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Abstract
With more people accessing Online Social Networks (OSN)
using their mobile devices, location-based features have be-
come an important part of the social networking. In this pa-
per, we present the first measurement study of a new cat-
egory of location-based online social networking services,
a location-based social discovery (LBSD) network, that en-
ables users to discover and communicate with nearby people.
Unlike popular check-in-based social networks, LBSD allows
users to publicly reveal their locations without being associ-
ated to a specific “venue” and their usage is not influenced
by the incentive mechanisms of the underlying virtual com-
munity. By analyzing over 8 million user profiles and around
150 million location updates collected from a popular new
LBSD network, we first present the characteristics of spatial-
temporal usage patterns of the observed users, showing that
40% of updates are from the user’s primary location and 80%
are from their top 10 locations. We identify events that trig-
ger bursts of growth in subscriber numbers, showing the im-
portance of social media marketing. Finally, we investigate
how usage patterns may be utilized to re-identify individu-
als with e.g. different identifiers or from datasets belonging
to different online services. We evaluate re-identification by
usage, spatial and spatial-temporal patterns and using a num-
ber of metrics and show that the best results can be achieved
using location data, with a high accuracy: our experiments
demonstrate that we can re-identify up-to 85% of users with
a precision of 77% using monitored spatial data. Overall, we
find that although users exhibit strong periodic behavior in
their usage pattern and movements, the success rate of re-
identification is highly dependent on the level of activeness
and the lifetime of the users in the network.

Introduction
The widespread availability of positioning technologies like
GPS in smartphones and other mobile devices has promoted
the use of real-time location updates in mobile apps and
location based services. Location-Based Social Networks
(LBSNs), like Foursquare, Gowalla and Facebook Places,
provide a platform for updating one’s location, that is view-
able by friends, by checking into a set of venues in the
geographical proximity of the user’s current location. An
emerging category of LBSNs are Location Based Social Dis-
covery (LBSD) networks, that are specifically designed to
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enable establishment of (new) connections to nearby users.
The popularity of LBSNs has also attracted research interest
as they offer a new source of information that enables stud-
ies of Internet users’ online and offline behaviors. While
the check-in- and content sharing-based LBSN have been
studied extensively with a focus on various topics, including
users’ behavior (Li and Chen 2009),(Scellato and Mascolo
2011), mobility prediction (Scellato, Noulas, and Mascolo
2011),(Cho, Myers, and Leskovec 2011) and social link rec-
ommendations (Crandall et al. 2010),(Cranshaw et al. 2010),
the emerging LBSD apps are yet to be studied due to the
young age of such services and unavailability of extensive
datasets. On the other hand, location information has been
used in re-identification studies, to evaluate potential for
unique identification of users based on e.g. their home-work
locations, or a set of unique locations they have visited in
the past. Such studies are commonly based on mobile phone
datasets (Wang et al. 2011).

In this paper, we investigate a new LBSD mobile network
by studying the dataset collected from an increasingly popu-
lar social discovery application, “Momo”1, launched in late
2011. Momo provides two OSN related functions: social
discovery, which enables a user to discover surrounding
people based on the geographical distance between them,
and instant messaging, that allows users to (subsequently)
communicate. By default the application updates the user’s
location to the server (unless users explicitly opt-out of sta-
tus updates), hence a rich set of spatio-temporal information
about the users is captured in our dataset.

Our motivation for this study is two-fold: first, we wish to
characterize the evolution of a new LBSD network, both in
regards to population growth and to the way the application
is utilized by the newly signed-up users. Then, as the spatio-
temporal information on how individuals utilize this applica-
tion is available, we are interested in evaluating the potential
for re-identification of users based on this data and using a
representative set of similarity metrics. The re-identification
scenarios logically follow from the current trend of user pro-
filing by mobile carrier or providers, mobile analytic com-
panies, location-based service providers and potentially by
application developers. These entities possess pieces of in-
formation covering different aspects of the users’ life and

1http://www.immomo.com
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would be highly likely to have an interest in enriching their
data by exchanging and aggregating the information from
other parties. In most of the cases, mobile users present in
different databases can be linked by one or multiple unique
identifiers like Android ID, Apple ID and accounts that are
associated with the mobile device. However these unique
identifiers may not be available or applicable in some cir-
cumstances, for instance, if we try to link an individual who
uses two or more devices, or the device identifiers have been
changed during a system upgrade.

We have collected approximately 150 million location up-
dates in a period of 38 days, from 19/5/2012 to 28/6/2012,
and over 8 million user profiles. We analyze this dataset to
provide insights about the new network comprising LBSD
application users, growth in user numbers and the way it is
used in regards to the user activities i.e. social discovery and
messaging.

Our contributions are as follows. We characterize user
activity in a new LBSD mobile network and show the
differences between Momo and a check-in-based LBSN
(Gowalla), with Momo having a higher user activity and a
lower number of locations visited by users. We conclude
that the latter is a likely consequence of the incentives given
to users of check-in-based networks to accumulate a larger
number of visited locations than what they would be nor-
mally inclined to do.

We analyze the evolution of the number of users and the
way the LBSD application is utilized, including a study of
the newly signed users during the monitoring period. We
observe that the new users have a significantly higher activ-
ity in the first week after signing up for the service and that
the vast majority of users, after that period, has a relatively
low level of activity that relates to social discovery.

