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Abstract

We investigate the structural patterns of the appearance and
disappearance of links in dynamic knowledge networks. Hu-
man knowledge is nowadays increasingly created and curated
online, in a collaborative and highly dynamic fashion. The
knowledge thus created is interlinked in nature, and an im-
portant open task is to understand its temporal evolution. In
this paper, we study the underlying mechanisms of changes
in knowledge networks which are of structural nature, i.e.,
which are a direct result of a knowledge network’s structure.
Concretely, we ask whether the appearance and disappear-
ance of interconnections between concepts (items of a knowl-
edge base) can be predicted using information about the net-
work formed by these interconnections. In contrast to related
work on this problem, we take into account the disappearance
of links in our study, to account for the fact that the evolu-
tion of collaborative knowledge bases includes a high propor-
tion of removals and reverts. We perform an empirical study
on the best-known and largest collaborative knowledge base,
Wikipedia, and show that traditional indicators of structural
change used in the link analysis literature can be classified
into four classes, which we show to indicate growth, decay,
stability and instability of links. We finally use these methods
to identify the underlying reasons for individual additions and
removals of knowledge links.

1 Introduction
Since the appearance of the World Wide Web, creation
of human knowledge has been increasingly collaborative
and dynamic. On web sites such as Wikipedia, knowledge
is aggregated and interlinked in a massively collaborative
and parallel fashion: the number of participants in the cre-
ation of collaborative knowledge is virtually unlimited, and
changes are made continuously and in parallel. As an ex-
ample, the English Wikipedia1 holds more than four million
interlinked articles, and currently sustains more than 30,000
active users2. The knowledge collected in such knowledge
bases is often represented as text, but also increasingly in
the form of a knowledge network consisting of connections
between concepts. In the case of Wikipedia, these connec-
tions are given in the form of links from one article to an-
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1http://en.wikipedia.org/
2http://en.wikipedia.org/wiki/Wikipedia:Wikipedians

other, so-called wikilinks. In other cases, a knowledge net-
work may be formed by other types of connections, for in-
stance interactions between drugs and diseases in the Dis-
eases Database3. In either case, a remarkable property of
these networks is their connectivity: All concepts are related
to all other concepts through one or more connections. Thus,
the understanding of the underlying knowledge networks is
of primary importance to understand the knowledge bases
themselves.

While the addition of individual pieces of knowledge to
knowledge networks has been studied, collaborative knowl-
edge networks also allow the removal of edges. In fact, the
collaborative nature of online knowledge bases results in dif-
ferences of opinions, and therefore in a high number of re-
movals and reverts of content. On Wikipedia for instance,
between 20 and 30 percent of all edits remove one or more
wikilinks4. Despite these numbers, the disappearance of re-
lationships in knowledge networks is only rarely studied.
To fill this gap, this paper proposes to investigate the struc-
tural signals leading to the appearance and disappearance of
knowledge links between concepts. Our study is performed
on the largest collaborative knowledge network in existence,
the online encyclopedia Wikipedia, and consists in identify-
ing structural features of a knowledge network that can be
used to predict the appearance and disappearance of edges,
and investigating in what way these features can be used
as signals to understand the evolution of these networks.
We compare the predictive ability of individual features at
the task of predicting the addition and removal of individ-
ual edges, and are able to identify four classes of indicators:
those that indicate growth of links, those that indicate decay
of links, those that indicate the stability of links and those
indicate the instability of links. We then use these insights to
classify the individual addition and removal events, accord-
ing to their role in the knowledge network’s growth.

We begin in Section 2 by reviewing collaborative knowl-
edge networks and giving an overview of related models and
prediction methods. In Section 3, we state our model, and
perform our experiments on Wikipedia datasets in Section 4.
Section 5 reviews works related to this one. We conclude in
Section 6.

3http://www.diseasesdatabase.com/
4See Table 3 in this paper
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2 Background
Since the invention of written language, humans have aggre-
gated knowledge in written form. In recent times, knowledge
has been accumulated in encyclopedias, dictionaries, the-
sauri and other reference works. What these types of works
have in common is their structure: They consist of individual
items of knowledge such as concepts or words, connected
by cross references. These links are not just additional in-
formation, but an integral part of the knowledge. Imagine
an encyclopedic article about the city of Paris. This article
will invariably mention that the city is located in France.
Thus, a link is formed between the article Paris and the arti-
cle France. In online encyclopedias such as Wikipedia, these
links are represented explicitly: The article about Paris con-
tains a hyperlink to the article about France. Thus, the hy-
perlinks in an online encyclopedia are a representation of
the knowledge contained in that encyclopedia, and thus an
analysis of the hyperlink structure can reveal much about
the knowledge itself.

