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Abstract

Social networks are often grounded in spatial locality where
individuals form relationships with those they meet nearby.
However, the location of individuals in online social network-
ing platforms is often unknown. Prior approaches have tried
to infer individuals’ locations from the content they produce
online or their online relations, but often are limited by the
available location-related data. We propose a new method
for social networks that accurately infers locations for nearly
all of individuals by spatially propagating location assign-
ments through the social network, using only a small number
of initial locations. In five experiments, we demonstrate the
effectiveness in multiple social networking platforms, using
both precise and noisy data to start the inference, and present
heuristics for improving performance. In one experiment, we
demonstrate the ability to infer the locations of a group of
users who generate over 74% of the daily Twitter message
volume with an estimated median location error of 10km. Our
results open the possibility of gathering large quantities of
location-annotated data from social media platforms.

1 Introduction
Online social networks enable people to easily connect and
maintain relationships with others independent of the indi-
viduals’ locality. However, the physical location of partic-
ipants in online networks has become an increasingly im-
portant factor in the analysis of social media. Modeling
phenomena such as political elections, disease outbreaks
(Paul and Dredze 2011), or appropriate responses to natu-
ral disasters (Mandel et al. 2012) often depends on knowing
where individuals are located as they communicate about the
phenomena. However, location-annotated data is often very
sparse; for example, although many models leverage Twitter
microtext, less than 1% of its data has been annotated with
the coordinates of where the messages originated.

We propose a new method for estimating user locations
in online social network that leverages social relationships
and the spatial distribution of locations in an individual’s
local social network. Recent work has shown that geog-
raphy does still matter in online social networks (Golden-
berg and Levy 2009; Mok, Wellman, and Carrasco 2010;
Gruzd, Wellman, and Takhteyev 2011) and this work builds
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upon that result to show that the spatial distribution of a
user’s network can be used to easily infer an individual’s
location. To test our hypothesis, we examine location and
social relationships in the online platforms of Twitter and
Foursquare, both individually and when relationships from
both social networks are used.

Given the importance of location-annotated data, signifi-
cant efforts have been made to infer location from a variety
of information. Most frequently, user location is estimated
from the content they produce by identifying geographic ref-
erences or regional writing styles (Cheng, Caverlee, and Lee
2010; Ikawa, Enoki, and Tatsubori 2012). Other efforts have
focused on mining the metadata associated with individu-
als, such as their self-reported locations (Hecht et al. 2011).
More recent efforts have begun to examine the user’s so-
cial network to infer location (Backstrom, Sun, and Mar-
low 2010; Davis Jr et al. 2011; Sadilek, Kautz, and Bigham
2012), but results have been limited to small user samples or
to settings where location information is already plentiful.

Unlike previous approaches, our proposed approach is not
specific to any social network and is dependent only on ob-
servable social relationships and a small amount of ground
truth locations. In being based on relations, we are able to ac-
curately estimate the locations of a larger segment of users
than previous approach that rely on user-provided content.
Furthermore, our approach may be combined with the lo-
cation estimates from prior efforts as the ground truth loca-
tions, which we also examine.

The contributions of this paper are as follows. First, we
demonstrate that a user’s social network provides a powerful
source of information for inferring their location. Second,
we propose a new algorithm, spatial label propagation, that
can effectively infer user locations given a small amount of
ground truth. Third, we demonstrate multiple techniques for
improving the accuracy of location information, ultimately
showing that an estimated 50% of the users in a Twitter-
based social network may be located to within 10km. These
estimates provide a way for gathering high volumes of lo-
cation tagged data, which we estimate can provide loca-
tions for over 74% of the messages being sent using Twit-
ter on any given day. Fourth, we demonstrate the potential
for leveraging location information from one social media
platform to locate individuals in another, show that infor-
mation from Twitter can locate 50% of the individuals in a
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Foursquare social network to within 25km.

2 Social Networks Data
Despite predictions that location is no longer a factor in the
formation and maintenance of social relationships in the on-
line setting (Cairncross 2001), recent studies have argued
that a user’s social network is still influenced by locality
(Goldenberg and Levy 2009; Mok, Wellman, and Carrasco
2010). Individuals form offline relationships, which are then
transferred to online social platforms and as a result, a user’s
social network is likely to include many individuals who are
geographically close. We refer to the part of the network
directly connected to an individual as their ego network.
Therefore, we hypothesize that the ego network is a prime
candidate for use in inferring an individual’s location: The
locations of the individuals in an ego network should pre-
dict of where that individual is. As a test, we evaluate three
social networks extracted from two social media platforms,
and then use the available ground truth data to measure the
potential for location inference.