We evaluate the potential for re-identification of users,
utilizing temporal, spatial, or spatial-temporal characteris-
tics of their in-application activity and a number of selected
metrics. We show that, overall, the spatial data provides
the greatest accuracy in re-identifying users while the tem-
poral data may be of limited value when used in isolation.
On the other hand, using spatio-temporal data, particularly
when a large data volume is available, also has good re-
identification potential. We also show the relevance of vary-
ing level of available data, i.e. the user’s level of activity and
lifetime in the network, on the re-identification accuracy.

The rest of the paper is organized as follows. First, we
outline relevant related work in Section 2. We describe the
data collection and our dataset in Section 3, followed by the
characteristics of user’s activities in Section 4. In Section 5
we analyze the evolution of the user numbers and the way
users utilize the application. Section 6 evaluates the poten-
tial for re-identification based on different data types and
volume available. We conclude and outline future work in
Section 7.

Related Work
We provide an overview of research work related to various
aspects of our LBSD app study.

A number of previous studies based on measurement
of user’s activities in LBSNs focus on characterizing

check-in-based social networks like Gowalla, Brightkite and
Foursquare. (Li and Chen 2009), (Scellato and Mascolo
2011), (Cheng et al. 2011) analyze the use of LBSNs in re-
gards to the volume of check-ins and their spatio-temporal
characteristics. Cho et al (Cho, Myers, and Leskovec 2011)
analyze the social and spatial characteristics of Gowalla and
Brightkite check-ins, aided by (related) cell phone traces.
They first show the link between human movement and, re-
spectively, social relationships and periodic user behavior
(social relationships can account for between 10-30% of all
human movement, while 50-70% of movement relates to
periodic user behavior) and develop a mobility model that
incorporates their findings. Similarly, (Scellato, Noulas,
and Mascolo 2011) propose a new mobility model based
on features of visited locations. Works including (Cran-
dall et al. 2010), (Cranshaw et al. 2010) study predictions
(recommendations) of social links. LBSN evolution was
studied in (Allamanis, Scellato, and Mascolo 2012), with re-
searchers proposing a new model of network growth based
on a combination of social and spatial factors. Instant mes-
saging (IM) applications were characterized in (Leskovec
and Horvitz 2008), however this was done based on fixed
user data.

Our paper studies the characteristics and the evolution of
an emerging LBSD app that combines social discovery and
IM. We demonstrate the differences between the check-in-
based LBSN and the LBSD (Momo) and characterize evo-
lution of both individual user’s traffic and growth in overall
population, highlighting the link with major promotional ac-
tivities of Momo. We show how the mode of use shifts for
most users, with time, from social discovery to IM use. We
additionally study re-identification in LBSD apps.

The extensive research work on re-identification spans
a number of fields of study. Related to spatial information,
researchers in (Golle and Partridge 2009) have analyzed the
U.S. Census data and have shown that on average, close to
20 individuals from the datatset share the same home or
work locations, and that 5% of people in the dataset can
be uniquely identified by home-work location pairs. A re-
lated work by Zang et al (Zang and Bolot 2011) general-
ized the use of (home-work) location pairs to an approach
that uses top N locations to evaluate the uniqueness of US
cellphone users. Both works strongly support the case for
using location information to derive quasi-identifiers for re-
identification of users. A number of research works e.g.
(Mohammed, Fung, and Debbabi 2009), (Bonchi, Laksh-
manan, and Wang 2011) and (Shokri et al. 2011) have raised
the privacy issues in publishing location data and have fo-
cused on theoretical analysis of obfuscation algorithms. Fur-
ther, (Li et al. 2008) exploit location history and evaluate
the merits of different metrics to re-identify users from a
dataset collected from a (small) number of cellphone and
GPS device users. We note that the location related re-
identification research works that are based on experimen-
tal data, have focused on mobility traces from cellphone or
GPS devices, while the different nature of LBSN/LBSD data
(human driven updates related to activities in the social net-
work) necessitates a study that specifically addresses this en-
vironment.

62



We evaluate the potential of re-identifying users by their
temporal or spatial patterns (or a combination of those) in
the LBSD app. As users reveal their location in a non-
continuous manner (as opposed to having a dataset that in-
cludes user’s full trajectory in a measurement time period),
the mobility trace and location sequence approaches were
not applicable in our study. We examine a number of basic
user similarity metrics that have been proposed in unique-
ness measurement (Zang and Bolot 2011) and link predic-
tion studies (Wang et al. 2011), (Crandall et al. 2010). We
stress that our focus is on evaluating the potential for user re-
identification in a LBSD application, rather than on propos-
ing new re-identification algorithms.

Data Collection and Datasets
In this section we first briefly introduce the Momo LBSD ap-
plication and the associated network, and then describe our
data collection methodology. We also provide a compara-
tive analysis of the basic characteristics of the LBSD net-
work and outline key features of Momo, when compared to
a popular check-in based LBSN, i.e. Gowalla. Specifically,
we highlight the main differences between the two networks
from the usage pattern and user behavior perspectives.

LBSD Application: Momo
Momo is a location-based social discovery application
which allows users to discover people located in close ge-
ographical proximity and to connect with them using IM.
The Chinese-based company launched its first iOS appli-
cation in August 2011 and an Android version was rolled
out in December 2011. Since then, the service has accumu-
lated over 10 million registered users2. New users in Momo
have to create a profile containing basic personal informa-
tion (name, age, gender and icon photo) and some optional
attributes (e.g. occupation, company, school, interest, etc.).
The application is given permission to access the device’s
location information, which is extracted either directly from
the cellphone GPS or via Google Mobile Map API3.