An online encyclopedia such as Wikipedia also differs in
another important way from traditional encyclopedias: It is
collaborative, i.e., written by many people simultaneously,
and thus it changes much faster and much more often than a
traditional encyclopedia. What is more, different authors of-
ten have different opinions about the topic at hand, and their
edits will clash, resulting in one editor reverting the edits
of another editor. This leads to a high amount of dynamism
in the hyperlink structure, where links are added, but also
removed, very frequently. In order to analyze the dynamics
of these changes, we will thus resort to theories of network
analysis.

2.1 Link Analysis
The field of link analysis has primarily focused on social
networks and has lead to a variety of social interaction theo-
ries. Balance theory (Heider 1958) states that people tend to
align their preferences with others. Synthesizing this idea,
Granovetter (1973) asserts the strength of weak ties which
further develops the concept of triadic closure. In his fa-
mous theory, he posits that if a person is connected by strong
ties to two other people, these two people are likely to be
connected themselves. Exchange theory (Garlaschelli and
Loffredo 2004) proposes that individuals choose to form
the relationship they expect to profit from the most, or to
have the lowest cost. According to this theory, individuals
will stick to these relationships if they are rewarded and
no other relationships provide better opportunities at lower
costs. These theories suggest that individual relationships
are driven by some amount of reciprocity, and thus unrecip-
rocated edges dissolve more readily and are observed less
often in the network. Lazarsfeld and Merton (1954) intro-
duced the concept of homophily which states that individu-
als are likely to bond with others that are similar to them-
selves. Studies on social networks show that the disappear-
ance of ties is influenced by several factors. In particular,
homophily, reciprocity and the embeddedness of a tie in
a larger group of well-connected people have positive ef-
fects on the persistence of a tie (Martin and Yeung 2006;

Burt 2000), and the likeliness of decay goes down with the
age of the tie and the age of actors, an effect coined liability
of newness.

The field of network analysis is less researched for hyper-
link networks than for social networks. The social sciences
have considered hyperlink networks as a special case of so-
cial networks (Park 2003). From the perspective of computer
science, the focus has been on applications for information
retrieval, and particularly on ranking Web pages by popular-
ity using Brin and Page’s PageRank (1998) and Kleinberg’s
HITS (1999). These two algorithms have also been applied
to the Wikipedia hyperlink network (Bellomi and Bonato
2005).

2.2 Network Evolution Models
In order to describe the effects that lead to the structure
of real-world networks, different network evolution models
have been proposed. Preferential attachment (Barabási and
Albert 1999) and assortative mixing (Newman 2002) are
structural theories about the way actors in a network pick
other actors to bond with. Preferential attachment suggests
that the likelihood of a node to form new links is propor-
tional to its degree (the number of its neighbors), referred to
as the “rich get richer” phenomenon. On the other hand, as-
sortative mixing states that nodes are more likely to form
links with nodes of similar degree. Several graph growth
models include link disappearance in addition to link cre-
ation, for instance in a model to explain power laws (Akker-
mans 2012). Other examples can be found in (Eppstein and
Wang 2002) and (Kleinberg et al. 1999), in which a model
for growth of the Web is given in which edges are removed
before others are added. While these methods succeed in
predicting global characteristics of networks such as the de-
gree distribution, they do not model the structure of the
network, and thus cannot be used for predicting individual
links.

2.3 Predicting Addition and Removal of Links
The problem of predicting the appearance of links in net-
works has received substantially more attention than the
problems of predicting their disappearance. Recent surveys
on the structural link addition prediction problem are pro-
vided by Liben-Nowell and Kleinberg (2007) and Lü and
Zhou (2011). For many networks, the number of common
neighbors, the degree of an actor and the ratio of the number
of common neighbors and the actor-neighborhood sizes are
good indicators for the formation of new links. Other algo-
rithms for links prediction include the index of Katz (1953),
graph kernels (Ito et al. 2005) and diffusion models (Kondor
and Lafferty 2002).

