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Abstract

In many complex social systems, the timing and fre-
quency of interactions between individuals are observ-
able but friendship ties are hidden. Here, we investigate
the accuracy of multiple statistical features, based ei-
ther purely on temporal interaction patterns or on the
cooperative nature of the interactions, for automatically
extracting latent social ties. Using self-reported friend-
ship and non-friendship labels derived from an anony-
mous online survey, we learn highly accurate predic-
tors for recovering hidden friendships within a mas-
sive online data set encompassing 18 billion interac-
tions among 17 million individuals of the popular on-
line game Halo: Reach. We find that periodicities in
interaction time series are sufficient to correctly clas-
sify 95% of ties, even for casual users. These results
clarify the nature of friendship in online social environ-
ments and suggest new opportunities and new privacy
concerns for friendship-aware applications that do not
require the disclosure of private friendship information.

Introduction
For many online social systems, understanding which users
are “friends,” can be extremely useful, e.g., for targeted
word-of-mouth advertising, product recommendations, or
detecting hidden social relationships. In some systems these
relationships are provided by the users themselves, but even
when the friendships are not explicitly labeled, we can of-
ten still observe the timing and character of pairwise social
interactions; for example, citations between scientists (de
Solla Price 1965), appearances together in photos (Cran-
dall et al. 2010), exchanges of tweets (Wu et al. 2011),
emails (De Choudhury et al. 2010) or phone calls, play-
ing games together, purchasing goods or services from busi-
nesses, etc.

This raises the question of whether hidden or latent friend-
ship ties can be inferred from such interaction data alone.
For most online systems, this is complicated by the typi-
cally heavy-tailed distribution in the volume of interactions
generated by different users: only a small fraction of users
account for the majority of all interactions, providing deep
histories from which to learn, while most users are “casual,”
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generating relatively little data. Inferring latent ties from ob-
servable interactions promises to create both new opportu-
nities and raise new privacy concerns for friendship-aware
applications, e.g., in online advertising, where latent tie in-
ference could facilitate social marketing or better estimate
product preferences, and online security, where it could un-
cover clandestine associations and activities.

For many computational social science questions, on-
line multiplayer games are a rich but underutilized source
of detailed, temporal interaction data. Past work in this
area has shed light on competitive dynamics, social orga-
nization, economic trading networks, and deviant behav-
ior (Szell, Lambiotte, and Thurner 2010; Keegan et al. 2010;
Blackburn et al. 2012). Here we utilize a massive data set
from the popular online multiplayer game Halo: Reach to
investigate the degree to which latent social ties can be auto-
matically identified from social interaction data alone. This
data set contains details on more than 18 billion interactions
among more than 17 million unique individuals across 700
million game instances, and serves as a model system by
which to investigate the general question of detecting friend-
ship in dynamic online interaction networks.

From these data, we extract a temporal interaction net-
work, in which two individuals are connected at time t if
they shared a social interaction at time t. Here, interactions
are playing a game together. We annotated each interaction
with information about its character and magnitude, e.g., if
it was a prosocial or antisocial interaction. We then combine
these data with the results of an anonymous online survey of
the player population (Mason and Clauset 2013), including
friendship and non-friendship labels for every individual in
their time series.

We then design and study nine statistical features repre-
senting temporal and cooperative-type interactions. Tempo-
ral features capture interaction patterns via periodicities, in-
teraction volume, and the similarity in actions within the
online system. Cooperative features quantify the prosocial
character of the interactions such as direct and indirect as-
sistance in scoring points, and “betrayals,” the equivalent of
scoring on one’s own goal in the game, which indicates an-
tisocial behavior toward the betrayed individual. Although
our cooperative features rely on in-game data specific to
Reach, the intention here is to capture the character or sign
of the interaction (Leskovec, Huttenlocher, and Kleinberg
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2010), and thus analogous features can likely be constructed
for other types of interaction data. For instance, the interac-
tion patterns in the game setting could correspond to check-
ins with a location-based application; the cooperative fea-
tures in the game could correspond to positive or negative
comments on an online forum.

From a social theory perspective, temporal features are
expected to provide a weaker signal than cooperative ones
because the former ignore the additional information explic-
itly contained in the latter. On the other hand, temporal fea-
tures are more generalizable because they can always be de-
rived from interaction time series, even when auxiliary in-
formation is unavailable, e.g., to study co-location, online
social interaction, and communication data (Cranshaw et al.
2010; Clauset and Eagle 2007; Eagle, Pentland, and Lazer
2009; De Choudhury et al. 2010). In contrast to many stan-
dard data sets, our data allow us to directly compare the pre-
dictive utility of these two types of features.

The self-reported friend and non-friend labels from the
online survey allow us to quantitatively measure the accu-
racy of our latent tie inference methods, and we take a super-
vised approach to learn which features perform well at this
task. We also explore the way their performance degrades
as we examine ties with progressively less data, which is
an important concern for real-world applications. In general,
we find that latent friendship ties can be predicted with over
95% accuracy when two individuals have had at least 10 in-
teractions. This level of accuracy is achievable using either
the auto-correlation of interaction (temporal) or the number
of assists (cooperation). The total volume of interactions be-
tween individuals is also a good predictor, but it is less effi-
cient than our two best features. These results clarify the na-
ture of friendship in online social environments and suggest
new opportunities and new privacy concerns for friendship-
aware applications that do not require the disclosure of pri-
vate friendship information.

