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Abstract

The ever increasing activity in social networks is mainly man-
ifested by a growing stream of status updating or microblog-
ging. The massive stream of updates emphasizes the need for
accurate and efficient clustering of short messages on a large
scale. Applying traditional clustering techniques is both inac-
curate and inefficient due to sparseness. This paper presents an
accurate and efficient algorithm for clustering Twitter tweets.
We break the clustering task into two distinctive tasks/stages:
(1) batch clustering of user annotated data, and (2) online
clustering of a stream of tweets. In the first stage we rely on
the habit of ‘tagging’, common in social media streams (e.g.
hashtags), thus the algorithm can bootstrap on the tags for
clustering of a large pool of hashtagged tweets. The stable
clusters achieved in the first stage lend themselves for online
clustering of a stream of (mostly) tagless messages.
We evaluate our results against gold-standard classification
and validate the results by employing multiple clustering eval-
uation measures (information theoretic, paired, F and greedy).
We compare our algorithm to a number of other clustering
algorithms and various types of feature sets. Results show
that the algorithm presented is both accurate and efficient and
can be easily used for large scale clustering of sparse mes-
sages as the heavy lifting is achieved on a sublinear number
of documents.

Introduction
Document clustering is one of the basic tasks required as
a first step in many text processing efforts such as topic
modeling, content-based recommendation, event detection
and discourse analysis, among others. As the popularity of
microblogging is growing rapidly, there is thus a need for
accurate clustering of micro-messages on a large scale.

While document clustering is well studied, applying tradi-
tional clustering methods on micro-messages fails due to the
inherent sparseness of micro-messages. Moreover, classic
clustering techniques are incapable of handling the massive
stream of data posted in microblogging services (e.g. over
half a billion messages are posted on Twitter every day). In
this paper we propose an accurate and efficient framework
for clustering partially tagged micro-messages on services
such as Twitter, Google+, Instagram, Pinterest (all support
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hashtags) as well as news titles or product descriptions. We
evaluate our algorithm on a large collection of Twitter tweets.

In the proposed framework the clustering challenge is de-
composed into two distinctive tasks: batch clustering of a
subset of the data and online clustering of a stream of data. In
the batch clustering phase our algorithm exploits tagged data,
allowing the conversion of the message (document) clustering
task to a tag clustering problem. In order to both overcome
sparseness and improve running time, the batch–clustering
component works in a bootstrapping manner. First, instead
of clustering the documents directly, it creates a collection of
virtual non-sparse documents by aggregating all tweets shar-
ing the same hashtag; it then uses a kMeans algorithm (see
below) to cluster the hashtags according to the content of the
virtual documents. Next, the virtual documents are converted
back to short (sparse) documents that are clustered according
to the cluster labels assigned to each virtual document in the
second stage. Finally, once stable clusters are obtained, the
online component can piggy–back on the centroids found in
the previous stage in order to assign each new message to a
cluster, regardless the length of the message or the fact that it
does not contain tags. As the batch component is highly effi-
cient, the batch clustering can be repeated from time to time
in order to increase accuracy and capture emerging topics
and trends.

This framework is generic in the sense that in the sec-
ond stage of the batch–clustering component one can use
her clustering algorithm of choice. We use kMeans due to
its simplicity and its efficiency on the reduced space, com-
pared to the original space. We show that using it in the
described manner outperforms other algorithms such as stan-
dard kMeans and the mini-batch kMeans that is designed to
address scalability and sparseness. In addition, the online
component is completely independent and requires only the
non-sparse centroids found by the batch component. This
decoupling allows one to use less efficient algorithms for the
batch clustering given they are more accurate.

Given a fixed number of hashtags, the batch–clustering
component scales up in sublinear time as we employ the basic
inefficient clusterer only on the reduced space of the hashtags,
regardless of the number of tweets or the desired number of
clusters. The sublinearity holds under the assumption that the
number of hashtags is an order of magnitude smaller than the
corpus size. This assumption is very reasonable and holds
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in our data. The online component performs in linear time,
allowing accurate and efficient clustering of a massive stream
of very sparse short messages. We further discuss efficiency
in the Clustering Algorithm section.

Although it seems straightforward, a number of steps are
required in order to demonstrate the validity of this multistage
approach:

1. We first need to show that clustering the virtual documents
produces quality clusters of hashtags.

2. We then need to justify the non trivial leap of reducing
the tweet clustering challenge to a hashtag clustering task,
showing that solving the latter provides a correct solution
for the former.

