets in each
partial event bucket. As suggested in (Westermann and Jain
2007), event properties can be classified into 4 broad cate-
gories; temporal, generative, spatial and descriptive . The
temporal aspect captures the time of occurrence, duration
of the event etc. The generative aspect represents source in-
formation, e.g., Tweeter-ID and time of tweet. The spatial
aspect defines event location and the descriptive aspect de-
fines detailed information about the event, e.g., type of event
(‘fire-in-factory’ or ‘labor-strike’).

Twitter posts do not usually follow the rules of En-
glish grammar, so accurate information extraction from
these is a challenge. We have made small modifications to
standard NLP-based information extraction techniques, and
have used regular expressions, Named Entity Recognition
(Finkel, Grenager, and Manning 2005), a combination of
POS Tagger (Kristina et al. 2003) and regular-expressions,
and ‘Concept vocabulary based extraction’, as described be-
low:

Factory Information Extraction
Tweets on fire-in-factory or labor-strike often contain obfus-
cated factory names, e.g., “huge fire breaks out in a cotton
factory in ..”, and cause NER to give poor results. Therefore,
we employ a POS Tagger on every message followed by tree
traversal to identify a phrase indicating factory-information.
Traversal is performed upwards, from any of leaf node hav-
ing words “factory”, “mill”, or “plant”, as long as the parent
tag continues to be NP (proper-noun). In this subtree, we
identify the occurrence of an article (‘a’ or ‘the’) immedi-
ately before “factory”, “mill”, or “plant”, and take all words
starting from this article to “factory”, “mill”, or “plant” as
factory-information. Thus “a cotton factory” gets extracted
as factory-information. On a set of 3̃00 tweets containing
factory information, plain NER could extract factory infor-
mation from 1% of the tweets while our approach gave 78%
correct results.

Location Extraction
For location extraction we employ both NER (Finkel,
Grenager, and Manning 2005), which labels words in a text
that are likely to be names of person, location, organiza-
tion etc., as well as ‘Concept vocabulary based extraction’
(CVE): In the latter we first identify phrases which could de-
note a location, through a concept vocabulary of all possible
words indicating a location. We used World Gazeteer data
from http://www.world-gazetteer.com as our vocabulary. A
directed-acyclic graph of concept words is used as an index
to help annotate the location phrases in tweets. This gives
rise to noise, because certain locations names are based on
English words, e.g., ‘Friday Harbor’. We filter such noise
using a naive Bayes classifier, with features being the POS
tags of three words before a word, the word itself, and three
words after a word, as suggested by (Califf and Mooney
1999). CVE could identify location in 74% of the tweets,
whereas NER could identify location in 70% of the tweets.
We combine both techniques and accept locations identified

by either or both, resulting in 78% accurate location extrac-
tion.

To further disambiguate locations, we extract longitude
and latitude through a combination of inverted-index search
on World Gazetter data and search using Google Maps API
(which is used only when no data found in the index). Con-
sider two examples of such disambiguation: First, multiple
locations could be extracted for the same event, with all
also being found in the inverted-text-index. We check how
many of them are very closely related or overlap spatialy.
The place having maximum overlap is taken to be the event-
location, e.g., if the word ‘York’ and ‘UK’ both occur, they
are found to be overlapping (using their longitude and lat-
itude) so ‘York, UK’ is chosen instead of choosing ‘New
York’ which would be the top search result based on the
word ‘York’. Alternatively, only one location word might be
identified that still returns many hits in the inverted index,
e.g., if only the word ‘London’ is mentioned, we cannot con-
clusively state which of the many Londons the tweet means.
For such situations we use precedence rules, e.g., choosing
London, U.K. in the absence of further information.

Event-to-Event Correlation
Many partial-events refer to the same real world event, and
need to be consolidated into a single event object. If two
partial-events belong to the same real world event, their con-
text, location, time window and certain descriptive proper-
ties should match. At the same time, a simple string match
on, say, event-location does not work because users can use
different levels of granularity to describe the event-location,
e.g., ‘USA’ and ‘New York’. To reduce the comparisons
needed for such correlation, we use neighborhood search
on an in-memory index of the events to calculate the neigh-
borhood of an event: All the events with the same context,
events with event-locating within a 100 kms radius, of occur-
ring within 24-hour time window. To improve efficiency, we
use Lucene’s spatial index for location, and Lucene’s range
search for temporal properties. The event is compared with
each such its neighbor for matches in the descriptive, spatial
and generative aspects, e.g., URL, and location overlap.

Experiments
Our experiments are based on 5 million tweets collected over
a period of almost 9 months starting April 2011 for fire-
in-factory events and about 3 million tweets obtained for
Labor-Strike events over the same period. We took manu-
ally tagged tweets in chronological order as they occurred in
Twitter over 3 months (April-June, 2011). Starting with first
200 tweets as training set, we classified the next 200 tweets,
then for next run we took all these 400 tweets as training set,
with next incoming 200 as test set, and so on. Results of this
build-phase are shown in Figure 2 marked as ‘B’. As is ev-
ident, accuracies improve with continuous augmentation of
training set. Though accuracies are in the of 80% range with
both naive Bayes and SVM, we find that Naive Bayes does
better.