Related work
Our work draws from three distinct lines of research. Most
uses of online game data have focused on understanding
certain aspects of human social behavior in online envi-
ronments. Examples include individual and team perfor-
mance (Shim, Sharan, and Srivastava 2010; Shim and Sri-
vastava 2010; Shim et al. 2011b; 2011a), expert behav-
ior (Huffaker et al. 2009), homophily (Huang et al. 2009a),
group formation (Huang et al. 2009b), economic activ-
ity (Castronova et al. 2009; Bakshy et al. 2010), and de-
viant behavior (Ahmad et al. 2009). Most of this work
has focused on massively multiplayer online role playing
games (MMORPGs), e.g., World of Warcraft, although a
few have examined social behavior in first person shooter
(FPS) games like Reach (Shim et al. 2011b). Relatively little
of this work has focused on the structure of social networks.

Some studies in social network analysis have considered
human behavioral patterns in proximity and periodicity, e.g.,
questions regarding how the accumulation of interactions
over time or physical proximity and geographic location can
influence the induced social network structure (Clauset and

Eagle 2007; Eagle, Pentland, and Lazer 2009; De Choud-
hury et al. 2010; Crandall et al. 2010). Few of these studies
have focused on online interactions and the way they reflect
underlying social ties.

Another significant thread comes from the literature on
link prediction. Several studies have considered the ques-
tion of predicting links in future time steps based on the pat-
tern of links in the past (Liben-Nowell and Kleinberg 2007).
Others have focused on predicting hidden or missing links
when given a partially observed network (Clauset, Moore,
and Newman 2008; Sarkar, Chakrabarti, and Jordan 2012),
and on how similarities in preferences and periodic behavior
can predict social ties and their sign (friend or foe, trust or
distrust) (Adamic and Adar 2003; Li, Guo, and Zhao 2008;
Eagle, Pentland, and Lazer 2009; Crandall et al. 2010;
Leskovec, Huttenlocher, and Kleinberg 2010).

Of particular relevance is a recent study that applied a
similar approach to ours, with good results, to the more nar-
row question of distinguishing close and not close friends
among a user’s ties on Facebook (Jones et al. 2013). Oth-
erwise, very few studies have focused on the specific ques-
tion and context considered here. A distinguishing feature
of our study is the use of survey data, which provides us
with “ground truth” labels of subjective friendship or non-
friendship for observed interactions. By combining these
ground-truth labels with the detailed data on pairwise social
interactions among all individuals, we directly explore the
question of distinguishing mere interactions from genuine
latent friendships.

Data and survey
Game details
Our interaction data are drawn from Halo: Reach, a popular
online first person shooter game. It was publicly released by
Bungie Inc., a former subdivision of Microsoft Game Stu-
dios, on 14 September 2010, and has generated more than
1 billion games since. Within the Reach system, individ-
uals choose from among seven game types and numerous
subtypes, which are played over more than 33 terrain maps.
Games can be played alone or with or against other individ-
uals over the Xbox Live online system, and each individual
on the system is identified by a unique “gamertag.” Players
may choose from among several “playlists,” which subdi-
vide the total player population and which are based around
specific game types.

Once a playlist is chosen, individuals or small “parties” of
players (typically friends) are grouped into teams by an in-
game “matchmaking” algorithm. This algorithm is based on
the TrueSkill system (Herbrich, Minka, and Graepel 2007),
which attempts to create teams with equal total skill (sub-
ject to some practical constraints). When a competition is
complete, by default all its players are placed in a new game
together, but all players or any subset may choose to reenter
the matchmaking process to find new teammates or competi-
tors. Both individual game and individual player summaries
were made available through the Halo Reach Stats API.1

1The API was active from September 2010 through November
2012. API documentation was taken offline in September 2012.
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Through this interface, we collected the first 700 million
game instances (roughly 305 days of activity by 17 mil-
lion individuals). Among other information, each game file
includes a Unix timestamp, game type label, and a list of
gamertags. Each gamertag is associated with a particular
team and a set of attributes indicating specific cooperative
behavior actions amongst the individuals, described below.
This large database provides us with complete data on the
timing and character of interactions between individuals but
provides no information about which interactions are pro-
duced by friendships versus non-friendships.

Survey
We combine these in-game behavioral data with the re-
sults of an anonymous online survey of Reach players (Ma-
son and Clauset 2013). In the survey, participants supplied
their gamertag from which we generated a list of all other
gamertags that had ever appeared in a game with the partici-
pant. From this list, the participant identified which individ-
uals were friends. 2 We interpret these subjective friendship
labels as ground truth. From these data, we constructed a
social network with links pointing from participants to their
labeled friends. In our supervised learning analysis, both a
labeled friendship and the absence of a label are treated as
values to be predicted (i.e., we assume survey respondents
explicitly chose not to label their co-player as a friend). Of
the 965 participants who had completed the friendship por-
tion of the survey by April 2012, 847 individuals appear in
our data (the first 305 days of play); this yielded 14,045 la-
tent friendship ties and 7,159,989 non-friendship ties.