3. Finally, we need to demonstrate that the centroids found
in the batch clustering of long and non-sparse virtual doc-
uments are capable of accurate clustering of a stream of
sparse and untagged messages.

We address all these conceptual steps in our various exper-
imental settings.

This paper is an extension of the short paper by (Tsur,
Littman, and Rappoport 2012). While the short paper briefly
portrays the use of hashtags for efficient clustering, this paper
introduces an online component, effectively clustering tag-
less tweets. In addition, it provides an exploratory analysis of
fine grained clustering into hundreds of clusters as well as a
broader discussion of cluster quality in the general domains.

Contribution This work has four main contributions: (i)
We provide a novel framework for clustering micro-messages.
(ii) We show through extensive evaluations that alternating
between dimensions and clustering tasks is applicable to the
original task. (iii) Our algorithm is accurate, outperforming
other algorithms, and (iv) Our algorithm is fast and scalable
thus suitable for large scale tasks such as clustering data from
social media streams.

Related Work
While many works focus on document clustering and topic
models, clustering of micro-messages is addressed sparsely.
The major challenge in clustering of micro-messages (or even
short documents) is sparseness, thus traditional techniques in
which documents are represented as TF-IDF feature vectors
does not perform well.

Banerjee et al. (2007) cluster RSS feed items. They
achieve improvement over a baseline expanding the vectors
to include key concepts returned by querying Wikipedia with
the content of the feed. Kang et al. (2010) use affinity propa-
gation algorithm to cluster similar tweets and Rangrej et al.
(2011) conducted a comparative study, comparing three clus-
tering algorithms: kMeans, singular value decomposition and
affinity propagation. Experimenting on a small set of tweets
they conclude that affinity propagation is best suited for short,
though not so sparse, texts1. Scalability is not addressed in
their comparison.

1They avoid sparseness as their collection of only 611 tweets is
based on a few search queries.

Sculley (2010) presented a modified kMeans algorithm
designed for large scale sparse web page clustering. Our
experiments show this modification is not well suited to mi-
croblogs (see the Results section).

A growing body of works analyzes Twitter data and Twitter
hashtags. Yang and Leskovec (2011) cluster hashtags by
temporal patterns of propagation and Romero et al. (2011)
manually classify the 500 most popular hashtags, showing
that different topical classes present different patterns of
stickiness and persistence. Zhao and Jiang (2011) use
LDA for fine grained topic modeling of Twitter messages,
comparing to topics in New York Times News articles. A
fully supervised tag recommender for microblog postings
was developed by Garcia et al. (2010), recommending one of
36 hashtags falling under 5 categories.

The discovery of events and emerging stories in Twitter
involves clustering of the observed tweets (Petrovic et al.
(2010) and Becker et al. (2011)). Both works employ an on-
line clustering technique, however, they do not report results
for the clustering stage as the discovered clusters are only
one of many heuristic features in the task of event detection.
Moreover, sparseness is not an issue in the event detection
framework, and cluster quality is neither defined nor evalu-
ated (e.g., by verification against a gold standard). Unlike the
specific task of event detection, our work addresses the gen-
eral problem of clustering sparse short messages to general
topical groups, and we provide a comprehensive analysis of
cluster quality.

Twitter hashtags can be viewed as topic and sentiment
markers. A supervised sentiment classification framework
based on data from Twitter is proposed by Davidov et al.
(2010), using twitter hashtags as sentiment labels.

Keywords and tags are sometimes used to improve cluster-
ing of long documents. Begelman et al. (2006), for example,
cluster web pages by co-occurrence of XML tags and Brook
and Montanez (2006) compare tag-based clustering of blog
posts to standard bag of words algorithms, concluding that
tags are too general. All of these works differ from ours in
a number of fundamental ways: they cluster long and richly
tagged documents thus have no need to address sparseness
and secondly, they use tag co-occurrence in order to cluster
documents, completely ignoring the document content while
we leverage the content in order to overcome sparseness.