When a user launches the application, a location update
is sent to the Momo server. User can obtain a list of nearby
users from the server (discovery function). These users are
then displayed in the application according to their proxim-
ity to the user location, i.e. ranked in terms of distance to
the device’s current location. User status and location is si-
multaneously publicly revealed to other nearby users (and
friends4), unless the “invisible” option is selected by the
user. However, we have observed that only about 6% of
the total number of users in our dataset have their location
hidden from public access. Finally, individuals can establish
a direct connection to any of the discovered users, who can

2http://siliconangle.com/blog/2012/08/28/chinas-dating-app-
momo-proves-attractive-to-investors

3https://developers.google.com/maps/mobile-apps
4The notion of friends in Momo is similar to other OSNs. A

friend’s location is unconditionally shared with the user, i.e. users
can always know where their friends have checked-in, irrespective
of their current location.

be added to their Friends lists. This friendship relationship
is never made public.

Data Collection The Momo mobile clients communicate
with the server(s) via a set of network APIs. The profile API
allows a client application to fetch a full profile of a user,
identified by a numerical identifier. We crawled user profiles
by selecting an exhaustive set of IDs, that were accessed
sequentially during the data collection. We used the profile
API to collect our first dataset, Profiles, comprising of
user profiles.

Our second dataset, Updates, was collected using the
nearby API, which upon request provides a list of nearby
users. By varying the geographical coordinate parameters
over time, we collected an extensive set of real-time location
updates originating from different monitored areas.

Collecting user updates for such a large and dynamic sys-
tem is a challenging task. Due to the high number of updates
during different periods of the day, and the diversity of possi-
ble world-wide user locations, we have optimized our crawl-
ing strategy by considering the following trade-off: while we
were interested in minimizing the number of requests to be
sent to nearby APIs, we also had an aim to avoid missing
any of the user updates within a monitored area.

The nearby API dictates that the server will only respond
with up to a maximum of 30 users per update request, and a
maximum of 40 requests can be made from any single set of
coordinates, thus limiting the coverage area. To maximize
the amount of collected data while working within these
constrains, we have designed a dynamic and distributed
crawling mechanism that operates in two steps.

First, the crawler schedules a set of monitoring points and
their corresponding coverage areas. This step is based on a
modified version of the 2-dimensional closest point search
algorithm in lattices (Agrell et al. 2000), which in our case
aims to discover the minimum number of monitoring points
by estimating the total number of active users in a given ini-
tial lattice area. This is achieved by recursively selecting po-
tential monitoring points and verifying whether or not they
are capable of discovering all other users activity within their
currently defined monitoring area. Specifically, by simply
requesting the last retrieved set of of nearby users of each
selected monitoring point, we can decide whether the mon-
itoring point can reach the edge of its assigned lattice. If
the number of expected users exceeds the crawling capabil-
ity of a single crawling (monitoring) point, i.e. more than
30 × 40 = 1200 users, the crawling area is further divided
into four equal size lattices. Specifically, for each of the se-
lected cities globally, we monitor a lattice area of 60 × 60
km2 around the city center. The crawler scheduling process
is performed every hour. The output of this step is a set of
task parameters consisting of target coordinates, expiration
time and the area to be covered.

Second, each of the scheduled crawling points requests
the close users’ locations from the server. Every 15 min-
utes, the crawling points selected at the first step (i.e. cho-
sen hourly) update the location of the users observed in their
vicinity. It should be noted that in case of multiple updates
made between two different requests, the crawler can only
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(a) Crawling points at 6 AM. (b) Crawling points at 11 PM.

(c) User density at 6 AM. (d) User density at 11 PM.

Figure 1: The deployment of crawling points and example
user density at 6 AM and 11 PM, in the Shanghai Area.

record the last update. Although this prevents our crawler
from guaranteeing that all user updates are collected, we be-
lieve that the chosen request period of 15 minutes is already
fine grained enough to allow us to capture the vast major-
ity of updates. We have indeed tried different request pe-
riods, and empirically decided that such a choice is a good
compromise between the number of recorded updates and
the number of requests to the server (e.g. compared to a 2
minute requests period, less than 1% of the user updates are
missed by having the period set to 15 minutes).

Figure 1 shows the example allocation of crawling points
and user density at 6 AM and 11 PM, around Shanghai Area.
The populated areas can be easily identified from the density
map. During peak hours, the crawling range can be as small
as 0.5 km around the populated area, which means that up
to 1200 users can be discovered within 1 km2 area.

The collected Profiles dataset consists of 8 million
user profiles, each containing the user’s most recent up-
date time and associated GPS location. These profiles also
include the publicly available user’s personal information,
namely: nickname, gender, age, interest, occupation and
identities in other popular social networks. Every record
in the Updates dataset consists of a user ID, timestamp
and GPS coordinates (latitude and longitude). This dataset
contains 150 million updates from 3.3 million active users
in 48 cities (including cities from Australia, Canada, China,
France, Germany, Italy, Japan, Korea, Singapore, Spain, US,
and UK), over a period of 38 days during May-June, 2012.
The Updates dataset contains approximately 65% 5 of all
active users in the entire Momo network, present at the time

5The coverage of the dataset was estimated by the number of
tracked users divided by the number of active users during the mon-

of our data collection. Due to the rapid growth of the net-
work, we have observed an increase in both the number of
new users, which varied between 650K to 800K new users
per day, and the total number of updates, for which we ob-
served an increase from 3.5 million to 4.5 million updates
per day, during the monitoring period.