Work on the disappearance of links in networks has fo-
cused on social networks and on explaining why users on the
social networking platforms Facebook and Twitter unfriend
or unfollow each other. Kwak, Moon, and Lee (2012) have
used structural features of the Twitter follower-followee re-
lationship to ascertain when users decide to unfollow others.
Their findings suggest that ties persist when a user is ac-
knowledged by its followee or when the users share follow-
ers and followees. An analysis of the unfriending behavior in
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Facebook by Quercia and colleagues (2012) found a corre-
lation between personal traits and user information, and the
likelihood to end a friendship on Facebook. The authors of
that study found that friendships between neurotic or intro-
verted users and others as well as between people who differ
greatly in age are more likely to break, while well-embedded
friendships or friendships sharing a common female friend
are more robust.

As these studies use very specific user information, e.g.,
personality traits or gender, or Twitter-specific interaction
data, they cannot be used to classify the formation of new
links and link removal in networks other than social net-
works. Furthermore, neither of both works use temporal fea-
tures such as the age of a tie, due to the unavailability of this
information.

3 Modeling Structural Changes in
Knowledge Networks

Formally, we define a knowledge network to be a directed
graph N = (V,E) consisting of a set of vertices V repre-
senting the knowledge items, and a set of edges E repre-
senting the links between them. Individual knowledge items
will be denoted i, j, etc., and a link from i to j will be de-
noted (i, j). In general, links in knowledge networks are not
symmetric, i.e., an edge (i, j) does not imply that the inverse
edge (j, i) is present as well.

Users in collaborative knowledge networks can edit the
text inside knowledge items, as well as the links between
them, by either removing or adding connections. We will
assume that the semantic knowledge is captured in the
links between knowledge items, and will thus only consider
changes to the links, as well as the time of changes in the
text, disregarding the actual changes in the content. Accord-
ingly, we consider the following three types of events:

• Add: A link is added.

• Delete: An existing link is removed.

• Update: A knowledge item is changed textually.

We assume that a timestamp is given for each event.

3.1 Problem Description
Our goal is to determine which indicators are useful to ex-
plain the formation of new edges and the removal of existing
edges. Since we are not interested in modeling the appear-
ance and disappearance of individual knowledge items, we
consider the set of nodes to be invariant over time.

A way to model the growth and the decay of a network
is to determine numerical indicators that correlate with ob-
served growth and decay in actual networks. As an example,
the number of common friends is used in social networks
to predict the appearance of new ties. Thus, the number of
common neighbors is a feature that is used for link addition
prediction in social networks. Conversely, in the literature
concerned with predicting the disappearance of links, other
individual features are evaluated at that task. In order to take
into account both the appearance and the disappearance of
links, we will classify features by their performance on both

PPPPPPPRemove
Add Negative Positive

Positive decay instability

Negative stability growth

Table 1: Classification of indicators by their ability to predict
link addition and link removal. “Add” and “Remove” refer to
the type of event to be predicted. “Positive” and “Negative”
refer to positive and negative predictive power for the type
of event.

tasks, resulting in four classes of features, as depicted in Ta-
ble 1:

• Stability features are those indicating that neither link ad-
dition nor link removal will take place.

• Instability features are those indicating that both link ad-
dition and link removal are likely.

• Growth features are those indicating that link addition is
likely whereas link removal is unlikely.

• Decay features are those indicating that link removal is
likely whereas link addition is unlikely.

These four classes allow us to give a fine-grained charac-
terization of individual features. For instance, a feature such
as the number of common neighbors may be well-known to
be an indicator for edge addition, but it is unknown whether
it is also an indicator for the disappearance or for the non-
disappearance of edges. The number of common neighbors
may actually be a measure of growth, or of instability. Thus,
the distinction of these four classes will also allow us to shed
a new light on existing link addition prediction features, to
tell whether they are indicators for the presence of edges or
only for the change in the states of edges. In the following,
we describe several potential signals for link addition and
link removal from the literature.