Clustering Algorithm

Given a set of tags T , a large set of sparse micro-messages S,
where some d ∈ S contain at least one tag t ∈ T , and given
k, the desired number of clusters, we want to find an optimal
partition with k sets. Generally, an optimal partition mini-
mizes the within cluster distance and maximize the distance
between clusters (we discuss various evaluations methods in
the Evaluation Methods Section). In our clustering task we
wish to obtain clusters that are based on similarity of con-
tent between the documents. The content falls under topical
classes, thus we aim at clusters that are similar to a gold
standard classification obtained by manual annotation.
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Scalable Multi-stage Clustering Algorithm
Although sparse, some domains present texts that are par-
tially tagged. This layer of tags can be exploited in order
to overcome sparseness and introduce scalability. The Scal-
able Multi-stage Clustering algorithm (SMSC) operates in a
bootstrapping manner – first it clusters the tags according to
the full content of the documents, and then uses the clusters
of tags and the centroids in order to cluster the documents
themselves. The “tag” clustering is done in batch mode while
the actual document clustering is done in an online manner.
The five main stages of the algorithm are detailed next.

Stage 1: creating non-sparse virtual documents Given
D a large2 collection of micro-messages (D ⊂ S) and a set
of tags T appearing in D (such that each d ∈ D contains at
least one tag t ∈ T ), we create a set of virtual documents
D′. The number of virtual documents in D′ is |T | – the
number of tags in T . Each dt ∈ D′ is a concatenation of all
micro-messages in D that contain a specific tag t. If some d
contains more than one tag it will be concatenated to more
than one virtual document in D′. Each dt is now represented
as a feature vector based on its words. The vectors based
on the virtual documents in D′ are not sparse since they are
based on the concatenation of multiple micro-messages.

Stage 2: batch clustering of virtual documents We now
use a kMeans algorithm in order to cluster the virtual docu-
ments in D′. The kMeans algorithm operates on a reduced
space of |T |, the number of tags, instead of |D|. C ′, the
partition achieved for dt ∈ D′ is actually a solution to a
hashtag clustering task, since each dt ∈ D′ corresponds to
a tag t ∈ T . We use c′0<i≤k to indicate the centroids at the
core of the partition C ′.

As it is assumed that |T | << |D|, the typically time con-
suming kMeans terminates faster (see Scalability subsection).

Stage 3: assigning tagged sparse documents to clusters
In the third stage, each virtual document dt is redivided to
{dti} the set of micro-messages it was originally composed
from. Each micro-message dti is now being assigned to the
same clusters the virtual document dt was assigned to.

Stage 4: online clustering of sparse documents Given a
stream S of short messages, each message si is assigned to
cluster j according to minj disance(si, cj) for 0 < j ≤ k
and any given distance function (we use the same distance
function for stages 2 and 4).

If si contains a tag t ∈ T , we can avoid the computation
of distances and si is assigned to the same cluster dt was
assigned to in stage 2.

Stage 5: model adaptation As stages 1 and 2 are highly
efficient, they can be repeated from time to time in order to
increase accuracy and reflect newly introduced topics, trends
and changes in discourse.

Scalability One of the drawbacks of the standard kMeans
and other clustering algorithms are their running time in prac-
tice. Given N data points and k clusters, and assuming m

2|D| should be big enough to enable an accurate and stable
clustering.

(m′) iterations till convergence3, the practical running of the
kMeans is T (kMeans) = m · k ·Nd +N = O(Nd) (d is
the dimension of the vector space). On the other hand, in
the proposed framework the heavy lifting is done in stage 2
after reducing the number of vectors to cluster in orders of
magnitude, thus T (SMSC) = m′ · k · gd(N) +N , where g
is a sublinear function of N (in our case g(N) =

√
N ), thus

while asymptotically T (SMSC) = O(max{gd(N), N)}),
practically, the heavy lifting is done in O(gd(N)) with only
two passes on the whole set (N ), one pass in the preprocess-
ing (stage 1) and one pass in the reassignment of individual
tweets to clusters (stage 3).

Although the batch component (stages 1–3) efficiently
clusters a very large set of documents (impractical by explicit
batch techniques), it is still incapable of handling a contin-
uous stream of data. Stage 4 clusters incoming documents
in an online manner. Once stable centroids are established
in the batch phase, each arriving document is now compared
only to the k centroids thus performing in a linear time.

Data Representation
We introduce two variations for the representation of the data
for the SMSC algorithm.

Bag of words We first took the bag of words approach,
representing each dt ∈ D′ (or d ∈ S) by the tf-idf values
of the n most frequent words in our data. We experimented
with various values of n.