Twitter Twitter has provided one of the most popular
platforms for social media. Individuals post short mes-
sages (tweets) and may form asymmetric social relation-
ships, known as following, where one individual monitors
the tweets of another individual. Additionally, Twitter pro-
vides a mechanism for specifically referencing another user
by name, referred to as a mention, which can serve as a way
to hold conversations (Honeycutt and Herring 2009).

In analyses of Twitter, Takhteyev, Gruzd, and Wellman
(2012) and McGee, Caverlee, and Cheng (2011) both ex-
amined distance across multiple types of social relationship,
finding a consistent pattern of users having friends that are
nearby. Specifically, McGee, Caverlee, and Cheng (2011)
note that the distribution of distances between mutually-
following individuals had the highest percentage of short
distances. Therefore, we crawled a network using the Twitter
API, comprising 95,855 individuals and 16,609,095 bidirec-
tional following relationships. The crawl was started from
users that had known locations (described next in Sec. 2.1)
to maximize the neighbor distance data for analysis.

Building a large-scale social network for millions of users
with bidirectional following relationships is a time-intensive
and potentially infeasible process due to the rate limits on
accessing information from the Twitter API. Therefore, we
consider a second type of social network built from users
who both mention each other. We hypothesize that bidirec-
tional mentions provide evidence of a social relationship via
mutual communication. Using a 10% sample of all Twitter
messages over the period of April 15, 2012 to November
16, 2012, we extracted 254,263,081 relationships between
47,760,573 unique users that had at least one bidirectional
mention. Because the network is constructed from a sam-
pling of Twitter, the network may exclude some relation-
ships that are present in a full stream of the data; however,
the network is significantly larger than what would be avail-
able by accessing the Twitter API. We refer to this network
as the Mention network.

Foursquare Foursquare is an online location-based ser-
vice platform where users can check in to locations such as
restaurants and may also form a social network. Relation-
ships in Foursquare are bidirectional and mutually agreed
upon by both parties. Using the Foursquare API, we crawled
3,976,819 users over three months, extracting their complete
social network, for a total of 17,619,191 relationships.

Foursquare users also provide information about their
identities in other online platforms, notably Twitter. There-
fore, we used the Twitter API to map our Foursquare users’
self-reported Twitter usernames to their corresponding Twit-
ter identities, which was successful for 1,617,615 individu-
als. This mapping also provided a way to validate the re-
lationship inference from Twitter mentions. We observed
14,048,788 relationships in Foursquare where both indi-
viduals also had Twitter identities. Of those relationships,
7,412,589 (52.8%) also had an inferred relationship from
bidirectional mentions in Twitter. We view the high percent-
age of multi-network relationships as an empirical validation
of inferring social relationships from Twitter mentions.

2.1 Location Data
Both of the considered platforms provide some form of
ground truth data, which enables us to analyze the distances
within a user’s ego network.

Foursquare Foursquare users provide both self-reported
location data in the user profile as well as limited amounts
of publicly-accessible GPS-tagged data. The largest amount
of GPS-tagged data comes from publicly shared information
on the user’s Mayorships, which are awards given to users
for being the individual that checks in the most to a spe-
cific location. While Pontes et al. (2012) found that May-
orships provided strong evidence of the users location, we
note that they used the self-reported location data as ground
truth, which has far higher coverage, with 98% of users pro-
viding identifiable locations. As a result, we use the self-
reported location data as ground truth. We use a conservative
location-mapping procedure that labels 2,735,701 (68.7%)
of the users in our network with locations based on the text
reported in their profile.

Twitter Twitter users provide both self-reported location
data in the profiles as well as GPS data for messages that are
tagged with locations. Unlike Foursquare, self reported data
is very noisy and often not localizable at the city level (Hecht
et al. 2011). Furthermore, only a small percentage of Twitter
users enable GPS annotation of their posts, accounting for
0.7% of the observed messages.

Because GPS-tagged data is often produced by mobile
phones, users are frequently seen in multiple locations. For
the purposes of our analysis, we treat a user has having only
one location, which is considered to be representative of
where that user is most likely to be. Therefore, we construct
our set of located Twitter users by restricting it to only those
with at least five GPS-tagged tweets where at least five occur
within a 15km geographic radius. Each user is then assigned
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Figure 1: The cumulative distribution functions for the dis-
tance to a user’s geographically closest friend.

a single location using the geometric median, m, of their
GPS locations, L,

m = argmin
x∈L

∑
y∈L

distance(x, y), (1)

where orthnormic distance is calculated using Vincenty’s
formula (Vincenty 1975). Equation 1 is a specialization of
the multivariate L1 median to operate on spheres (Vardi and
Zhang 2000). We opt to use a median location, rather than a
mean, as the median represents an actual location of the user
and furthermore avoids assignment a user a non-meaningful
location from averaging locations. Furthermore, the geomet-
ric median is robust to location outliers, such as when an
individual posts GPS-tagged messages from vacation or an
atypical location far from the normal concentration of loca-
tions. Ultimately, 2,554,064 (5.34%) of the Twitter users in
our network are assigned locations.