Gowalla Dataset
Gowalla is a popular location-based social networking ser-
vice that allows users to check-in their current location and
share it with friends. The properties of the Gowalla LBSN
have been studied in a number of research works e.g. (Cho,
Myers, and Leskovec 2011).The dataset used in this work,
consisting of more than 6 million check-ins from more than
196K users over the period of Feb. 2009 - Oct. 2010, was
published in the SNAP website6. We use this dataset to eval-
uate the main differences between the usage and behavioral
patterns of the two services: Momo as an LBSD network
and Gowalla as a check-in-based LBSN.

Characterizing User Activity
We analyze user activity in the Momo network and provide a
comparison of various related metrics to those derived from
the Gowalla dataset.

Activity Distribution We start by examining the extent of
difference in the user activity distribution in both networks.
For the Momo service, we use the Updates dataset. In or-
der to have a meaningful comparison of the two datasets in
regards to the measurement duration, we use a 38-day por-
tion of the Gowalla dataset (the same duration of the Momo
dataset). In addition, as the location updates of Momo do not
correspond to a specific “spots” as they do in Gowalla, we
define a unique location as a 1 × 1km2 grid, which is then
considered as a specific location for the Updates dataset.

Table 1 shows the user activity distribution function based
on different parameters, with values shown for the 5, 25,
50, 75 and 95 percentiles. We define active days, as the
number of days (out of the total number of observed days)
on which users have checked-in at least once. Overall, the
distribution statistics show that Momo users are more ac-
tive than Gowalla users. While both Gowalla and Momo
users do reveal almost the same number of unique locations
per day, interestingly Gowalla users exhibit a higher num-
ber of total unique locations across the full observation pe-
riod. Momo users, however, are more active, with almost
two times higher median number of updates per day com-
pared to Gowalla users. The latter also have a significantly
lower number of location updates than the Momo users, with
the median number of updates being only seven, while 50%
of Momo users checked in at least 14 times. Notably, both
networks have a similar distribution of active days for more
than half of the user population. However, a considerable
fraction of users in Momo publicly reveal a higher number

itoring period (obtained from Profiles dataset)
6http://snap.stanford.edu/data/loc-gowalla.html
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Figure 2: Updates/check-ins per day v.s. number of active
days captured in the dataset

of unique locations compared to Gowalla users. While sev-
eral reasons might explain the higher total number of vis-
ited locations for Gowalla users, we believe this is mainly
due to the different nature of the two applications, where
in Gowalla the users are incentivized to check-in at differ-
ent locations that would accumulate in their history. Momo
users, even though more active, seem unwilling to publicly
share a number of locations they visit, and do not simply use
the LBSD application in diverse locations. The two appli-
cations are designed for different purposes, and as such the
user data collected from both services consequently reflects
this difference in nature.

Correlation between daily activity and active days In
Figure 2 we show the number of updates per day as function
of the number of active days in the network, for both Momo
and Gowalla. We can observe, for both services, that the in-
creased loyalty to the applications results in a higher level of
user activity. We then calculate a positive Spearmen coeffi-
cient of 0.625 in Momo and 0.552 in Gowalla, which indi-
cates a high correlation between the number of active days
and the number of updates per day. We again observe that
the number of check-ins per day for Momo users is higher
than for Gowalla, which is also illustrated by a sharper cor-
relation slope.

Distribution of updates as a function of activity level
Table 1 suggests a high skew in the distribution of updates,
across users. To explore this further, Figure 3(a) depicts
the cumulative distribution function of updates as a func-
tion of the top n% active users for both Momo and Gowalla
datasets. Both networks show a similar distribution, with
top 20% active users contributing 72% (resp. 75%) of total
check-ins in Gowalla (resp. in Momo). This observation is
in accordance with the Pareto principle (“a minor proportion
of causes generate a major proportion of effects”).

Distribution of updates/check-ins as a function of the
number of locations Similarly to exploring the relation
between users and updates, we examine the number of lo-
cations that attract the majority of check-ins. Figure 3(b)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0  20  40  60  80  100

%
 o

f u
pd

at
es

/c
he

ck
in

s(
C

D
F)

top n% active users

Momo
Gowalla

(a)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0  10  20  30  40  50  60  70  80  90  100%
 u

pd
at

es
/c

he
ck

-in
s 

(C
D

F)

top n% locations

momo grid
gowalla grid

gowalla spots
 0

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 10  20  30  40  50  60  70  80  90  100

%
 o

f u
pd

at
es

/c
he

ck
in

s(
C

D
F)

top n% locations

Momo grids
Gowalla grids
Gowalla spots

(b)

Figure 3: (a) % of total updates v.s. top n% active users; (b)
% of total updates v.s. top n user locations

shows the cumulative distribution of updates as a function
of the top n% locations shared by users, for both Momo
and Gowalla datasets. In Gowalla, the check-in is associated
with both geographical coordinates as well as with points
of interests, called “spots”, that could be e.g. a coffee shop
or a library. As illustrated in the figure, Gowalla check-ins
are distributed in a larger number of spots than grids, i.e.
20% spots attract less than 70% of check-ins while more
than 85% of check-ins are done in 20% of grids. This can
be explained by the fact that a number of spots can be ag-
gregated in a fewer number of 1 × 1km2 grids. We also
note that Momo users’ updates are distributed in more grids
than Gowalla check-ins, which implies that Gowalla users
are more likely to check-in within popular areas e.g. city
centers.