3.2 Features
A large number of features for predicting link appearance
and disappearance can be found in the literature (Liben-
Nowell and Kleinberg 2007; Raeder et al. 2011; Lü and
Zhou 2011). These features can be grouped by the theory or
model that explains how these features behave for the tasks
at hand. Hypotheses (a)-(f) cover known models from the
literature. We introduce an additional hypothesis (e) exploit-
ing additional information available for knowledge networks
based on update and delete events. The following list con-
tains both node-level features and node pair-level features.
To construct numerical indicators for node pairs from node-
level features, we use the product of the feature values for
both nodes, e. g., d(i, j) = d(i) · d(j).

(a) Preferential Attachment
The model of preferential attachment states that links are
more likely to attach to nodes with a high degree (Barabási
and Albert 1999).
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Hypothesis: The number of adjacent nodes is a good indi-
cator for link addition.
Node degree: d(i) is defined as the number of nodes adja-

cent to i, regardless of link direction.
Joint degree: jd(i, j) is defined as number of nodes that are

adjacent to node i or node j, regardless of link direction.

(b) Embedding
The embeddedness of a node pair measures to what extent
two nodes are part of a larger cluster (Burt 2000).
Hypothesis: The embeddedness of a link is suitable to pre-
dict the appearance of links and the non-disappearance of
existing links, i.e., it is an indicator for growth.
Common neighbors: CN (i, j) is defined as the number of

common neighbors of node i and j.
Paths of length three: P3 (i, j) is defined as the number of

paths of length three between node i and node j.

(c) Reciprocity
A link is reciprocated if the link in the opposite direction is
present (Raeder et al. 2011).
Hypothesis: The presence of a link makes the addition of a
link in the opposite direction more likely and the removal
of a reciprocal link less likely. Thus, it is an indicator for
growth.
Back-links: back(i, j) is defined as a binary feature indi-

cating whether a back-link exists, i.e., back(i, j) = 1 if
(j, i) ∈ E and back(i, j) = 0 otherwise.

(d) Liability of Newness
The principle termed liability of newness states that newly
formed links are less likely to persist than older links (Burt
2000).
Hypothesis: The old age of an edge or a node are good in-
dicators for link persistence.
Edge age: eAge(i, j) is defined as the time passed since the

first add-event, i.e., the first time that the edge (i, j) was
added.

Edge freshness: eFresh(i, j) is defined as the time passed
since the last add-event, i.e., the last time that node i has
been linked to j.

If an edge has never been present in the evolution of a net-
work, the aforementioned features are undefined. Thus, we
elaborate on the idea of liability of newness and propose the
following node features.
Node age: We define nAge(i) as the age of node i, i.e., the

first time that any event related to node i occurred.
Node freshness: We define nFresh(i) as the freshness of

node i, denoting the last time that any event related to
node i occurred.

(e) Instability
We consider a node as unstable if its content or its incident
edges are frequently changed.
Hypothesis: The less stable nodes i and j are, the less stable
the link (i, j) is, whether present or not.

Update degree: We define dU (i) to be the number of times
that node i has been updated, or equivalently, the number
of update events for node i. Changes in the link structure
are not counted.

Node deletion coefficient: We define node i’s add-degree
d+(i) as the number of edges, going to or from node i,
that have been added during the whole evolution of the
network, and analogously the delete-degree d−(i). We
further define the node deletion coefficient ndc(i) as the
regularized5 ratio of the delete-degree and the add-degree
of a node ndc(i) = (d−(i) + 1)/(d+(i) + 1). This ratio
summarizes how effective adds of node i have been; if all
links to or from i were removed during the evolution we
have ndc(i) = 1, and lower values indicate that a higher
fraction of links persist.

We summarize the features and the expected behavior
with respect to the predictability of new links and link re-
movals in Table 2.

4 Experiments
In this section we report on experiments to determine which
features are suitable signals for link appearance and disap-
pearance.