Survey participants were a sparse sample of a large pop-
ulation, and the resulting social network is a composed of
mostly disconnected egocentric subgraphs. Labeled friend-
ship ties are directed edges, while observed interactions are
bidirectional. We note that because survey participants were
recruited through advertising on web fora related to Halo:
Reach, they are a non-uniform sample of the general Reach
population, e.g., they tended to be unusually skilled play-
ers (Mason and Clauset 2013). Nonetheless, our sample has
sufficient variability to demonstrate the general applicability
of our results across the player population.

Interaction network
We represent the set of pairwise interactions as an annotated
temporal network, in which edges have endpoints, exist at
a specific moment in time, and are decorated with auxiliary
information on the character and context of the interaction.
Vertices in the network correspond to gamertags, and two
vertices are connected if they appear in a game instance to-
gether at time t (time of day, in 10 minute intervals). Each
vertex thus has a sequence or time series of interactions
with other vertices. We then annotate each edge with infor-
mation like whether the corresponding individuals were on
the same team, what game type produced the interaction,
and number of games played together at time t. The result-
ing network, derived from our complete game sample, con-

2In the survey a friend is defined as a person known by the
respondent at least casually, either offline or online.

tains 17,286,270 vertices, 18,305,874,864 temporal edges,
and spans 305 days. The subgraph of interactions by our sur-
vey participants contained a total of 2,531,479 vertices and
665,401,283 temporal edges over the same period of time.

Inferring friendship
To recover latent friendship ties given only the time series of
annotated interactions between pairs of individuals, we take
a supervised learning approach. Using classification trees
and a logistic regression classifier (Bishop 2006), we learn
which features are best for predicting latent friendship ties.
Of particular interest will be computationally lightweight
models that could be applied on large scale systems.

The self-reported friendship and non-friendship labels
from the anonymous online survey serve as prediction tar-
gets. We investigate the accuracy of our statistical features,
divided into temporal and cooperative classes and consid-
ered individually, for predicting latent ties. Temporal fea-
tures are derived explicitly from a time series of interactions,
without regard to the character or context of those interac-
tions. Cooperative features are derived from the auxiliary
data and capture the degree to which an interaction is proso-
cial. In the construction of several features, we use the mas-
sive unlabeled data to derive simple statistical expectations
that are used to normalize the raw statistics.

Temporal features
Pair autocorrelation. Pairs of individuals in Reach that are
friends are known to play many more consecutive games
(12, on average, or about 2 hours of time) than non-friends
(1.25, on average) (Mason and Clauset 2013). Thus, contin-
uous interaction over a significant span of time is likely an
indication of a latent tie, while more intermittent interactions
likely indicate a non-friend tie, given the large population of
non-friends available to play at any time. The expected di-
urnal and weekly cycles observed in the data will modulate
these behaviors, and a reasonable approach for their quan-
tification is via interaction periodicity. Let

nx,y(t) = {x and y play together at time t} (1)

represent the time series of binary interactions between in-
dividuals x and y, where 1 indicates an interaction at time
t and 0 indicates no interaction. If x and y are friends, we
expect nx,y(t) to exhibit stronger periodicity than for non-
friends. This expectation may be quantified as the autocor-
relation of the time series nx,y(t) over all time lags τ :

ACx,y =
∑

τ

∑

t

nx,y(t)nx,y(t− τ). (2)

If nx,y(t) is generated by a non-friend pair, ACx,y should
be small because these individuals do not interact regularly.
On the other hand, if nx,y(t) is generated by a friend pair,
we expect ACx,y to be large.

Pair frequency. A corollary of our previous argument is that
friend pairs will likely produce a greater number of interac-
tions over a fixed time period than non-friend pairs. Let Nx
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be the total number of games played by individual x, and

Nx,y =
∑

t

nx,y(t) (3)

be the number of those games played with individual y. The
fraction Nx,y/Nx thus captures the share of x’s interactions
that involve y. Because we expect friend pairs produce
more interactions than non-friend pairs, this fraction should
be relatively large for a latent friend pair, even if the total
number of x’s interactions, Nx, is small.

Individual entropy. Recent research has shown that indi-
viduals who maintain diverse or unpredictable patterns in
their daily schedules in the physical world tend to have
larger numbers of friends, as quantified by an entropy mea-
sure (Cranshaw et al. 2010). But, online environments dif-
fer from physical ones in important ways, being more flexi-
ble and offering fewer constraints on “large” movements. It
is thus an interesting question whether a digital version of
these entropy measures can predict latent social ties as well
as its physical analog.

Toward this end, we define entropy measures on an indi-
vidual’s schedule (when they interact), game type (in which
game context do they interact), and combined schedule and
game type. For a given individual x, we observe the series
of x’s appearances at “location” " ∈ L, where L represents
the set of all possible locations. We consider three versions
of this measure: (i) schedule entropy Ht(x), with locations
as days of the week, (ii) spatial entropy Hs(x), with loca-
tions as Reach “playlists” (which subdivide the full popula-
tion into groups wanting to play a specific type of game),
and (iii) the entropy Hs,t(x) over all pairs of schedule and
spatial locations.