2.2 Neighbor Locality
While previous studies have examined the distribution of
distances within a user’s ego network, we ask what is the
distribution of distances to individual’s geographically near-
est neighbor. If the ego network is useful for location in-
ference, then the closest neighbor represents the maximally
predictive information that is initially available. Therefore,
for each network, we measure the distance between each in-
dividual and the closest neighbor in their ego network.

Figure 1 illustrates the cumulative distribution functions
(CDF) for each network of the distance to the closest neigh-
bor, where F (x) denotes P(distance ≤ x) and x is a dis-
tance in kilometers. The CDF demonstrates that the near-
est neighbor is highly predictive of the individuals location,
with all three networks showing that over half of the indi-
viduals have a neighbor that predicts their location to within
4km. Despite being four order of magnitude different in size,
the bidirectional Follower and Mention networks both ex-
hibit similar trends with their error distribution. We view
the superior predictive performance of the Follower network
being due to the higher prevalence of users following their
nearby friends without engaging in conversation with them.
The Foursquare network exhibits a large probability mass

for users at the exact same location (distance zero); how-
ever, this is due to the method used to assign users locations.
User coordinates are derived from location names so users in
the same city will have zero distance, despite possibly being
several kilometers apart physically; in contrast, the Twitter
network uses GPS coordinates, and therefore distances are
more likely to vary on shorter scales.

3 Location Inference
Given an individual’s social network, selecting the nearest
individual can provide strong evidence of the individual’s
location, as shown in Figure 1. However, two key problems
exist for using this information. First, given the ego network,
the choice in which neighbor should be selected is unclear,
with many potential methods. Second, location data may be
sparse, as in the case of the Mention network, which only
contains locations for approximately 5.34% of the users, and
therefore many users will have no neighbors with locations.
Therefore, we propose a new method for location inference
in social networks, spatial label propagation, and then eval-
uate a series of heuristics for selecting which of the neigh-
bors’ locations should be used.

3.1 Label Propagation
Label propagation is a semi-supervised, iterative algorithm
designed to infer labels for items connected in a network
(Zhu and Ghahramani 2002). Usually, the true labels are
known for only a small number of items in the network,
which serve as a source of ground truth information for esti-
mate the labels of other nodes. The algorithm proceeds iter-
atively, where in each round, items receive the most frequent
label from their neighbors.

Our extension to label propagation recognizes that the la-
bels themselves may be interpreted spatially, which impacts
the update procedure for each round. Rather than selecting
the most frequently label of their neighbors, the geomet-
ric configuration of the neighbors can be to select the cur-
rent node’s new label. The algorithm is formalized as fol-
lows. Let U be the set of users in the social network and
N be a mapping for each user to the other individuals in
their ego network {u→ {n1, . . . , nm}}. Let L be a ground-
truth mapping from users to their known coordinates {u →
(latitude, longitude)}. Spatial label propagation then pro-
ceeds according to Algorithm 1. Algorithm 1 contains two
key parameters: (1) the definition of the select function that
uses the spatial arrangement of the locations in N and (2)
the stopping criteria. We note that traditional label propaga-
tion has a closed form solution when the most frequent label
is selected (Zhu and Ghahramani 2002), and therefore re-
quires no stopping criteria; however, no closed form exists
when using the medians described next in Sec. 3.2.

3.2 Location Selection Methods
The choice in select function is crucial to accurate location
inference. We consider three variants and two baseline meth-
ods for selecting a location from the list of neighbors’ loca-
tions. First, we consider using the geometric median (Eq. 1),
as described in Sec. 2.1.
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Data: U , L, and N
Let E be the current mapping from user to location;
Initialize E with L;
while Convergence criteria is not met do

Let E′ be the next mapping from user to location;
for u ∈ U − domain(L) do

Let M be a list of locations;
for n ∈ N(u) do

if E(n) 6= ∅ then
add E(n) to M ;

end
end
if M 6= ∅ then

E′(u) = select(M);
end

end
E = E′

end
Result: Estimated user locations, E

Algorithm 1: Spatial Label Propagation defines the select
function to use the spatial distribution of the location M in
deciding the location of u in the next iteration.

Second, we consider an alternative multivariate median
definition using Oja’s Simplex Median (Oja 1983). Oja’s
median is defined as

m = argmin
x∈L

∑
y,z∈L

area(x, y, z), (2)

where area is the surface area of the simplex defined by the
points x, y, and z over the ellipsoid for the Earth’s surface.