4.1 Datasets
In our evaluation we use the largest dynamic knowledge net-
work on the Web, Wikipedia. We use the directed article-
hyperlink networks of four of the five largest6 Wikipedias.
We skip the largest one, the English Wikipedia, due to its
size and limited computational resources.7 In the directed
article-hyperlink network of Wikipedia, a link between two
articles i and j is present if article i links to article j. We
omit user pages and article discussion pages. All datasets
are available online as part of the Koblenz Network Collec-
tion (Kunegis 2013).8

For each of the four Wikipedias we consider all add,
delete and update events until August 2011. An overview of
the datasets is given in Table 3. The French Wikipedia is the
biggest dataset by number of articles with around 1.8 million
articles. During its whole evolution 41.7 million links where
added and 17.3 million removed. Note that the number of
articles includes also articles that where removed later. For
these Wikipedias, link deletions make up about 24–31 % of
all link operations, thus accounting for a large part of struc-
tural changes. As shown in Figure 1, half of the edges are
more than 23 months old.

4.2 Prediction Methodology
Given the set of links Et1 present at a particular time t1,
how can the links Et2 at time t2 be predicted accurately?

5We regularize the ratio by adding one to the nominator and to
the denominator.

6http://meta.wikimedia.org/wiki/List of Wikipedias
7The evaluation of this dataset is ongoing.
8https://west.uni-koblenz.de/Research/DataSets/wikipedia-

hyperlink/
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Model Feature New links Link removal Expected state
Preferential attachment Node degree d ↗ – Growth / instability
Preferential attachment Joint degree jd ↗ – Growth / instability

Embedding Common neighbors CN ↗ ↘ Growth
Embedding Paths of length three P3 ↗ ↘ Growth

Reciprocity Back-links back ↗ ↘ Growth

Liability of newness Edge age eAge – ↗ Decay / instability
Liability of newness Edge freshness eFresh – ↗ Decay / instability
Liability of newness Node age nAge – ↗ Decay / instability
Liability of newness Node freshness nFresh – ↗ Decay / instability

Instability Node deletion coefficient ndc (↗) (↗) Instability
Instability Update degree dU (↗) (↗) Instability

Table 2: Summary of hypotheses about the ability of features to predict link addition and removal. “↗” indicates a positive
correlation; “↘” indicates a negative correlation. Novel hypotheses are shown in parentheses.

Wikipedia Articles Adds Deletes
[×106] [×106] [×106]

French 1.8 41.7 17.3
German 1.5 58.7 27.6
Italian 1.0 26.0 8.9
Dutch 0.8 15.3 4.7

Table 3: The datasets used in our evaluation. The number of
articles also includes articles that were removed.

This problem involves the prediction of new edges E+ and
the prediction of deleted edges E−.

E+ = Et2 \ Et1 ,

E− = Et1 \ Et2 ,

such that

Et2 = (Et1 \ E−) ∪ E+.

The sets of added and removed links are illustrated in Fig-
ure 2. The problem of predicting new links E+ is called the
link addition prediction problem, or simply the link predic-
tion problem (Liben-Nowell and Kleinberg 2007). Typically,
the link addition prediction problem is solved by link addi-
tion prediction functions, i.e., functions that map node pairs
to numerical scores, based on the known edges in the set
Et1 . The problem of predicting the disappearance of edges
can then be solved analogously by link removal prediction
functions.

To compare the prediction accuracy of different link ad-
dition prediction and link removal prediction functions, we
define a test set and a false test set for each of the predic-
tion problems. The test set contains the node pairs to be pre-
dicted; the false test set contains node pairs that must not be
predicted.

For the link addition prediction problem, this means that
node pairs in the test set E+ must be distinguished from
those that where not added, i.e., those in the false test set
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Figure 1: The decay of edges in the four studied Wikipedias.

E+
false . Analogously, the prediction of link removal aims at

distinguishing links that are removed, in the test set E−,
from those that are not removed, in the false test set E−

false .
The set E−

false is thus defined as

E−
false = Et1 ∩ Et2 .

The set E+
false is defined as a random sample of node pairs

from the set of node pairs which are neither connected at
time t1 nor at time t2

E+
false ⊂ V × V \ Et1 \ Et2 ,

|E+
false | = |E

+|.

To solve a prediction problem, one uses functions of the
form

f : Et1 → R,
that take the structure of the network at time t1 as input

to compute scores for all node pairs in the test and false test
sets.
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+ − =

Network at time t1 (Et1) Network at time t2 (Et2)Added edges (E+) Removed edges (E{)

Figure 2: Schematic representation of the link addition and removal process. At time t1, the network has the edge set Et1 . After
t1, the set of edge E+ is added and the set E− is removed, giving the set of edges Et2 at time t2. Link directions are not
indicated in the figure.