Mathematically, we compute a given entropy measure as

HL(x) = −
∑

"∈L
p(x," ) log p(x," ), (4)

where p(x," ) corresponds to the observed probability of in-
dividual x at location ", i.e., the fraction of all observations
of x in which x is observed at location ". We expect the
schedule entropy to quantify the diversity of an individual’s
interactions across time: individuals who typically play on
Tuesdays (say, at 8:00pm to meet their friends) will have
a lower entropy than those who play in more ad hoc fash-
ions. Similarly, we expect the combined schedule-location
entropy to capture regularities such as playing in one game
environment on Tuesdays but in different environments over
the rest of the week.

For predicting friendships, we take the sum of the individ-
uals’ entropies, i.e., Ht(x)+Ht(y), as opposed to a joint en-
tropy measure. A low sum of entropy measures would sug-
gest that both players have low diversity playing patterns,
which need not be coordinated. A higher sum would suggest
that at least one player of the pair has a more unpredictable
schedule; however, knowing this is true for only one player
is sufficient to suggest that other temporal signals might be
more meaningful. An individual that plays sporadically but
with a few regularities (e.g., consistently playing on Satur-
day mornings with the same set of individuals) suggests evi-
dence of social coordination. A low entropy pair would then

likely be either highly autocorrelated if they played on sim-
ilar schedules, or exhibit very low autocorrelation if on dif-
ferent schedules. A rich class of temporal features lets us
better describe the temporal patterns exhibited by the play-
ers in our sample and test existing hypotheses (Cranshaw et
al. 2010).

Cooperative features
Our temporal features explicitly ignore the character of
the interactions. Recent work and previous results suggest
that friend pairs interact differently than non-friend pairs,
and features that capture these differences can be expected
to be good predictors of latent ties (Hanaki et al. 2007;
Mason and Clauset 2013).

Betrayals. One feature of Reach that differs from many
other online social systems is the ability to commit an ex-
plicitly antisocial action, in the form of a “betrayal.” These
actions are equivalent to an “own goal” and result in a
penalty for the betrayer’s team. A quirk of the method by
which Reach places players into a game is that occasionally
friends are placed on opposing teams. Past work has shown
that when this happens, one team tends to experience an in-
creased betrayal rate as friends on one team turn against their
teammates to help their friends on the other team (Mason
and Clauset 2013).

For a pair of individuals x and y, we capture this tendency
by counting betrayals by x that help y, i.e., when x and y are
on different teams. Let bx(t) count the number of betrayals
performed by x at time t. Our measure is then

Bx,y =
∑

t

bx(t) {x, y playing on different teams}. (5)

Direct assistance. During a game instance, individuals can
provide direct assistance to each other in scoring a point.
Like betrayals, this prosocial action can occur with or with-
out deliberate coordination of actions. Because friend pairs
are expected to exhibit greater frequencies of prosocial be-
havior toward each other, a large number of direct assists
should correlate with latent friendship ties.

Let ax(t) count the number of direct assists performed
by individual x at time t. The total number of assists Ax,y

capture the volume of prosocial behavior on this tie,

Ax,y =
∑

t

ax(t) {x, y playing on same team}. (6)

Indirect assistance. Reach also allows an individual to in-
directly assist another in scoring points, in which x drives
a vehicle while y operates a vehicle-mounted gun. This be-
havior requires substantially more coordination than direct
assists, and thus may provide a more informative measure
of latent friendship.

Let vx(t) count the number of indirect assists attributed to
x at time t. The total number of indirect assists from x to y,
denoted Vx,y , is

Vx,y =
∑

t

vx(t) {x, y playing on same team}. (7)
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Figure 1: A classification tree found using all features ex-
cept Ax,y . This tree only uses temporal features, and per-
forms well: the error rate is 0.0013, which is significantly
better than the naı̈ve classifier error rate of 0.0020. The out-
of-sample AUC for this tree is 0.924.3

Predicting latent friendships
In our initial exploration of the predictability of latent ties
from interaction data, we use classification trees to gain intu-
ition about which features or combinations thereof are likely
to be predictive. For this data exploration, the interpretabil-
ity of classification trees is a strength, compared to, e.g.,
random forests3. Subsequently, we will consider the perfor-
mance of individual features.

For learning the classification tree, we divided our data
into equally sized groups of individuals for testing and train-
ing. Cross-validation within the test set was used to con-
trol the tree’s complexity, pruning branches that did not sig-
nificantly improve the fit of the model. The resulting tree
is highly compact, with only a few features being retained
(Fig. 1). Repeating our analysis with different subsets of the
features and different training and test sets allows us to probe
their relative importance and correlation structure.