Third, we consider a heuristic based on social theory. So-
cial networks often exhibit triadic closure: Given relation-
ships (a, b) and (a, c), it is likely that b and c will also have
a relationship, i.e., forming a triangle between the three indi-
viduals (Kossinets and Watts 2006). We view these closures
as evidence of a stronger social relationship from a to b and
c, and subsequently hypothesize that they may provide a bet-
ter source of information on the location of a. Therefore, we
incorporate a heuristic that first filters the social network of
an individual to only those in triadic closure and then com-
putes the geometric median of the locations of those neigh-
bors. Should the individual not have locations for those in-
dividuals or not have any neighbors in triadic closure, we in-
stead compute the geometric median over all the neighbors’
locations. We refer to this method as the Triangle Heuristic.

The first baseline method selects a random location from
M ; we refer to this baseline as Random Neighbor. As a
second baseline method, we use the method proposed by
Davis Jr et al. (2011) where location coordinates are con-
verted into names (a process known as reverse geocoding),
and then the most frequent name is selected.1 To covert co-
ordinates to names, we use the World Gazetteer database for
canonical names and fall back to Google Reverse Geocoding

1Davis Jr et al. (2011) used a non-iterative, name-based setup
for location inference, equivalent to a single iteration of traditional
label propagation.
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Figure 2: Error probability distribution location inference
method after four iterations in the Twitter Mention network.

service for coordinates that did not have a name. This sec-
ond baseline is equivalent to performing label propagation
where users are labeled with names instead of coordinates,
and so we refer to it as Traditional Label Propagation.

3.3 Experiment
Each of the medians was tested on the Twitter Mention net-
work, which was selected due to having the largest cover-
age and a small amount of labeled data. To measure per-
formance, we used five-fold cross validation: the 2,554,064
users with associated locations were divided into five sets
and then performance was measured by running each algo-
rithm over the entire network of 47.7M users, using four
sets of located users as ground truth (2,043,252 users) and
then calculating the error on the remaining 510,812 held-out
users. Sets are rotated so that each is held out once.

We include two additional non-select-based baselines:
(1) the error distribution of selecting the nearest neighbor
among the 5.34% of the network with known locations and
(2) the error from assigning a random location to an indi-
vidual. The random baseline was constructed by assigning
all individuals’ locations by sampling without replacement
from the observed locations. Error was estimated from 30
complete trials of sampling and then computing the error
distribution in aggregate. We note that the nearest-neighbor
should not be considered the upper bound; for example, if
an individual has n neighbors, only one of which has a lo-
cation, multiple iterations may provide locations to the re-
maining n − 1 neighbors, which can improve performance
if the only labeled neighbor is distant. However, the nearest
neighbor does represent an upper bound when only a single
iteration of Algorithm 1 is used.

3.4 Results
Spatial label propagation converged quickly, as shown in
Figure 3, and therefore, we report results after four itera-
tions completed in order to measure performance across the
45.8M located individuals in the network. Additional iter-
ations did not significantly increase coverage and often re-
duced performance. Figure 2 illustrate the performance of
each method using a CDF. For clarity, we make two notes
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iteration of spatial Label propagation for three networks
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for interpreting this CDF and those of later sections. First, a
comparison of methods along the x-axis of the CDF reveals
the difference in performance for a percentage of the net-
work; for example, at F (x)=0.5, the expected error for 50%
of the individuals is in the range [0km, 4km] for the near-
est neighbor baseline, compared to the range [0km, 406km]
for traditional label propagation. Second, a comparison of
methods along the y-axis of the CDF reveals the difference
in the number of individuals that are included in the error
range specified by the x-axis. Due to the scale of the net-
work, each 0.1 increase in F (x) at a specific x corresponds
to a reduction in the error bound for 4.7M users.

The choice in select method has a significant impact in
the performance of location inference. Of the methods, the
geometric median offers significantly higher performance
than other methods. While the geometric median does not
match the performance of the nearest neighbor baseline, it
does provide relatively high accuracy, locating over half of
the network with an error in [0km, 10km].

The triadic heuristic provided nearly identical perfor-
mance with the geometric median without the heuristic.
Scellato et al. (2011) note that the size of triads in so-
cial networks from three location-based services (includ-
ing Foursquare) varied depending on the size of the user’s
ego network, where users with more friends being involved
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Figure 5: CDF of the error using the geometric median for
five of the six countries with the most GPS-based users

in triads across longer distances. A further analysis of all
57.2M GPS-tagged triads in the Mention network revealed a
Spearman’s correlation of 0.278 between the length of the
triad and the size of a user’s ego network, which is low
but statistically significant. This correlation suggests that the
triadic heuristic should not be expected to improve perfor-
mance given its tendency to include more distance neighbors
as the size of the ego network increases.