Wikipedia |E+| |E−|
[×106] [×106]

French 5.3 1.2
German 10.2 1.7
Italian 3.9 0.7
Dutch 2.3 0.5

Table 4: The size of our link addition and link removal test
sets for the four Wikipedias we consider.

When applied to the edge set Et1 , f is a good link addition
prediction function when it gives node pairs in E+ higher
values than node pairs in E+

false . Analogously, f is a good
link removal prediction function when it gives edges in E−

higher values than edges that are not removed, in E−
false . In

Table 4 we give an overview of the number of edge additions
and removals in the test sets for our datasets.

The performance of a prediction function f at the two pre-
diction problems can then be used to classify it into the four
categories of growth, decay, stability and instability; see Ta-
ble 1. Link addition prediction functions (link removal pre-
diction functions) can then be evaluated and compared.

4.3 Evaluation Measure
To measure the accuracy of a prediction function, we use
the area under the curve (AUC), defined as the area under
the receiver operating characteristic (ROC) curve (Bradley
1997). In the following, we describe the ROC curve for link
addition prediction; the definition is analogous for link re-
moval prediction.

Let f be a prediction function. All node pairs in the com-
bined true and false test set E+ ∪ E+

false are sorted by de-
scending values of f . Starting from the best-ranked posi-
tion, for every position in the ranking the false positive rate
is plotted against the true positive rate. The true positive
rate equals the number of observed node pairs from the true
test set divided by the overall number of node pairs in the
true test set. Analogously, the false positive rate is computed
as the number of observed node pairs of the false test set
divided by the overall number of node pairs in the false
test set. The ROC curve is always contained in the square
[0, 1]× [0, 1]. The AUC is then defined as the area under the

0 0.5 1

Link removal AUCLink addition AUC

0 0.5 1

Dutch

Italian

German

French

d

jd

CN

P3

back

eAge

eFresh

nAge

nFresh

ndc

dU

Figure 3: AUC values for the link addition prediction and
link removal prediction tasks are shown for all features and
all four datasets. Note that a below-random AUC value can
be turned into an above-random one by the negation of the
respective feature.

ROC curve, and is thus a value in the interval [0, 1]. For a
random predictor, the ROC curve approximates the diagonal
connecting the points (0, 0) and (1, 1), giving an AUC value
of 0.5, whereas a perfect predictor yields an AUC value of 1.
When a prediction function f is inverted to give−f , its AUC
value x is replaced by 1 − x. This observation allows us to
build a measure of decay by negating a measure of growth.

4.4 Results
We compute all eleven features described in Section 3.2 and
compute the AUC values of the link addition and removal
prediction tasks. Figure 3 shows the performance of the fea-
tures at the task of link addition and removal prediction for
all studied datasets. Table 5 shows the top-three performing
features for each of the four classes.
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Decay AUC Instability AUC
Low node degree −d 0.70 High proportion of deletions ndc 0.71
Low joint degree −jd 0.69 Nodes have been changed recently nfresh 0.71
Few paths of length three −P3 0.67 Old edge eAge 0.65

Stability AUC Growth AUC
Low proportion of deletions −ndc 0.71 High node degree d 0.70
Nodes have been unchanged for long −nfresh 0.71 High joint degree jd 0.69
Young edge −eAge 0.65 Many paths of length three P3 0.67

Table 5: The three best performing indicators for the four classes are shown along with their average AUC values across the
four datasets and the two prediction tasks.

In the following, we compare our results with the projec-
tions of the hypotheses from Section 3.2.

(a) Preferential Attachment
Hypothesis: The number of adjacent nodes is a good indi-
cator for link addition.
Following the hypothesis, we expect a good link addition
prediction performance for features of preferential attach-
ment. Figure 4.4 shows the AUC values for the two prefer-
ential attachment features. Our experiments show that pref-
erential attachment features are indeed good indicators for
the formation of new links, as can be seen by the AUC val-
ues above 0.5 for the two features. As all features scored
below the AUC value of 0.5 for the prediction task of link
removal, we conclude that preferential attachment features
are signals for growth. In terms of the knowledge networks,
this implies that popular knowledge items tend to become
integrated with more knowledge items.

