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Abstract
Relational classification has been extensively studied
recently due to its applications in social, biological,
technological, and information networks. Much of the
work in relational learning has focused on analyzing in-
put data that comprise a single network. Although ma-
chine learning researchers have considered the issue of
how to sample training and test sets from the input net-
work (for evaluation), the mechanisms which are used
to construct the input networks have largely been ig-
nored. In most cases, the input network has itself been
sampled from a larger target network (e.g., Facebook)
and often the researcher is unaware of how the input
network was constructed or what impact that may have
on evaluation of the relational models. Since the goal in
evaluating relational classification algorithms is to accu-
rately assess their performance on the larger target net-
work, it is critical to understand what impact the initial
sampling method may have on our estimates of clas-
sification accuracy. In this paper, we present different
sampling methods and systematically study their impact
on evaluation of relational classification. Our results in-
dicate that the choice of sampling method can impact
classification performance, and thus consequently af-
fects the accuracy of evaluation.

Introduction
Online social activity and interaction is becoming embedded
into the fabric of our society. From electronic communica-
tion (e.g., email, IMS) to social media (e.g., Twitter) to on-
line content sharing (e.g., Facebook, flicker, youtube)—we
are currently undergoing an explosive growth in the man-
ner and frequency in which people interact online, both with
each other and with content. Modeling and analyzing the
large-scale datasets that are collected from these traces of
electronic activity has become increasingly important for
many applications, such as identifying the behavior and in-
terests of individuals, as well as the structure and dynam-
ics of human-formed groups over time. Studying complex
relational networks is nevertheless a challenging task due
to their heterogeneous, dependent structure, large size, and
evolution over the time. In addition to these complexities for
data analysis, there is also often a data acquisition bottleneck
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(Choudhury et al. 2010), which makes it necessary to ana-
lyze smaller sample subgraphs that were collected from the
full network. Typically network sampling designs are used
to select a subset of the nodes/edges from the full network,
with the goal of collecting a representative subgraph from
the larger network.

Previously, researchers have studied how to collect sam-
ple subgraphs that closely match topological properties of
the network (Leskovec and Faloutsos 2006; Hubler et al.
2008; Ahmed, Neville, and Kompella 2011). However, since
the topological properties are never entirely preserved, it is
also important to study how the sampling processes impact
the performance of applications overlaid on the networks.
One such study recently investigated the impact of sampling
designs on the discovery of the information diffusion pro-
cess (Choudhury et al. 2010). In this paper, we study the
question of how the choice of the sampling design can im-
pact the performance of relational classification algorithms.
Network sampling can produce subgraphs with imbalance in
class membership and bias in topological features (e.g., path
lengths, clustering) due to missing nodes/edges—thus the
sampling process can significantly impact the accuracy of
relational classification. Bias may result from the size of the
sample, the sampling method, or both. Most previous work
in relational learning has focused on analyzing a single input
network and research has considered how to further split the
input network into training and testing networks for eval-
uation (Körner and Wrobel 2006; Macskassy and Provost
2007; Neville, Gallagher, and Eliassi-Rad 2009). However,
the fact that the input network is often itself sampled from a
larger target network has largely been ignored and there has
been little focus on how the construction of the input net-
works may impact the evaluation of relational algorithms.

In this paper, we outline different network sampling meth-
ods and systematically study their impact on relational clas-
sification performance. We use the simple weighted-vote
relational neighbor (wvRN) as our base classifier (Mac-
skassy and Provost 2007). We consider wvRN for two rea-
sons: (1) its performance is primarily due to the relational
structure (i.e., the classifier assumes a network with suffi-
cient linkage and homophily), thus, it provides a fair eval-
uation of the unique structure sampled using the various
sampling designs, and (2) it is simple and efficient, which
makes it practical for large-scale networks. In our experi-
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ments, we show that classification performance can signif-
icantly change based on the sampling design used to col-
lect the data. Our results show that both forest fire sampling
(FFS, Leskovec et al. 2006) and edge sampling with graph
induction (ES-i, Ahmed et al. 2011) need at least 30% of
the larger network to get reasonable approximations of ac-
curacy. However, ES-i maintains a relatively consistent per-
formance across all datasets (compared to other algorithms).
Moreover, sampling designs such as node and edge sampling
produce very sparse samples that neither match the graph
properties nor the classification accuracy, and they need at
least 50% of the larger network to obtain reasonable approx-
imations.

Framework
We define a population network as a graph G = (V,E),
such that |V | is the number of nodes, and |E| is the num-
ber of edges (links) in the network. A population (i.e., tar-
get) network G is usually a large network that is difficult
to completely access and/or collect. Therefore, we consider
a sampling algorithm S that procedurally selects a subnet-
work Gs = (Vs, Es) according to a particular sampling de-
sign, where Vs ⊂ V and Es ⊂ E, such that |Vs| = φ · |V |.
We refer to φ as the sampling fraction. We then consider a
relational classifier R that takes Gs as input. A classifier R
uses a portion of Gs with known class labels as the training
set to learn the model. Then R collectively classifies the re-
mainder of Gs as the test set and evaluates the performance
based on the accuracy of the predicted class labels.