Daily and weekly activity patterns Figure 4 shows the
daily and weekly activity patterns of Momo and Gowalla
users. For a meaningful comparison, we choose users from
the same timezone. As previously observed in (Cho, Myers,
and Leskovec 2011), during weekdays, the Gowalla curve
shown in 4(a) exhibits two noticeable peaks around 12-2 pm
and 6-8 pm, whereas the Momo activity curve shows a single
peak around 10-11 pm. We also observe that there is less ac-
tivity during late night and early mornings in Gowalla daily
patterns, as opposed to the Momo users which exhibit a rela-
tively high level of activity during these periods. Again, the
different nature and the intended use of the two applications
can explain such a different daily usage pattern. Gowalla
users have limited opportunities to check-in to a place other
than their home at late night and early morning hours, while
Momo users can use the service in a meaningful way, by ei-
ther discovering nearby people and/or chatting with friends
from home; in both cases, their location is updated automat-
ically when they refresh the user list or bring the applica-
tion to the foreground. We also highlight the steady weekly
pattern of user activity in Momo, with close to no varia-
tion between the weekdays and the weekends. Gowalla, on
the other hand, shows a “typical” weekends/weekdays vari-
ation, with users being more active during weekends. This
again reinforces our observation that the user activity level
in Gowalla, and as such their location updates, seem to be
closely linked with their visits to locations they have an in-
centive to check-in to.
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Dataset Momo Gowalla
5% 25% 50% 75% 95% 5% 25% 50% 75% 95 %

Active days (out of 38 days) 1.0 2.0 5.0 14.0 31.0 1.0 2.0 5.0 12.0 26.0
Total updates/check-ins (in 38 days) 1.0 4.0 14.0 53.0 253.0 1.0 3.0 7.0 20.0 69.0

Updates/check-ins per day 1.0 1.444 2.48 4.8 12.889 1.0 1.0 1.333 1.9 3.8
Total unique locations (in 38 days) 1.0 2.0 3.0 8.0 24.0 1.0 2.0 5.0 11.0 28.0

Unique locations per day 1.0 1.0 1.272 1.807 2.2 1.0 1.0 1.222 1.588 2.53

Table 1: User activity distribution in Momo and Gowalla
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Figure 4: Comparison of (a) daily activity patterns (week-
days) and (b) weekly activity patterns between Momo and
Gowalla

0 
1M
2M
3M
4M
5M
6M
7M
8M

08-2011

09-2011

10-2011

11-2011

12-2011

01-2012

02-2012

03-2012

04-2012

05-2012

06-2012

07-2012

to
ta

l u
se

rs
 (C

D
F)

Date

0 
10k
20k
30k
40k
50k
60k
70k
80k
90k

100k

08-2011
09-2011

10-2011
11-2011

12-2011
01-2012

02-2012
03-2012

04-2012
05-2012

06-2012
07-2012

ne
w

 u
se

rs

Date

(1) (2) (3)

(4)
(5)

(6)

(7)

Figure 5: New users per day over time

Network and Usage Evolution
Next, we study the evolution of the Momo LBSD network,
including the growth of user numbers and identifying events
that have contributed to significant spikes in growth. We also
analyze how the new users’ activity evolves through time, by
studying user retention rate, user behavior and the temporal
evolution of the mobility patterns of Momo users.

We note that, due to limitations of the available informa-
tion from the Momo APIs, we can only monitor in real-time
the behavior of active users within the data collection pe-
riod (38 days) and in the monitored geographical areas, as
per the contents of the Updates dataset. We also have ac-
cess to the last record of activity and the account age for all
Momo users, as per the Profiles dataset.

User Volume Growth and Trigger Events
Since its launch date in August 2011, Momo has achieved
significant growth, with a population size of more than 10
million users reached in less than one year7. Figure 5 shows
the daily user growth between August 2011 and July 2012

7http://www.cnetnews.com.cn/2012/0803/2104590.shtml

(based on the data from the Profiles dataset, which in-
cludes the sign-up dates of users).

We observe that the application first experienced a five-
month long slow start with, on the average, less than 5K new
users per day. The pace of user growth became faster in early
2012 and received two major bursts around the end of April
and the beginning of June 2012. To understand the external
factors that drove the application growth, we have identi-
fied the events corresponding to the specific spikes of user
growth, by associating them with various Momo company
related information: (1) From 21/10/2011 to 23/10/2011,
Momo launched an advertising campaign on Weibo (a Chi-
nese popular micro-blog platform), promoting the product
in 27 influential accounts that had millions of followers. (2)
On 15/12/2011, the company released the first Android app
version. Although we do not observe a sudden user growth
after the Android version release, we can see that the user
volume growth climbed steadily from the time of this event.
(3) On 07/01/2012, Momo was awarded the “Best Social
App 2011” by Geekpark.com8. (4) From 23/01/2012 to
29/01/2012, we observe a burst of user growth during the
7-day Chinese New Year public holiday. (5) On 17/02/2012,
another popular advertising campaign was launched, receiv-
ing 15k re-posts soon after its release. (6) 27/04/2012, which
corresponds to the most significant growth spike that oc-
curred following a popular (funny) video mentioning the
Momo application9. The video received one million views
in 10 hours, and the volume of Momo’s daily new users al-
most doubled on the following day. (7) 02/06/2012, Main-
stream media “City Weekly” magazine (Southern Metropo-
lis Daily) published a cover article on targeted social appli-
cations, with a section dedicated to introducing the Momo
application10.