(b) Embedding
Hypothesis: The embeddedness of a link is suitable to pre-
dict the appearance of links and the non-disappearance of
existing links, i.e., it is an indicator for growth.
Following the hypothesis, we expect a good link addition
prediction performance and a bad link removal prediction
performance for features of embeddedness. Figure 4.4 de-
picts the AUC values for this feature for link versus link re-
moval prediction. For all four networks, this feature is situ-
ated in the lower right quadrant, implying that embedding is
an indicator of growth. In terms of the knowledge networks,
this implies that indirect relationships tend to be made ex-
plicit by direct knowledge connections.

(c) Reciprocity
Hypothesis: The presence of a link makes the addition of a
link in the opposite direction more likely and reciprocal links
are likelier to persist. Thus, it is an indicator of growth.
Following the hypothesis, we expect a good link addition
prediction performance and a bad link removal prediction
performance. We depict the results for the binary feature
of back-link back in Figure 4.4. We observe a tendency of
this feature to be correlated with the formation of new links,
but the AUC values are only marginally different from the

random baseline. This confirms the fact that knowledge net-
works are inherently directed and that relationships between
knowledge items are not necessarily symmetric as opposed
to links in social networks. Therefore the feature of reci-
procity does not fit into any of our four categories.

(d) Liability of Newness
Hypothesis: The old age of an edge and a node are good
indicators for link persistence.
Following the hypothesis, we expect a good link removal
prediction performance for these features. Our findings
shown in Figure 4.4 suggest that the age of a node is neither
a good indicator for the formation of new links nor for the
deletion of links. On the other hand, the three other features
are good indicators for both the formation of new links and
the removal of links. However, these features have a better
performance for link addition prediction. Therefore the other
three features are indicators of instability. In terms of knowl-
edge networks, this implies that new knowledge is fragile,
while established knowledge is more stable.

(e) Instability
Hypothesis: The less stable nodes i and j are, the less stable
the link (i, j) is, whether present or not.
Following the hypothesis, we expect a good link addition
prediction performance and a good removal prediction per-
formance for these features. Our findings shown in Figure
4.4 and Figure 3 suggest that the number of updates dU

neither works well for link addition prediction nor for link
removal prediction. A reason for the low predictive ability
of dU may be the fact that the majority of updates do not
change the content semantically but only typographically
or orthographically, and thus the link structure remains un-
changed. We have proposed the node deletion coefficient of
a node, i.e., the ratio of the number of delete events to add
events, as a second feature to ascertain the instability of a
node. This feature is correlated positively with the predic-
tion of new links as well as with the prediction of link disap-
pearance (see Figure 3). If relatively few edges are removed,
then a node is also unlikely to form new links. Therefore
this feature is an indicator of instability. If we interpret a
high number of edge deletions around a knowledge item as
a repositioning of this item, then our results imply that rela-
tions to connected knowledge items will be affected as well.
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Figure 4: Link addition prediction and link removal prediction AUC values for the indicators based on the five models. The X
and Y axes of each plot show the AUC values of the link addition and removal prediction tasks, respectively. The two lines
showing an AUC value of one half divide each plot into four quadrants, corresponding to the four classes of indicators.

Comparison of Prediction Problems
We can use our evaluation to make a remark on the prob-
lems of link addition and link removal prediction. As a gen-
eral rule, our results show that the problem of link addi-
tion prediction can be solved to a much higher accuracy
(AUC ≈ 0.90) than the link removal prediction problem
(AUC ≈ 0.75).

On the level of the four different classes of prediction
problem which generalize the link addition and removal pre-
diction problem. We observe that the problem of growth pre-
diction can be solved well using embedding indicators (see
Figure 4.4), as can the instability prediction problem (see
Figure 4.4). Since indicators for decay and stability can be
derived from these two by inversions, it follows that all four
types of prediction problems can be solved well.