All of the resulting trees beat the baseline accuracy of a
naı̈ve classifier. This baseline is in fact a significant barrier
because the number of latent ties is a small fraction (0.2%)
of the total number of ties we consider and we can naı̈vely
score well by guessing that every tie is a non-friend. For this
reason, we use the Receiver Operating Characteristic (ROC)
curve and the Area Under the ROC Curve (AUC) (Bradley
1997), which gives the probability the classifier will rank
a randomly selected positive case higher than a randomly
selected negative case.

At the level of feature classes, temporal features are

3To aid interpretation of the tree results, we normalize feature
values by the average observed values taken from a uniform ran-
dom sample of roughly 1 million players. For each of the players
in the random sample we compute feature values for each player
they interacted with in the data.

most useful for correctly predicting friendship: when trained
on all features, the best tree splits first on autocorrelation
ACx,y , followed by splits on combined schedule and spa-
tial entropy Hs,t(x, y), autocorrelation ACx,y (again), and
normalized pair frequency Nx,y/Nx. Similar trees are found
when training across all features excluding direct assists
Ax,y , or only temporal features: for all three feature sets
(all features, all features except assists, and temporal fea-
tures only), the final trees yield average AUC scores of
0.830, 0.833, and 0.834 respectively. This similarity in per-
formance is unsurprising considering the importance of tem-
poral features (Fig. 1).

Surprisingly, fitting the model with just the cooperative
features yields classification probabilities nearly as high (av-
erage AUC=0.789). This tree splits first on direct assistance
Ax,y , in agreement with our expectation that latent friend-
ship ties produce greater volumes of prosocial interactions
than non-friend ties, followed by further splits on Ax,y and
indirect assistance Vx,y over certain ranges of Ax,y . The fact
that autocorrelation rather than direct assistance appears in
the full model suggests first that autocorrelation is a more
reliable indicator of latent friendship, but also that direct as-
sistance may be capturing similar information. We test this
idea by first training a classification tree using all features
except autocorrelation ACx,y . As expected, this tree splits
first on high Ax,y , with the remaining structure being nearly
identical to the models trained on all features or a subset,
but substituting Ax,y for ACx,y . The average out-of-sample
AUC for this set of trees is 0.800.

The structure and simplicity of the fitted trees suggest
an underlying signature of friendship in the patterns of ob-
served interactions. Specifically, highly periodic interactions
are strongly indicative of friendship because they require
nontrivial levels of social coordination within the online en-
vironment. That is, friends must, and do, actively seek out
each other in order to interact. Interestingly, although au-
tocorrelation is highly predictive, combining it with spatial
and schedule entropy reveals some subtleties in social inter-
actions. When given all features or only temporal features,
high autocorrelation ACx,y with high spatial and schedule
entropy Hs,t(x, y) yields a good predictor of latent friend-
ships.4 Entropy features by themselves are not particularly
useful, but they do become predictive for high values of
autocorrelation. Players with shared, low diversity playing
habits (and thus low individual entropy levels) can appear in
the data as synchronized, even without any social coordina-
tion. Entropy measures then allow us to identify non-friends
who have autocorrelated schedules.

Lightweight predictors of friendship
These results suggest that individual features alone may per-
form well at predicting latent friendships, and such features
would make good computationally lightweight predictors
that could realistically be deployed on a large-scale system.

4Note that while the classification tree only classifies friends
and non-friends, the numbers observed, shown in the leaves of
Figure 1, indicate the maximum likelihood estimates of friendship
probability at the leaf.
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feature γ θ̂ σ̂ |Z| p AUC

te
m

po
ra

l

pair autocorrelation ACx,y 0.0003 0.00001 30.000 # 0.001 0.99
normalized pair frequency Nx,y/Nx 0.1390 0.00160 86.875 # 0.001 0.76
pair frequency Nx,y 0.0390 0.00050 78.000 # 0.001 0.76
loc. entropy Hs(x) 1.8270 0.04300 42.488 # 0.001 0.65
sched. entropy Ht(x) 1.5860 0.08100 19.580 # 0.001 0.50
sched. and loc. entropy Hs,t(x) 2.5920 0.09600 27.000 # 0.001 0.61

co
op

er
at

iv
e

direct assists Ax,y 0.1230 0.00100 123.000 # 0.001 0.98
indirect assists Vx,y 1.3170 0.01700 77.470 # 0.001 0.70
betrayals Bx,y 0.1460 0.00300 48.590 # 0.001 0.64

Table 1: Coefficients, θ̂, standard deviations, σ̂, Z-scores, |Z|, p values, p, and AUC values for logistic regression models fitted
to each individual feature for all friends and non-friends. AUC values of 0.5 correspond to a baseline random classifier.

Figure 2: ROC curves for logistic regression models on in-
dividual temporal and cooperative features.

We explore this possibility using logistic regression to
build single-feature latent tie classifiers and measure their
performance using AUC. We divide our data into training
and test sets using random partitions such that test and train-
ing sets are of equal size.3 Figure 2 shows the ROC curves
for each of these individual-feature models for predicting
latent friendships, and the corresponding models are sum-
marized in Table 1. Remarkably, the two most predictive
individual features—autocorrelation ACx,y (temporal) and
direct assistance Ax,y (cooperative)—achieve near-perfect
classifications, with AUCs of 0.99 and 0.98 respectively. To
provide a comparison, we note that another method inferred
friendship between graduate students with 96% accuracy us-
ing a single temporal-spatial feature (Eagle, Pentland, and
Lazer 2009). Both of our single-feature models are compu-
tationally lightweight and could thus potentially be deployed
on a large-scale system to automatically infer latent ties for
friendship-aware applications.