Figure 5 suggests that although the two advertising cam-
paigns in social media had immediate positive results, both
online and traditional off-line media coverage (events (6)
and (7)) attracted a steady and more significant user growth.
Notably, we observe that online media coverage seemed to
have a longer lasting period in which a high number of new
users was attracted. This can be explained by the easy to ac-
cess, long-tailed viral dissemination and reproducible char-
acteristics of Internet content, as opposed to one-off conven-
tional printed media content.

Likewise, the burst of user growth around the Chinese
New Year indicates that special events like public holidays

8http://www.geekpark.net/event/view/details/152042
9http://v.youku.com/v show/id XMzg3MTk3ODQ4.html

10http://tech.sina.com.cn/i/2012-06-02/05217208517.shtml
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Figure 6: Evolution of user activities: (a) Percentage of re-
tained users v.s. account age; (b) Average number of updates
per week; (c) Active discovery probability over time; (d) Av-
erage number of unique locations v.s. account age

may massively attract new users and benefit the online social
applications.

The Evolution of User Activity
We analyze a number of metrics related to the level of user
activities in the Momo network.

Retention rate. This is one of the most important per-
formance metrics that measures the percentage of retained
users after a period of time. According to mobile analytic
company Flurry’s report11, the average 90-day retention rate
for social networking applications is around 34%. Although
we cannot compute the absolute retention rate including all
Momo users, based on the “join date” from user profiles, we
are able to derive the retention rate of users for a specific
account age, as shown in Figure 6(a). Similar to Flurry’s ap-
proach, the “retained” users are defined as the users who lo-
gin to the application at least once in the past 7 days. Figure
6(a) indicates that the percentage of retained users sharply
drops in the first two months, and becomes stable after three
months. The trend suggests that the users who stayed in
the network for more than three months are likely to con-
tinue using the application for a longer time period. The 30-
days retention rate is approximately 44.8% and is reduced
to 33.1% after 90 days. Interestingly, we observed a reduc-
tion of retention rate around the account age of 160 days,
which corresponds to users who joined during the Chinese
New Year public holiday.
Engagement over time. We are interested in analyzing
the activity level of users over time, demonstrating their in-
volvement in using the application. Figure 6(b) shows the
engagement of users with different account ages up-to 300

11http://blog.flurry.com/bid/90743/App-Engagement-The-
Matrix-Reloaded

days, where the engagement is measured by the frequency
of use per week. Figure 6(b) clearly shows that the newly
joined users have a much higher activity level compared to
more experienced users. The decline of activity slows down
around 60 days and remains at the level of around 20 updates
per week.
Probability of active discovery. In the Momo application,
the mobile client updates its status and location when the
user turns on the application, or when the user actively dis-
covers nearby users, i.e. refreshes the user list. In the case
of active discovery, multiple updates with short inter-arrival
times can be observed from the server side. An active dis-
covery session is defined as a set of consecutive updates,
with each pair of updates occurring within a 30 minutes time
interval. We measure users’ discovery behavior by the active
discovery probability, that is computed by the number of ac-
tive discovery sessions over the total number of sessions. As
shown in Figure 6(c), we observe that, for new users, as high
as 20% of sessions are active discovery session, and that the
average discovery probability decreases steadily as the ac-
count age of users increases, being reduced to an average of
15% for the account age of 300 days. This trend suggests
that users spend less time on social discovery as they estab-
lish connections with (a sufficient number of) nearby users
over time.
Unique location v.s. account age. Figure 6(d) shows the
average number of unique locations visited by users with a
specific account age. We can observe that more experienced
users tend to use the application in more locations over the
same period of time, compared to recently signed-up users.

User Re-identification
The extensive amount of information generated by users of
Momo, including the locations they have visited when using
the service, frequency and time of use, can also be utilised
for service personalization, by profiling users in order to of-
fer them e.g. recommendations on places to visit, or people
to connect to. Considering such scenarios where specific
users are targeted, in this section we evaluate the potential
for re-identifying users, based on the pervasive spatial and
temporal information that may be collected e.g. by the ser-
vice providers.

As different types of information may be collected by dif-
ferent service providers, we evaluate their capability to re-
identify users utilizing three different levels of background
knowledge: using only the check-in time stamps, based on
the subset of locations they have shared with the service and
combining both temporal and spatial patterns of LBSD ap-
plication use.

To better understand how the availability of data may af-
fect the linkage performance, we also evaluate the perfor-
mance of re-identification with different data collection pe-
riod durations (e.g. comparing periods of 1 to 19 days of lo-
cation information). We also vary the level of user activities
and study whether it impacts the linkability of user patterns.

Next, we first introduce the methodology adopted to as-
sess the re-identification capabilities, followed by the details
of the similarity metrics used in our study.
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Methodology
We first divide the Updates dataset records into two sets: a
training set R and a test set R̂. Each set comprises an equal
number of observation days and depending on the selected
strategy, the two sets contain either the user check-in time,
the check-in location or both. Then, for each user i we ex-
tract all records ri (resp. r̂i) from the training set R (resp.
the test set R̂) corresponding to the user activity during that
period.