Growth vs Instability
For the problem of link addition prediction, the features usu-
ally considered are not evaluated on the task of link re-
moval prediction. Link removal prediction is however, even
if it is rarely included in evaluation datasets, present in the
majority of real-world networks. Thus, the distinction be-
tween indicators of growth, which correlate with the addi-
tion of edges and the non-removal of edges, and indicators
of instability, which correlate with both the addition and
removal of edges, should be made. As an example, a so-
cial recommender system (“you may also know these peo-
ple”) should use indicators of growth rather than indica-
tors of instability. Even if an instable tie is likely to ap-
pear now, it is also likely to disappear later, and therefore
should not be recommended. Our results thus show that
preferential attachment-based and embedding-based indica-
tors indicate growth and should thus be used for recom-
mendation and other link prediction-type applications, while
node and link age-based measures should not. This result is
also in line with the link prediction literature, in which the
best features are found to be based on preferential attach-
ment and path counts (Liben-Nowell and Kleinberg 2007;
Lü and Zhou 2011).

5 Related Work
In Section 2 we already revisited works that have been used
as a foundation for our investigation on relationships of mea-

sures for link addition and link removal in knowledge net-
works. In the following, we discuss works on related prob-
lem types that are similar, but not identical to the prediction
problem discussed in this paper.

Link Decay In many networks, links cannot be removed
but are rather considered to become inactive or to decay.
Research on predicting decay in mobile phone communica-
tion networks (Raeder et al. 2011; Hidalgo and Rodriguez-
Sickert 2008) thus assumes that links decay if no commu-
nication was exchanged between the actors for a particu-
larly chosen time period. Both works conclude that links
are more likely to persist when the connection is recipro-
cated and when either both actors’ degrees are lower or both
high. Raeder and colleagues (2011) find that the “liability of
newness” holds, i.e., the age of the tie is correlated with the
persistence of the tie. However, this line of research deals
with derived link removals as the datasets themselves do not
contain explicit unlinks.

Declining Participation The decay of groups in social
networks is studied in (Kairam, Wang, and Leskovec 2012),
explaining it by interaction patterns. Another related phe-
nomenon is called churn, describing the situation in which a
user quits a social community. Churn can be modeled as the
deletion of an edge between the user and the service, and
thus corresponds to the deletion of edges in a bipartite graph
(Karnstedt et al. 2010). Both problems are fundamentally bi-
partite, since they act on the network connecting users with
items.

Anomaly Detection A related problem is the identifica-
tion of spurious links, i.e., links that have been erroneously
observed (Guimerà and Sales-Pardo 2009; Zeng and Cimini
2012). A related area of research is the detection of link
spam on the Web, in which bad links are to be detected
(Benczúr et al. 2005). Similarly, the disconnection of nodes
has been predicted in mobile ad-hoc networks (De Rosa,
Malizia, and Mecella 2005). These problems are structurally
similar to the problem studied in this paper, but do not use
features that are typical for link addition prediction such as
the degree of nodes or the number of common neighbors.

513



Citation Analysis Another type of knowledge network is
the citation network, i.e., scientific publications connected
by citations. While this type of network fits our definition of
a knowledge network, it grows in a very specific and sim-
ple way: The only possible change is that which adds a new
publication. This corresponds to a new node, added simulta-
neously with all its outgoing edges. The addition or removal
of an edge between two existing vertices is not possible in
such a network, and as such traditional link prediction meth-
ods are not applicable. Instead, research on these types of
networks has focused on modeling measures of popularity
and similarity.

6 Conclusion
In order to answer the question given at the beginning of
this paper, we can state that indeed the appearance and
disappearance of connections between items of knowledge
in knowledge networks follow predictable patterns. As we
showed, the patterns can be understood as an extension of
link prediction models known in the literature, as well as
of the much rarer link removal prediction problem. How-
ever, we found that to understand the dynamics of knowl-
edge completely, a unified view of addition and removal
must be adopted that distinguishes not two but four types
of changes, namely growth, decay, stability and instability.
We were able to verify empirically into which of these four
categories the known prediction methods fit, showing that
for all four, suitable indicators exist. In particular, we were
able to classify link prediction functions into those which
actually indicate growth of the connectivity in a knowledge
network, and those which indicate only instability. By re-
viewing known models of link-based network evolution, we
were not only able to give a more detailed classification of
known numerical indicators, but also to propose the novel
indicator of the node deletion coefficient, which indicates
instability, and is defined as the ratio of link deletion to link
additions for a specific node. Since the methods presented
in this paper work on a purely structural level, we propose
that they can be used for analyzing the dynamics of other
networks types, too.
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