Surprisingly, using the location of randomly selected
neighbor results in a large improvement over the location
name-based method used by Davis Jr et al. (2011), shown
as Traditional Label Propagation in Figure 2. Analyzing the
name-based method’s performance further showed that the
low performance was often due to having multiple individu-
als in the ego network labeled with the name of a large pop-
ulation center; because individuals are more likely to live in
such locations, the frequency-based approach is more likely
to select the name of a populous city rather than the geo-
graphically distributed names that are closer to the individ-
ual. In contrast, the geometric median is robust to such out-
liers, provided they do not constitute over half of the loca-
tions in the ego network.

In a secondary analysis, we measured the performance of
the geometric median for two partitions of the data: Figure 4
shows performance according to difference sizes of the ego
network, and Figure 5 shows performance for five of the six
countries with the highest number of GPS-tagged users. Lo-
cation inference performance increases significantly as the
ego network size grows; the difference in F (10km) between
a user having one friend and twenty five friends is 0.259,
which corresponds to approximately 12M individual having
their location estimate improved to under 10km. However,
we note that for performance does degrade for highly pop-
ular users whose ego networks are larger than one hundred
individuals; such individuals often have widely distribution
social networks, which decreases the likelihood of the geo-
metric median selecting a location near their actual location.

Country-specific performance was related to the geo-
graphic distribution and density of its major population cen-
ters. For example, despite Brazil being the fifth geograph-
ically largest country, inference performs well because the
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majority of its individuals in the Mention network reside in
its largest cities, São Paulo and Rio de Janeiro, and therefore
individuals in the ego network are likely to be nearby.

Last, the number of users in the Mention network is under
10% of all Twitter users, with estimates of the total num-
ber of users on the Twitter platform above half a billion.
Therefore, as a measure of the location annotations’ prac-
ticality, we tested what percentage of the daily Twitter vol-
ume was generated by these users. Using a held-out set of
three days in November, 2012, we found that the individuals
that had been located generated approximately 74.7% of the
total volume during that period, yielding two orders of mag-
nitude more location-tagged data than available with GPS
data alone.

4 Experiments
Given the established accuracy in estimating user loca-
tion via spatial label propagation, we consider its perfor-
mance in four additional setting: (1) combining informa-
tion from multiple social media platforms, (2) using noisy
self-reported locations instead of GPS data, (3) leveraging
linguistic similarity to predict more local neighbors in the
ego network, and (4) pruning geographically distant rela-
tionships across which location should not be propagated.

4.1 Location Inference in Multi-layered Networks
Individuals in online social network platforms often provide
information on their identity in other platforms, acting as a
way of linking the multiple platforms into a single multi-
layered network. These multi-layered networks have the ad-
vantage of both significantly increasing the number of in-
dividuals and location information, but also providing more
evidence of social relationships between them, using indi-
cators from each platform. Specifically, for the spatial la-
bel propagation, the additional relationships can potentially
remove bottlenecks in the graph, where too few relation-
ships exist to accurately update the next iteration. Second,
merging social networks also enables location inference for
individuals in other platforms that do not contain easily-
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ence for Foursquare users in the merged Twitter-Foursquare
network using only location information from Twitter.

accessible location information for their users, e.g., Tumblr;
location information may be propagated from one platform
to another using individuals with multi-platform identities.

Methodology We propose two experiments: (1) merging
two social networks to examine the potential improvement
in estimating user location, and (2) leveraging the location
information in one network to estimate the locations of the
users in the other. Accordingly, we selected the Twitter and
Foursquare platforms, as both have a significant overlap in
the number of shared users and both have location infor-
mation, which is required for the second experiment. While
our Twitter Mention network is an order of magnitude larger
than our Foursquare network, the resulting combination still
provides a significant number of new individuals and rela-
tions through which locations may be propagated.

For the first experiment, we consider two variations. In
the first, only Twitter-derived locations are used, which mea-
sures the impact of including additional social relations. In
the second variation, we include additional location data for
all 846,079 Twitter users that have a known Foursquare-
based location but not a Twitter-based one. This second vari-
ation measures the potential for increasing performance by
adding additional ground truth data. Performance is mea-
sured the same as in Section 3.3, with five-fold cross valida-
tion. To maintain direct comparability between experiments,
we report the performance for the first experiment only for
those Twitter users with locations.

For the second experiment, all location information in
Twitter is used to infer the locations of users in the merged
network. Next, we measure the accuracy of the locations
for the 1,106,647 Foursquare users who self-report their
location but do not have no reported Twitter identities, as
these are the additional nodes in the network beyond what is
present in Twitter alone. As a baseline, we compare against
selecting the nearest-neighbor in the network (Fig. 1).