The goal of a re-identification classifier is to predict the
linkage between user records inR and R̂, assuming the iden-
tities in both sets are unknown or anonymized.

The classifier first computes the similarity score between
ri and all user records in R̂. We have decided to adopt
two different approaches: (i) a unique re-identification case
where the classifier identifies the “best candidate” record r̂j
from R̂, i.e. the record with highest similarity to ri (amongst
all records). (ii) a set of candidate recordsRpre

i , predicted as
being potentially linked to ri as they have a similarity score
higher than a predefined threshold. We define k as the size
of the candidate records set, i.e. k = |Rpre

i |. The value of
k will depend on the threshold value, as a more restrictive
threshold will result in a smaller set of candidates.

In the following, we introduce the similarity metrics used
in this study.

Temporal Cosine Similarity (TCS) : Considering the
time-based vectors ri and rj , we compute their cosine simi-
larity to capture the temporal similarity of the usage pattern.

Let P (i, t) ≡ f(i,t)
n(i) be the probability that user i

uses the application during a period of time t (in our
case periods are defined as hours) and f(i, t) is the cu-
mulative frequency of updates in period t across the
record duration. n(i) is user i’s total number of up-
dates. Then ri = [P (i, 0), P (i, 1), ..., P (i, 23)] and rj =
[P (j, 0), P (j, 1), ..., P (j, 23)]. The TCS score between user
i and j is computed as:

TCS(i, j) = cos(ri, rj) =
ri · rj

‖ ri ‖ × ‖ rj ‖

Spatial co-location rate (SCR) : Considering the spatial
usage patterns of users, we extract from ri and rj , the two
sets Lr

i and Lr
i as the set of unique locations visited by user

i and j. We then compute the Jaccard-index to measure the
similarity of unique locations visited by both users.

SCR(i, j) =
|Lr

i ∩ Lr
j |

|Lr
i ∪ Lr

j |

Spatial top co-location rate (STCR) : Considering users’
top N locations, we aim to measure the similarity between
popular co-locations. For each user i (resp. j), we only
consider the locations from vector ri (resp. rj) and build a
vectors Li (resp. Lj), ranked according to the frequency of
visited locations. The STCR score is then computed as:

STCR(i, j) =
|
∑N

k=1 Li ∩
∑N

k=1 Lj |
N

In the case where any of the two vectors contain less than N
elements, we set N = min(|Li|, |Lj |). In our experiment
we consider top 10 locations, i.e. N = 10.

Spatial cosine similarity (SCS) : This metric captures the
similarity between two users location frequency patterns.
Let P (i, l) ≡ f(i,l)

n(i) be the probability that user i utilizes the
application in location l; f(i, l) is the cumulative frequency
of updates in location l across the recorded period and n(i)
is user i’s total number of updates. For all locations in both
sets, i.e., L = L(i) ∪ L(j), we then present location vec-
tors of users i and j as ri = [P (i, 0), P (i, 1), ...., P (i, l)]
and rj = [P (j, 0), P (j, 1), ...., P (j, l)]. The SCS metric is
measured as:

SCS(i, j) = cos(ri, rj) =
ri · rj

‖ ri ‖ × ‖ rj ‖

Spatio-temporal co-location rate (StCR) : This metric is
motivated by the observation that users may visit different
locations on specific hours of the day. We first divide the
location-based check-in vector ri of each user i into T sub-
vectors, corresponding to different periods of time duration
T . We then compute the spatial co-location rate of each of
the T sub-vectors between any two users. The StCR score
of users i and j is defined as:

StCR(i, j) =

∑T
t=1 SCR(i, j)

T

which corresponds to the average SCR values across the
different T periods of time. We choose T = 24 considering
a daily based analysis of the location patterns.

Spatio-temporal top co-location rate (StTCR) : Simi-
larly, we introduce the spatio-temporal version of STCR
as the similarity score between the top co-locations in time.
Again, we divide the location-based check-in vectors into
T sub-vectors and evaluate the spatial top co-location rate
between different vectors, each corresponding to a specific
period of time. The Spatio-temporal top co-location rate is
computed as:

StTCR(i, j) =

∑T
t=1 STCR(i, j)

T

Spatio-temporal cosine similarity (StCS) : Another ver-
sion of the STCR metric considers similarity between lo-
cation check-ins on a periodic basis (daily if T =24). This
metric is computed as follows:

StTCR(i, j) =

∑T
t=1 StTCR(i, j)

T
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matched non-matched
linked true positive (TP) false positive (FP)

non-linked false negative (FN) true negative (TN)

Table 2: The possible outcomes of the re-identification pro-
cess
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Figure 7: Success rate of re-identification using TCS, vary-
ing (a) the number of active days and (b) updates per day. k
is the candidate set size and n the sample size, n = 10, 000
in this experiment

Performance Evaluation

Binary classifiers are commonly evaluated in terms of pre-
cision and recall. These are defined using the possible out-
comes of a classifier, i.e. two records are deemed to be ei-
ther linked or non-linked, and the resulting validity of the
classification, i.e. two records will be matched if they be-
long to the same user, and non-matched otherwise. Ta-
ble 2 shows the possible combinations, used to compute
the Precision and Recall values as: Recall = TP

TP+FN and
Precision = TP

TP+FP .
For most cases, precision and recall provide a good indi-

cation of the performance for varying classifier parameters.
However, when there is a large difference of e.g. a very
small precision and a high (uncomparable) recall value, we
use an alternative evaluation method by defining a successful
prediction as the correct identification of a matched record
that can be re-identified either uniquely or within a set of
k candidate records. We then use the success rate as the
% of successful predictions over the total number of linked
records.