Our goal in this paper is to evaluate the quality of the sam-
pled graph Gs by comparing the accuracy of a classifier R
on Gs to the accuracy of R on G. We consider four dif-
ferent sampling algorithms, node sampling (NS), edge sam-
pling (ES), forest fire sampling (FFS), and edge sampling
with graph induction (ES-i). We use the weighted-vote re-
lational neighbor classifier (wvRN) as our base classifier
(Macskassy and Provost 2007). We evaluate the sampling al-
gorithms based on: (1) topological graph properties (degree,
path length, and clustering coefficient), and (2) classification
accuracy (using area under the ROC curve).

Classes of Sampling Designs
Current sampling designs can be broadly classified as node-
based, edge-based, and topology-based methods.

Node sampling (NS). In classic node sampling, nodes are
chosen independently and uniformly at random from the
original graph for inclusion in the sampled graph. For a tar-
get fraction φ of nodes required, each node is simply sam-
pled with a probability of φ. Once the nodes are selected,
the sampled graph consists of the induced subgraph over
the selected nodes, i.e., all edges among the sampled nodes
are added to form the sampled graph. Sampled subgraphs
produced by node sampling can be further refined using the
Metropolis algorithms proposed in (Hubler et al. 2008). The
key idea is to replace sampled nodes with other potential
nodes that will better match the original degree distribution
(or other metrics). Another way of node sampling is to sam-
ple the node with probability proportional to its PageRank
weight or to its degree. However, the work in (Lee, Kim, and

Jeong 2006) shows that it does not accurately capture prop-
erties for graphs with power-law degree distributions and the
original level of connectivity is not likely to be preserved.

Edge sampling (ES). Edge sampling focuses on the selec-
tion of edges rather than nodes to populate the sample. Thus,
edge sampling algorithm proceeds by randomly selecting
edges, and including both nodes when a particular edge is
sampled. Since ES samples edges independently, the result-
ing sparse subgraphs do not preserve clustering and connec-
tivity. However, sampling based on edges results in a bias
towards high degree nodes, thus ES may be able to preserve
the connectivity of the graph if it can collect additional edges
among the sampled nodes. Ahmed et al. proposed a simple
algorithm called edge sampling with graph induction (ES-
i), which randomly selects edges from the graph (similar to
ES), then adds additional edges among the set of sampled
nodes (Ahmed, Neville, and Kompella 2011).

Topology-based sampling. Due to the known limitations of
NS and ES, researchers have also considered many other
topology-based sampling methods. One example is snow-
ball sampling, which selects nodes using breadth-first search
from a randomly selected seed node. Snowball sampling
accurately maintains the network connectivity within the
snowball, however it suffers from a boundary bias in that
many peripheral nodes (i.e., those sampled on the last round)
will be missing a large number of neighbors (Lee, Kim, and
Jeong 2006). Random-walk (RW) based sampling methods
are another class of topology-based sampling methods. In
random walk sampling, we start with a random seed node
v. At each iteration of the algorithm, the next hop node
u is selected uniformly at random from the neighbors of
the current node v. Leskovec et al. proposed a Forest Fire
Sampling (FFS) method. It starts by picking a node uni-
formly at random then ‘burns’ a fraction of its outgoing links
with the nodes attached to them. This fraction is a randomly
drawn from a geometric distribution with mean pf/(1−pf )),
(pf = 0.7). The process is recursively repeated for each
burnt neighbor until no new node is selected, and a new ran-
dom node is chosen to start the process until we obtain the
desired sample size.

Relational Classification
Conventional classification algorithms focus on the prob-
lem of identifying the unknown class (e.g., group) to which
an entity (e.g., person) belongs. Classification models are
learned from a training set of (disjoint) entities, which are
assumed to be independent and identically distributed (i.i.d.)
and drawn from the underlying population of instances.
However, relational learning problems differs from this con-
ventional view in that entities violate the i.i.d. assumption.
In relational data, entities (e.g. users in social networks) can
exhibit complex dependencies. For example, friends often
share similar interests (e.g. political views).

Recently, there have been a great deal of research in
relational learning and classification. For example, (Fried-
man et al. 1999) and (Taskar, Segal, and Koller 2001) are
probabilistic relational learning algorithms that search the
space for relational attributes and structures of neighbors
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(c) Clustering Coefficient
Figure 1: Average KS Distance across the three datasets.

to improve the classification accuracy. Macskassy proposed
a simple relational neighbor classifier (weighted-vote rela-
tional neighbor wvRN) that requires no learning and itera-
tively classifying the entities of a relational network based
only on the relational structure (Macskassy and Provost
2007). Macskassy showed that wvRN performs competi-
tively to other relational learning algorithms.

The wvRN is a simple classifier that classifies a
particular entity using only the class labels of known
related entities. It defines the class membership
probability of an entity e belonging to class c as:
P (c|e) = 1

Z

∑
ej∈De

w(e, ej) ∗ P (c|ej), where De is
the set of entities that are linked to e, w(e, ej) is the weight
of the link, and Z =

∑
ej∈De

w(e, ej).