Results In the first experiment, the inclusion of both
Foursquare relationships and locations did not significantly
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impact the location inference accuracy, with only minor dif-
ferences in performance, as shown in Figure 6. However, the
inclusion of the data did improve the convergence of the al-
gorithm and its total coverage. Figure 3 shows the increase
in coverage in only users in the Twitter Mention network
as the algorithm proceeds. After four iterations, the new re-
lationships from the Foursquare network result in an addi-
tional coverage of 659,240 individuals in the Mention net-
work (1.3% absolute increase) with no loss of accuracy.

The second experiment indicates that accurate location
inference across platforms is possible, as shown in Figure
7. Notably, after four iterations, all users in the Foursquare
network were located. Although performance is not as high
as the nearest-neighbor baseline, the error bound is low for
the majority of users: 39.7% of the users are located within
[0, 10] kilometers of their self-reported location and 50.1%
within [0, 25].

We hypothesized that the performance is constrained by
the spatial distribution in the connections between the two
platforms. The multi-platform individuals serve as the only
gateways for propagating information from one platform to
the other. However, if these individuals are not spatially dis-
tributed, their relative geographic concentrations bias the lo-
cations that flow into the other platform. To test this hypoth-
esis, we examined the geographic distribution of the gate-
way individuals compared with the distribution of the indi-
viduals in the Foursquare network that were being located.
Figure 8 shows the country-level distributions for the gate-
way individuals and individuals in the held-out set for nine
of the ten most-represented countries in both groups. Here,
we see significant differences in geographic distributions of
the two sets: the second and third most represented countries
in the held-out set are significantly underrepresented, having
half of their expected frequencies in the gateway individuals.
Accordingly, individuals in these countries are constrained
by smaller bottlenecks through which nearby locations are
propagated to them, and as a result, are assigned more dis-
tance locations from the over-represented locations.

4.2 Self-Reported Locations
In many social network platforms, individuals may provide
a self-reported location, which has served as the source of
location information for prior work, e.g., (Hecht et al. 2011;
Pontes et al. 2012), despite the potential for noise. For some
platforms, GPS data may be unavailable and therefore we
consider the impact of using noisier seed locations in the ab-
sence of ground truth information. Furthermore, we hypoth-
esize that spatial label propagation may help smooth out er-
rors in the location field, ultimately producing better results
than may be obtained through using it directly.

Methodology Self-reported locations were extracted from
the Twitter profiles of all users in the mention network. To
prepare the self-reported location names for spatial label
propagation, we first attempt to convert each name into spe-
cific GPS coordinates. The Google geocoding service was
used to map each name to specific coordinate. As Hecht et
al. (2011) note, converting location names to coordinates is
highly imprecise, where under two thirds of users provide
valid locations, and even fewer specify locations at the city
level. Ultimately, this produced coordinates for 11,319,349
users. We seed the mention network with all locations and
then proceed to run spatial label propagation using the ge-
ometric median. Because no ground truth data is used for
seeding, we do not perform cross validation as in previous
experiments, instead using all self-reported data for a single
run and then evaluating based on ground truth.

Results As a baseline for the error prior to spatial label
propagation, we computed the CDF for the distance between
the self-reported location and the GPS-derived location for
the 793,604 users that had both. As Figure 9 shows, self-
reported locations can serve effective seed data for location
inference. While the performance is not as high as when us-
ing GPS-based locations as seed, the results show that in-
ference is still competitive for platforms where GPS data is
unavailable. Furthermore, spatial label propagation is able to
infer the locations of 97% of the individuals in the network
using self-reported data from only 23.7% of the users with
only a few kilometer loss in precision.

Regarding the second hypothesis, Figure 9 shows no evi-
dence of error smoothing to improve performance beyond
the initial conditions. However, some error smoothing is
seen in subsequent iterations; the second iteration sees a re-
duction in error at F (x) = 0.5 from [0, 21] in the first it-
eration to [0, 15], which is a direct result of the geometric
median having more locations from which to select.

4.3 Predicting Proximity from Linguistic
Similarity

Frequently users in social relationships communicate with
each other, both offline and online, which potentially encour-
ages homophily, where individuals adopt traits and interests
of others in their social group (McPherson, Smith-Lovin,
and Cook 2001). The content of the conversations can pro-
vide evidence of social influence (Danescu-Niculescu-Mizil
et al. 2012), and we hypothesize that users who live nearby
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Figure 9: Cumulative distribution of errors after each iter-
ation of spatial label propagation using only self-reported
locations for initialization

were more likely to influence each other in addition to dis-
cussing more local topics and therefore, the similarity of
their language may provide an important clue as to which
individuals in the ego network may be most proximate.