We now evaluate the performance of different similarity
metrics.

Temporal approach Our initial experiments using TCS
have shown a low accuracy of unique re-identification,
therefore we consider the performance for a resulting can-
didate set. Figures 7(a) and 7(b) show the success rate of
re-identification with a varying umber of active days and up-
dates per day. We can observe that when using only a single
day of user’s data, the classifier provides almost random re-
sults. For the entire 19 days, the classifier can narrow down
the candidate set to 10% of the sample size 60% of the time,
which considering the sample size is not a promising result.
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Figure 8: Precision-recall curve for selected re-identification
similarity metrics using (a) spatial information; (b) spatio-
temporal information;

Spatial approach The precision-recall curves of SCR,
STCR and SCS are shown in Figure 8(a). The SCR model
has extremely low precision with all thresholds, which
suggests that the probability of co-location is quite high
amongst users and the low recall also suggests many users
are inconsistent in location updates. By considering the vis-
ited location frequency, STCR and SCS metrics outperform
SCR. STCR metric only considers the top 10 most relevant
user’s locations, ignoring the infrequent locations that are
not likely to be revisited, and hence increases the linking
probability. The SCS metric compares the direction of lo-
cation vectors, i.e. cosine similarity. The frequently vis-
ited locations contribute more to the direction of the vectors,
while the influence of infrequent or in-transit locations is
suppressed. We can observe that SCS shows a solid perfor-
mance, we can re-identify up-to 85% of users with a preci-
sion of 77%.

Spatio-temporal approach Figure 8(b) shows the
precision-recall curves for StCR, StTCR and StCS re-
identification results. We can observe that StCR and StTCR
perform better than the original spatial-only approach, while
the performance of StCS degrades compared to SCS. The
improvement suggest that users are commonly co-located
and may share the top locations, however within a time
dependency. On the other hand, SCS computes the cosine
similarity of the overall location frequency; segmenting the
pattern into 24 sub-patterns, i.e. via StCS, results in a less
identifiable pattern.

We now consider how a varying amount of data avail-
able for re-identification would affect the accuracy of var-
ious similarity metrics.

Considering the available quantity of data Tables 3 and
4 show the success rate of uniquely re-identifying users, for
the various similarity metrics and based on a selected num-
ber of active day and user activity levels (updates/day). With
the exception of SCR, all other metrics have an improved
performance with a longer monitored period. When only us-
ing a single day of records (i.e. one day each in the training
and testing sets), approximately half of the users can be cor-
rectly re-identified. The success rate increases to 86 % when
using a week of data records, and almost all users (97.7%)
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1 day 7 days 14 days 19 days
SCR 0.5634 0.6864 0.6789 0.6286
STCR 0.4358 0.7501 0.8031 0.8684
SCS 0.4082 0.8598 0.9281 0.9778
StCR 0.4396 0.7495 0.8305 0.8932
StTCR 0.5488 0.8333 0.8695 0.8926
StCS 0.5474 0.6587 0.6884 0.8801

Table 3: Success rate of the re-identification similarity met-
rics for a different number of active days. Results are gener-
ated as an average of 5 iterations.

ρ > 0 ρ > 5 ρ > 10 ρ > 15 ρ > 20 ρ > 25 ρ > 30
SCR 0.5355 0.5055 0.494 0.4995 0.4874 0.4961 0.5142
STCR 0.8355 0.8663 0.8428 0.7813 0.7366 0.7585 0.7767
SCS 0.9057 0.9178 0.9418 0.9543 0.9594 0.963 0.9659
StCR 0.8462 0.8515 0.8666 0.8909 0.8934 0.8899 0.8922
StTCR 0.8448 0.8214 0.8464 0.8752 0.887 0.8933 0.8997
StCS 0.6596 0.7299 0.8209 0.8845 0.926 0.9408 0.946

Table 4: Success rate of re-identification similarity metrics
for different activity levels (ρ = updates/day). Results are
generated as an average of 5 iterations.

are re-identified with the best performing metric, SCS, us-
ing just under 3 weeks of data. The results from Table 4
indicate that users who have higher level of activity have a
higher chance to be re-identified.

Conclusion
In this paper, we have characterized a new LBSD network,
in terms of overall properties (when compared to more es-
tablished LBSNs), and the way it is being used by it’s sub-
scribers. We have then analyzed the network evolution,
identifying specific events contributing to extraordinary user
growth, and the evolution of user’s activity patterns. Fi-
nally, we have evaluated the potential for service providers
who may monitor and retain data on user’s activities, to re-
identify LBSD users who may have e.g. multiple accounts or
a number of mobile devices, by comparing the performance
of a number of similarity metrics. Our results show that a
significant quantify of data is required for re-identification.
This indicates that re- identification may be applicable pri-
marily to applications that are heavily used, preferably on a
daily basis, e.g. from the social, gaming or business produc-
tivity categories.
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