Experiments
We consider three real networks: two citation networks
(CoRA, and Citeseer) with 2708 and 3312 nodes respec-
tively (Sen et al. 2008), and a social media network (Face-
book) with 7315 users (Xiang, Neville, and Rogati 2010).
While these three datasets are themselves subnetworks of
other larger networks, we use them as examples of popu-
lation (target) networks for evaluation. We collect a sam-
ple Gs such that the sample size is between 10% − 80% of
the population network G. For each sample size, we run the
sampling algorithms S ten different runs. In each run, we
use the sampled network Gs as input to the relational classi-
fier (wvRN) and we vary the proportion of nodes in Gs for
which the class labels are initially known (again 10%−80%)
by selecting randomly from the graph, and for each of these
settings we use 5-fold cross validation. We repeat the same
setup on the population networkG. We compare the classifi-
cation performance on Gs to the classification performance
on the population network G.

Preserving Graph Properties. Our evaluation of how dif-
ferent sampling algorithms preserve graph properties is pri-
marily based on a set of topological graph properties (de-
gree, path length, and clustering coefficient) that capture
both the local and global structural properties of the graph.
These properties were first used by Leskovec et al. to eval-
uate the quality of a sample. We compute the Kolmogorov-
Smirnov (KS) statistic to measure the distance between the
distribution of the sampled graph Gs and the distribution of
the population graphG for the degree, path length, and clus-
tering coefficient. The KS statistic is computed as the max-

imum vertical distance between the cumulative distribution
functions (CDF) of the two distributions, where x represents
the range of the random variable and F1 and F2 represent
the two CDFs: KS(F1, F2) = maxx|F1(x)− F2(x)|.

Figures 1(a)–1(c) show the average KS distance across
the three datasets for each of the graph properties. We ob-
serve that edge sampling with graph induction (ES-i) out-
performs the other methods across all three graph proper-
ties. Forest Fire (FFS) sampling performs better than NS and
ES when the sample is less than 50%. These results implies
that both edge sampling with graph induction (ES-i) and
forest fire sampling (FFS) can produce a sampled network
Gs with enough linkage and connectivity to closely match
the full network. We also observe that edge sampling with
graph induction performs consistently well when the sample
size is larger than 10% of the population network across the
three measures. Further, we observe that both node sampling
and edge sampling produce sparse graphs with poor linkage.
However, node sampling is better than edge sampling and its
performance improves as the sample size increases.

Classification Accuracy. We follow the common methodol-
ogy used in (Macskassy and Provost 2007) to evaluate clas-
sification accuracy. As we mentioned before, we use wvRN
classifier as our base classifier. For each sample network
Gs, we vary the proportion of initially labeled nodes from
10% − 80%; and we run 5-fold cross validation. We re-
peat the same methodology for the population network G.
In each setting, we calculate the area under the ROC curve
(AUC) using the class membership probabilities produced
by wvRN. Note that the AUC is calculated for the most
prevalent class.

Figures 2(a)–2(c) show the AUC for sample sizes 10%−
80% when 10% of the class labels are provided to seed the
collective classification process. For CoRA and Citeseer, we
observe that for sample sizes 10% − 30%, the AUC is un-
derestimated for all the sampling methods. However, edge
sampling with graph induction (ES-i) and forest fire sam-
pling (FFS) (unlike ES and NS) produce estimates of AUC
that are close to the “True” AUC on G. However, in the
Facebook data, it is clear that ES-i performs better than the
other sampling methods and converges to the “True” AUC
on the larger network. Figure 3(a) shows the AUC on Face-
book samples averaged over the sampling sizes 10%−80%,
as the proportion of known class labels is varied between
10%−80%. We omit the graphs for CoRA and Citeseer due
to the limited space, however they show similar behavior.
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Figure 2: Comparison of accuracy of ES-i, FFS, NS, and ES with 10% initially labeled nodes for classification.
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Figure 3: (a): Accuracy (AUC) For Facebook Network. (b-c): Average KS Distance for Class Distribution

Class Distribution. We finally compare the class distribu-
tion of the sampled networks Gs to the class distribution of
the population networks. We compute the KS distance be-
tween the two class label distributions and plot the results in
Figures 3(b)–3(c). We observe that FFS produces a high bias
especially for 10% sample size. While this might not affect
the performance of FFS sampled subgraphs when wvRN
is used as the base classifier (since there is no learning in
wvRNs), we conjecture that would have a much larger effect
if we learn a model based on the sample and test the model
on a hold-out test set. We will study this in future work.

Conclusion and Future Work
In this paper, we investigated the effect of network sam-
pling on estimates of relational classification performance.
We outline different network sampling methods and system-
atically study their impact on relational classification per-
formance. Our results show that the performance of wvRN
classifiers can significantly change for different sampling
methods. ES-i and FFS need at least to collect 30% of the
larger network to get reasonable accurate estimates of per-
formance on the larger (full) target network. However, ES-i
maintains a relatively consistent performance across all the
datasets compared to other algorithms. We aim to extend this
study to other relational classifiers that use attribute informa-
tion as well as relational information to predict the unknown
class labels. Further, we aim to analyze the impact of sam-
pling bias on collective classifiers theoretically.
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