All of the remaining individual features perform more
poorly, indicating that none would perform well as

lightweight predictors in a real-world environment. Naı̈vely,
we expected the volume of interaction Nx,y , and the frac-
tion of that volume assigned to a particular other individ-
ual Nx,y/Nx, to be good indicators of latent ties. However,
we find this not to be the case. Upon a closer examination
of the mislabeled ties, we see that some latent ties spanned
only a few interactions and this number was not significantly
greater than the number of interactions with non-friends.
Our autocorrelation feature is robust to this phenomenon be-
cause even these low-volume friendship ties exhibit strong
periodicity in the interactions they generate.

Entropic features perform poorly alone because of insuf-
ficient diversity in location behavior within the population
at large. That is, the number of interacting individuals at any
given time is large, while the number of “locations” is rela-
tively small. As a result, both friend and non-friend pairs will
often make similar choices about which locations to visit.
Controlling for both time and space via Hs,t(x) provides
a narrower filter to individuals’ behavior but does not sub-
stantially improve performance. Furthermore, our entropy
measure does not consider the alignment of the individuals’
schedules. As we saw with the classification trees, it is only
in combination with other features, like autocorrelation, that
entropy becomes predictive.

The failure of entropy features alone to perform well in
Reach is interesting, and clarifies their success in applica-
tions to physical locations (Cranshaw et al. 2010). When the
number of locations is large relative to the size of the popula-
tion exploring them, the probability becomes very low that
a non-friend pair will have similar distributions over loca-
tions in time. As the number of locations shrinks relative to
the population size, this probability increases and eventually
swamps the signal produced by friend pairs, which is what
we observe in Reach. However, combining this signal with
other features, like the autocorrelation, preserves some of its
predictive power by mediating temporal effects with surpris-
ingness, even in a system with densely occupied locations.

The poor performance of indirect assistance is unex-
pected, given that such behavior in Reach indicates a strong
prosocial orientation and that direct assistance performs so
well. Examining the mislabeled ties, we find that indirect
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Figure 3: (Left) AUC as a function of Nx for each temporal and cooperative feature. The accuracy of ACx,y and Ax,y are
robust to available individual information while the accuracy of Vx,y , Nx,y and Nx,y/Nx increase with Nx. Entropic features
remain relatively noisy regardless of Nx, see text for details. (Right) CCDF of Nx, number of games played, across all surveyed
individuals.

assistance is not always possible in every interaction, i.e., in
every game type, and even when it is possible, it is an un-
common event. These factors place tight constraints on its
predictive power and the raw behavioral data we study con-
tain examples of labeled friend pairs that exhibit no indirect
assistance, thus making it difficult to identify a discrimina-
tive threshold.

Past work on friendship in Reach (Mason and Clauset
2013) suggested that our betrayal feature (in which an in-
dividual betrays their teammates to help their friends on the
opposite team) should also correlate with latent friendship.
And indeed it does: the average betrayal total 〈Bx,y〉 = 6.27
for friend pairs but only 0.5 for non-friend pairs. The signif-
icance of this difference is qualified by a substantially larger
variance for friend pairs (σ = 29.12 versus 2.13), likely be-
cause many friends choose not to defect against their team-
mates, which lowers the discriminative power of this feature.

Predicting friendships for casual users
Achieving good predictions for the few users who produce
large amounts of interaction data is useful. However, it is
less useful if the performance degrades substantially as we
consider users with progressively fewer observations, i.e.,
the casual users who typically make up the majority of indi-
viduals in an online system. To understand how robust our
features are to the amount of available information, we study
the performance of each individual feature as a function of
Nx, the length of an individual’s history.

We grouped surveyed individuals into bins according to
the number of games they completed Nx. To provide a fine-
grained look at individuals with short histories, where data
are plentiful, and a coarse view of long histories, where data
are sparse (Fig. 3, right), we used bins of size 10 for Nx <
100 and bins of size 100 for Nx ≥ 100.

We then computed the average AUC and its standard error

by creating equal sized training and test sets from 10 ran-
dom permutations of the data in each bin, and applying the
individual-feature models. Examining these predictors’ per-
formance as a function of data volume provides some guid-
ance for predicting friendships in data sets with large hetero-
geneities in data availability. Additionally, this test serves as
a robustness check on our previous conclusions by implicitly
considering the length of individual history as a feature.

Figure 3 shows the average AUC for each feature as a
function of history length Nx. Again two features, autocor-
relation ACx,y and assists Ax,y , are consistently accurate
predictors across all values of Nx. For the autocorrelation
feature, this robustness indicates that pairs of friends inter-
act more periodically than non-friends, regardless of their
overall level of activity in the system. This signal is strong
despite common individual schedules (e.g., weekend nights)
that could potentially lead to artificially high autocorrelation
between non-friends. Furthermore, even when an individ-
ual’s data is sparse because he or she has completed very
few games (less than 10), both autocorrelation and direct as-
sistance have surprisingly strong predictive power, yielding
average AUC values close to 0.98.