Methodology To test whether linguistic similarity can
predict proximity, we first construct a document represen-
tation for each individual, using the concatenation of all of
their messages. Due to the high amount of lexical variety, we
clean and normalize messages by lower-casing all tokens, re-
moving all punctuation (with the exception of the # sign in
hashtags), replacing all numbers with “NUM,” and replacing
all hyperlinks with “URL.” Messages are then tokenized by
whitespace to create a distribution over the types of tokens
used by that individual. We limit our analyses to all users
who generated at least ten unique tokens.

Two methods are used to compare users. First, we adopt
the representation of Cheng, Caverlee, and Lee (2010), who
in a similar setting, treat the individual’s token distribution
as a unigram language model, which is a probability distri-
bution over the terms. Individuals are compared by comput-
ing the Jensen-Shannon (JS) Divergence between the two
distributions. For two users’ distributions P and Q, the JS
Divergence is calculated as

JSD(P ||Q) =
1

2
DKL(P ||M) +

1

2
DKL(Q||M)

where M is the average of the two distributions and DKL

denotes the Kullback-Liebler Divergence. The JS Diver-
gence is bounded in [0, 1], with zero and one denoting iden-
tical and maximally dissimilar distributions, respectively.

Second, we consider an alternate method based on the tra-
ditional vector space model of documents, treating the con-
catenated messages of each user as an n-dimensional vector,
where n is the vocabulary size, and n(i) indicates the in-
dividual’s usage frequency for the unique token mapped to
dimension i. Individuals are then compared using the cosine
similarity of their vectors. Because all token counts are pos-
itive, the cosine similarity will range in [0, 1]; however, to
enable better comparison as a distance function, we negate

this value without loss of generality such that with lower val-
ues indicate similar message content and values near zero
indicate mutually exclusive content.

Performance for both measures was then computed us-
ing Pearson’s correlation, r between the distances of the
neighbors in the ego network and the measures’ respective
values. The average correlation was constructed by apply-
ing a Fisher transformation to each r to produce z and then
computing the average correlation from the average z; this
method has less potential for bias than averaging to the r val-
ues directly (Corey, Dunlap, and Burke 1998). Last, we note
that while both lexical representations are admittedly simple
because of a need for computational efficiency for the scale
this evaluation, both have proven effective in measuring sim-
ilarity in many domains (Turney and Pantel 2010).

Results Surprisingly, both comparisons methods yielded
near-zero correlations, with rcosine=0.011 and rJS=0.030.
Additionally, we tested whether the correlations may change
based on the size of the ego network; however, all network
sizes in [5, 211] followed the same trend. Similarly, an anal-
ysis of the correlations specific to the individual’s country of
origin showed near zero correlation for all countries. These
results suggesting that a surface-level comparison of two
users’ lexical content is insufficient at predicting their ge-
ographic proximity. While our lexical representation is sim-
ple, we view this negative result as important for motivat-
ing deeper analyses that compare semantic content and dis-
course structure in order to predict nearby locality.

4.4 Using Time Zone Boundaries
Individuals in online social platforms may also reveal
geographically-distinguishing features other than their loca-
tion. Specifically, we consider time zone information pro-
vided on Twitter profiles as a way of potentially improv-
ing location inference by prevent location propagation be-
tween users in different timezones. However, Hale, Gaffney,
and Graham (2012) note that because time zone data, speci-
fied as a UTC-offset, is self-reported, the data is very noisy;
based on an analysis of GPS-tagged tweets, they estimate
that only 69.2% of users setting the correct UTC offset.
Indeed, in our longitudinal analysis, we found that 58.8%
of users set their timezone, with an average of 1.02 time-
zones for users that provided the information due to changes
in their profile. Nevertheless, we hypothesize that pruning
cross-timezone relationships may reduce noise in spatial la-
bel propagation by prohibiting the adoption of a location
from a knowingly-distant neighbor.

Methodology Each user is mapped to the set of timezones
that they self-reported over six month duration of the dataset.
We observed at least one timezone for 28.1M users in the
Mention network. We then remove edges between users who
timezone sets are disjoint. However, edges were not removed
if either user had never specified any timezone. This pruning
removed 96,774,420 of the edges in the network, resulting in
a network with 157,488,661 edges.
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Figure 10: Inference performance when pruning relation-
ships between individuals in different time zones

Results Location inference performance with timezone
pruning was nearly identical to the performance with the full
network, as shown in Figure 10, despite 38% of the edges
being removed; because the geometric median is robust to
outliers, performance without pruning was high even with
the inclusion of locations from cross-timezone edges.