Next we used our classifier trained on the April-May data
on a fixed test set of 250 filtered tweets collected in January

381



Figure 2: Comparison of classifiers for event-detection,
Build and Maintenance Phases

2012. The results in this maintenance phase are shown in
Figure 2 marked as ‘M’. Once more, we achieve similar ac-
curacies in the 77-85% range, with naive Bayes outperform-
ing SVM. Thus, we conclude that our classifier based on a
few month’s training data works equally well even on tweets
far into the future, at least for Fire-in-Factory events. (Simi-
lar results are observed for Labosr-Strike events, albeit with
lower accuracies in the 60-65% range; we are still improv-
ing the training for this event and hence do not report these
results in detail here.) Last but not the least, it is important
to note that even with the moderate 80%-level classification
accuracies, we hardly ever missed a real-world factory fire,
except when no pertinent information was actually posted.

To assess the performance gain due to LSH, we measured
the average number of tweets an incoming tweet was com-
pared with, for a continuous run of the framework for about
8 days. It was found that use of LSH resulted in an 80% re-
duction in the number of comparisons required. Finally, to
ensure uniqueness of the event-objects, a sample of events
collected for a continuous run of 11 days was analyzed. It
was found that 23.4% of the events were duplicate or al-
luding to same real-world event. So we conclude that our
approach of message-to-message correlation coupled with
event-to-event correlation is about 76.6% accurate.

Conclusion and Future Work
We have described the challenges involved in creating
structured event-objects from Twitter posts reporting news
events. We have added to the body of work event detection
from Twitter by focusing on the specific case of sparsely
reported events for which existing techniques do not work.
In particular, we have established that event correlation is
a two step process, first at the raw message level and then
through semantic analysis of events. For detection of rele-
vant tweets we have shown that our approach using super-
vised classification of individual tweets is able to catch the
sparsely reported events in the ‘long-tail’. We have also im-
provised standard NLP techniques so that they work on the
informal language often used in Twitter. We continue to aug-
ment our running system with additional event-types, such

as competitor promotions and consumer complaints, and we
are finding that our overall architecture appears to work even
in more general cases merely by using a few special features
to augment the underlying word-based classifiers as needed.

Acknowledgements
We acknowledge Divya Garg’s assistance in creation of
components of this framework as part of Enterprise Infor-
mation Fusion Project.

References
Becker, M. N. H., and Gravano, L. 2011. Beyond trending
topics: Real-world event identification on twitter. In Proc.
of Intl. Conference on Weblogs and Social Media, ICWSM
’11.
Califf, M., and Mooney, R. 1999. Relational learning of
pattern-match rules for information extraction. In Proceed-
ings of AAAI-99, AAAI ’99.
Finkel, J. R.; Grenager, T.; and Manning, C. 2005. Incor-
porating non-local information into information extraction
systems by gibbs sampling. In Proceedings of the 43rd An-
nual Meeting on Association for Computational Linguistics,
ACL ’05, 363–370. Stroudsburg, PA, USA: Association for
Computational Linguistics.
Kristina, T.; Dan, K.; Christopher, M.; and Yoram, S. 2003.
Feature-rich part-of-speech tagging with a cyclic depen-
dency network. In Proceedings of HLT-NAACL 2003, pp.
252–259.
Phuvipadawat, S., and Murata, T. 2010. Breaking news de-
tection and tracking in twitter. In Proceedings of the 2010
IEEE/WIC/ACM International Conference on Web Intelli-
gence and Intelligent Agent Technology - Volume 03, WI-
IAT ’10, 120–123. Washington, DC, USA: IEEE Computer
Society.
Rajaraman, A., and Ullman, J. 2010. Mining of Massive
Datasets.
Sakaki, T.; Okazaki, M.; and Matsuo, Y. 2010. Earthquake
shakes twitter users: real-time event detection by social sen-
sors. In Proceedings of the 19th international conference
on World wide web, WWW ’10, 851–860. New York, NY,
USA: ACM.
Shroff, G.; Agarwal, P.; and Dey, L. 2011. Enterprise in-
formation fusion for real-time business intelligence. In Pro-
ceedings of the 14th International Conference, Fusion ’11.
Weng, J., and Lee, B.-S. 2011. Event detection in twitter.
In Proc. of Intl. Conference on Weblogs and Social Media,
ICWSM ’11.
Westermann, U., and Jain, R. 2007. Toward a common event
model for multimedia applications. In IEEE MultiMedia,
v.14 n.1, p.19–29,.
Xue, Z.; Yin, D.; and Davison, B. D. 2011. Normalizing mi-
crotext. In Proc. of Intl. Conference on Weblogs and Social
Media, ICWSM ’11.

382