Focusing on autocorrelation, the reason for its high accu-
racy at small history lengths Nx is likely due to the large
number of individuals in the system at any one time. This
very large pool makes the probability very low for interact-
ing with the same non-friend individual more than a few
times. In real-world systems with low thresholds for two
individuals meeting by chance (e.g., colocation in highly
constrained or small physical environments), autocorrela-
tion can be less discriminative and may require augmenta-
tion with other temporal or domain-specific features. Essen-
tially, context can matter: it is unlikely that everyone who
frequents the same busy coffee shop on Monday mornings
will be friends, due to the nature of that location, while it
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would be a good bet that many pairs of individuals attending
the same weekly soccer practice would be friends. The large
effective capacity of an online system means that any signal
from autocorrelation is likely to be significant.

In their analysis of friendship and gameplay in Reach,
Mason and Clauset showed that individuals who are friends
tend to coordinate and cooperate in ways that increase their
team’s score and the probability of winning the match (Ma-
son and Clauset 2013). The strongly predictive nature of di-
rect assists Ax,y that we observe corroborates this finding,
and demonstrates that it holds over a wide range of Nx. That
is, even for casual users, counting these prosocial interac-
tions is a reliable indicator of friendship because friends do
indeed cooperate more than non-friends.

Autocorrelation and direct assistance both maintain high
performance across all sizes of Nx. The temporal features of
raw and normalized pair frequencies Nx,y and Nx,y/Nx are
less reliable predictors for small histories, but become more
reliable as Nx increases. For large histories (Nx > 400),
both features reach AUC values of nearly 0.90.

As we might have expected from our previous analysis,
the performance of spatial and temporal entropy features
Hs,t(x), Ht(x), and Hs(x) do not improve as we accumu-
late more data. Similarly, we observe fairly weak improve-
ments for indirect assists Ax,y and betrayals Bx,y .

The remarkable accuracy achieved by our two best fea-
tures, autocorrelation of schedules and direct assistance
(prosocial interactions), demonstrate that lightweight pre-
dictors can be reliable even when applied to individuals with
heterogeneous amounts of data by which to estimate latent
friendships.

Social network inference
Given the excellent performance and computational effi-
ciency5 of the autocorrelation of co-play feature, ACx,y , we
use this lightweight predictor of friendship to infer the social
network of the entire population of 17 million players. For
each pair of players in the interaction network we compute
ACx,y , compare it to a threshold, which we explain below,
and then label the pair of players as friends if their ACx,y is
greater than or equal to the threshold value.

Threshold selection
The survey respondents are a biased sample of Reach
players (Mason and Clauset 2013), being substantially
more skilled than the typical player and investing roughly
an order of magnitude more time playing than an average
player. It is thus possible that the survey sampling bias has
produced an oversampling or an undersampling of the tail
of the degree distribution. In an attempt to control these
opposing biases, we choose two thresholds, one to show
what the network looks like if the survey respondents have
less friends (undersampled tail) than the population, and
one to show network structure if the respondents have more
(oversampled tail).

5The autocorrelation function can be computed in O(n log n)
time using a fast Fourier transform.

Undersampled tail - To control for the undersampled tail
bias we choose the ACx,y that minimizes the Kullback-
Leibler divergence

DKL(P ||Q) =
∑

i

ln

(
P (i)

Q(i)

)
P (i) , (8)

where P is the degree distribution of social network derived
from the survey respondent data and Q is the degree distri-
bution calculated by creating edges between players x and y
if their ACx,y is greater than or equal to a chosen threshold.
This approach chooses ACx,y = 197 and produces an
inferred degree distribution for the entire network of 17
million players that matches the density near the head of
the actual distribution but with a heaver tail than the survey
data. It is not clear that this threshold choice necessarily
produces an abundance of false friendships, as players with
many friends are unlikely to have reported them all due to
the tedious and time consuming nature of providing this
information via the survey. This hypothesis is supported
by empirical research, which showed that self-survey
respondents tend to underestimate their interactions with
individuals as a function of recency (Eagle, Pentland, and
Lazer 2009). In our case, if a respondent did not interact
with a friend recently, the tie may have been unreported.

Oversampled tail - To control for the oversampled tail bias,
we compute the threshold by finding largest ACx,y that pro-
duces a degree distribution with a maximum degree no larger
than the maximum degree observed in the survey. This ap-
proach chooses ACx,y = 1900 and the tail of the inferred
degree distribution agrees well with the survey data but less
so near the head.

Network structure
These two thresholds represent reasonable bounds for what
we expect for our interaction data as a whole. We now ap-
ply these two thresholds to the interactions among the full
17 million players and study the structure of the induced so-
cial network. In the undersampled tail scenario (ACx,y =
197), the inferred network consists of 8,373,201 nodes and
31,051,991 edges, while the network inferred using the over-
sampled tail threshold (ACx,y = 1900), contains 4,732,405
nodes and 11,435,351 edges.