Timezone pruning does still provide two significant ef-
fects. First, from a performance standpoint, pruning edges
reduces the size of the ego networks and as a result, reduces
the overall run-time of four iterations of spatial label propa-
gation to approximately one third of the time required for the
full network. Because performance did not decrease with the
pruning, such pruning may be essential for larger networks
with billions of edges when the run-time becomes infeasible.

Second, the pruning does impede label propagation and
leads to a 10.9% absolute reduction in network coverage,
as shown in Figure 3. Specifically, pruning creates bottle-
necks through which locations cannot propagation and also
creates singletons by removing all the edges to a user. Ad-
ditionally, using more than four iterations of the algorithm
did not significantly increase coverage due to the majority
of the loss in coverage coming from user who had all of
their edges removed. Future applications may consider the
trade-off of losing data from creating singletons via pruning
versus including noisier location estimates for those users
that are only accurate at larger geographic levels.

5 Related Work
Given the utility of location-tagged data, several works have
examined location inference for users and messages, both
in Twitter and other online services. Due to its wide-spread
use, most work has be performed for Twitter. Cheng, Caver-
lee, and Lee (2010) Mahmud, Nichols, and Drews (2012)
and Ikawa, Enoki, and Tatsubori (2012) have examined us-
ing the text content produced by a user for inferring their lo-
cation. While having good results, these approach are often
limited to only those users who generated text that contain
geographic references, whereas our approach works inde-
pendent of language because it is based on the social net-
work alone.

Sadilek, Kautz, and Bigham (2012) estimate the users fu-

ture location through the locations of users in their ego net-
work. However, their approach requires that both users lo-
cations be known in order to estimate the social relation-
ship, which limits the approach to only those individuals
with known locations. Furthermore, the approach is limited
to only users with users with highly active GPS data.

Davis Jr et al. (2011) use a user’s Twitter follower net-
work to perform location inference. While their approach
is based on location information in an individual’s ego net-
work, it uses location names only, which in our analysis was
the least-precise location inference method for label propa-
gation. Furthermore, their approach is non-iterative, which
limits their method’s ability to infer location for most users
due the sparsity of location data.

Hecht et al. (2011) and Pontes et al. (2012) infer user loca-
tions from self-provided location information in Twitter and
Foursquare respectively. While Pontes et al. (2012) reported
more than 90% coverage of users in Foursquare with this
method, no attempt was made to infer the locations of the re-
maining users. Hecht et al. (2011) found significantly lower
information in Twitter profiles, with a high error rate. These
approaches could be considered orthogonal to the provided
approach and could be potentially used together to leverage
multiple sources of information, as in Sec. 4.2.

Backstrom, Sun, and Marlow (2010) propose a location
inference method for the Facebook social network using
probabilistic inference to select the location from a user’s
friends. Although designed for a network with very dense
location information, they do perform an analysis where
the algorithm is iterated on a social network with artifi-
cially sparse location data for only 25% of the users. Al-
though operating on a different graph, we note that their
iterative performance predicted the locations for 57.3% of
the users within 40.2km, whereas our method predicts for
57.2% within 16km and 65.9% within 40km despite having
nearly an order of magnitude less location data to start with.
However, we do note that the accuracy of their method im-
proves as the size of the ego network increases, in contrast
to the results seen in Section 3.4; future work may consider
a hybrid approach that switches inference methods as the lo-
cation data becomes denser.

6 Conclusion
The social relationships in online platforms provide strong
evidence of an individual’s location. We have presented a
new algorithm, spatial label propagation, that leverages the
geographic distribution of an individual’s ego network to
infer their location, showing that after multiple iterations,
nearly all of the users in the social network are located, with
an estimated median error under 10km. Further, we demon-
strated that the method is accurate both for individuals in
different countries and ego network sizes.

In a series of related experiments, we analyzed variations
on the method showing that (1) multiple social media plat-
forms can be leveraged to gain additional social relation-
ships, resulting in higher coverage; (2) in the absence of GPS
data, noisy self-reported location information can effectively
be used with a small loss in precision; (3) spatial proximity
in the ego network is not predicted by users’ lexical content
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at the token level, and (4) the computational efficiency of
the method can be significantly improved by pruning the so-
cial network based on external information that users are not
physically proximate, such as timezone data.

Our proposed method is scalable, being tested on net-
works with tens of millions of nodes and hundreds of mil-
lions of edges. Furthermore, our method is complementary
to many existing approaches to location inference, which
can be used to provide the initial location data for propaga-
tion. In addition, our method can be used to leverage location
data from one social media platform to those with no loca-
tion information, which enables geospatial analyses on new
social media platforms. As a result, the method opens up the
potential for gathering large volumes of location-annotated
social media data for location-based phenomena.
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