In both cases we observe degree distributions with heavy
tails, where the majority of nodes in the network are con-
nected to a small number of neighbors while a small num-
ber of nodes are connected to a large number of neighbors.
When compared to the social graph of Facebook discussed
in (Ugander et al. 2011), players in Reach have smaller num-
bers of friends. The median friend count in Facebook is 99
while in Reach it is roughly 1/100th the size, 1 and 2 at the
over- and undersampled thresholds respectively. This large
difference is likely caused by the high relative cost of es-
tablishing and maintaining a friendship in Reach versus the
more cost-free nature of Facebook friendships. Specifically,
Reach players must consistently and periodically interact
over long periods of time, which is a significant investment
of effort, while in Facebook, they must only click a request
or accept button.
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Figure 4: Degree distribution and mean clustering coeffi-
cient, 〈Ci〉 as a function of degree for both thresholds using
the entire population of players.

A vertex’s clustering coefficient is defined as

Ci =
number of connected neighbors

number of possible connected neighbors
, (9)

and provides a principled way of measuring how close ver-
tex i and its neighbors are to forming a clique (Newman
2010). This statistic equals unity when a vertex and its
neighbors form a clique, while it equals zero when none of
its neighbors are themselves pairwise connected. In our in-
ferred graph, a substantial fraction of individuals (between
16-20%) form tightly knit groups with high values of Ci.

Furthermore, the functional relation between the mean
clustering coefficient 〈Ci〉 as a function of degree ki is
roughly the same, regardless of which threshold we choose
(Fig. 4). For example, even when a vertex has a degree of
100, its clustering coefficient is likely to be between 0.1 and
0.2. This suggests that threshold choice does not substan-
tially change the underlying network structure, and these
numbers are close to those estimated for the Facebook so-
cial graph, where the mean clustering coefficient for a ver-
tex with degree 100 was 0.14 (Ugander et al. 2011). While
the mean clustering coefficient remains large independent of
degree, a mild decreasing trend is evident. This suggests that
nodes with high degree, who are likely high volume players,
interact with others relatively less discriminately than nodes
with smaller degrees, a pattern also found in the analysis of
the Facebook social graph (Ugander et al. 2011).

Conclusion
Our motivating question was whether latent social ties like
friendships can be accurately recovered from interaction
data alone, and indeed we have shown that they can, with
remarkable accuracy. We demonstrated that periodicity be-
tween interactions and specific prosocial behaviors across
these interactions are both highly robust indicators of friend-
ship, even in instances where data are sparse. Information

theoretic measures of spatial and temporal behavior, which
are good indicators of the quantity of social ties in other con-
texts, are not effective at predicting the ties alone, but may
be useful in combination with other temporal features. There
are a number of interesting points these results suggest, both
for improving Reach and for enabling friendship-aware ap-
plications in other domains.

Many online games, including Halo: Reach, rely on
matchmaking algorithms to place individuals onto teams in
order to make a new game instance go. If the Reach match-
making algorithm works as desired, the teams are equally
matched and the competition’s outcome is unpredictable.
However, when individuals play with friends, their perfor-
mance improves (Mason and Clauset 2013), and this syn-
ergy is not included in the calculations of the matchmaking
algorithm. A friendship-aware matchmaking algorithm, us-
ing features like the ones we consider here, could correct for
the effective increase in team skill that occurs when friends
play together, without reference to an external “friends list”,
and thus produce better matched teams, more enjoyable
gameplay and overall greater engagement by the users. An-
other improvement would be to suggest as friends (to be
added to a user’s friends list) those individuals with whom a
player has exhibited significant prosocial interactions, such
as direct assists.

In the more general context of an online system where we
can observe interactions, but not labeled friendship ties, our
results could be applied in an unsupervised manner. Using
an unsupervised learning algorithm such as k-means to sep-
arate friends from non-friends based on the autocorrelation
values of their co-interaction time series should be relatively
simple and robust. The discriminatory power of autocorrela-
tion and prosocial behavior, even with sparse data, suggests
that latent friendship ties may in fact be easily detectable,
due to the nature of friendship itself. In a sense, periodic and
prosocial interactions are the definition of friendship, and it
may be difficult to maintain such a relationship online with-
out manifesting a signal in these ways.

Friendship-aware applications are only one new opportu-
nity presented by the automatic inference of latent social ties
from interaction data. The ease with which we were able
to recover the latent friendship labels raises significant pri-
vacy questions, as these labels are often considered private
information. The accurate recovery of such private signals
from public interaction data may facilitate malicious appli-
cations. The social consequences of large-scale deployment
of friendship inference is difficult to estimate.

Other benefits are more easily identified. For instance,
many questions in computational social science may benefit
from the accurate recovery of the underlying social network
that generates the observed data. The general outlines of our
results may have productive applications in many of these
domains, e.g., in big data analyses of online social behavior.
Our results are encouraging for settings where ground-truth
data are at best rare and expensive to collect. Robust meth-
ods to extrapolate from ground-truth survey data to large-
scale latent social network prediction are of great practical
interest. We look forward to seeing the exploration of these
and other beneficial applications.
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