Hashtag co-occurrence Stage 2 of the algorithm could
be viewed as a hashtag clustering task. We experiment with
a second setting, in which each hashtag in T is represented
by a co-occurrence vector, where values are the normalized
number of times a pair of hashtags appears in the same tweet.
The rationale behind this representation is the assumption
that hashtags that belong to the same cluster present higher
co-occurrence rate than unrelated hashtags. This type of
representation is used by some of the algorithms for cluster-
ing long documents such as (Brooks and Montanez 2006).
Obviously, co-occurrence representation is only relevant for
the batch phase in which only tagged documents are being
clustered.

Experimental Framework
The Twitter Data Set
Twitter A Twitter posting is called a tweet. A tweet is re-
stricted to 140 characters in length. This length constraint
makes characters “expensive”. Twitter allows the use of two
meta characters: ‘@’ marking a user name (e.g. @Barack-
Obama), and ‘#’ marking a hashtag: a sequence of non
whitespace characters preceded by the hash character (e.g.
#healthCareReform). The use of hashtags is a popular way
for tweeters to provide their readers with some context4, an

3We assume m is bounded and relatively small, in our experi-
ments we allow a maximum of 100 iterations, which proved suffi-
cient.

4The exact functionality of a hashtag is defined by the practice
of the community that uses it. The most frequent uses of hashtags
are as a topic marker, as a bold typeface intended to draw attention
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Category Definition size
Music Referring to songs, albums, groups, movies or TV shows based around music, technology designed for playing music, or events involving any

of these. Note that many music groups have unusual names; these still count under the ”music” category.
124

Movies Referring to movies or TV shows, movie or TV studios, events involving a particular movie or TV show, or names of performers who have a
movie or TV show specifically based around them. Names of people who have simply appeared on TV or in a movie do not count.

65

Celebrity Referring to a person or group (e.g. music group) that is featured prominently in entertainment news. Political figures or commentators with a
primarily political focus are not included.

77

Technology Referring to Web sites, applications, devices, or events specifically involving any of these. 98
Games Referring to computer, video, or twitter-based games, as well as groups devoted to such games. 23
Sports Referring to sport teams, leagues, athletes, particular sports or sporting events, fan groups devoted to sports, or references to news items

specifically involving sports.
46

Idioms A tag representing a conversational theme on twitter, consisting of a concatenation of at least two common words. The concatenation can’t
include names of people or places, and the full phrase can’t be a proper noun in itself (e.g. a title of a song/movie/organization). Names of days
are allowed in the concatenation, because of the Twitter convention of forming hashtags involving names of days (e.g. FollowFriday).

248

Political A tweet that refers to a politically controversial topic. This can include a political figure, a political commentator, a political party or movement,
a group on twitter devoted to discussing a political cause, a location in the world that is the subject of controversial political discussion, or a
topic or issue that is the subject of controversial political discussion. Religious comments are considered political due to the debate they raise.

81

None Every tweet that doesn’t fall into one of the 8 categories listed above. 343

Table 1: Definitions of tweet categories (adapted from Romero et al. 2011) and number of hashtags in each category in our corpus.

important function due to the length constraint. For example,
the hashtags #iranelection and #freeiran give the context,
topic and ideology behind the tweet “AP: Report: #Iran’s paramilitary

launches cyber attack http://is.gd/HiCYJU #iranelection #freeiran”. Also note
the use of #Iran as a hashtag and as a crucial (grammatical)
part of the sentence.

Hashtags are used extensively and are adopted organically
as part of the dynamic communication process. The extensive
use of hashtags adds an additional layer of manual “annota-
tion” to a small subset of the data.

Corpus statistics Our corpus consists of over 417,000,000
tweets from Twitter, collected from June 2009 until Decem-
ber 2009. Over three million unique hashtags were observed
in our data in over 49 million occurrences, an average of 0.11
hashtag per tweet. The hashtag frequency presents a long tail
distribution where the 1000 most frequent hashtags (0.003%
of the number of unique hashtags) cover 43% of hashtag
occurrences. Hashtags distribution presented in Figure 1. We
wish to note that while only a small subset of about 10% of
the tweets contain hashtags, they still amount to dozens of
millions a day - posing a great challenge from both theoret-
ical and practical perspective. The proposed algorithm not
only efficiently cluster this subset – it also accurately clusters
the rest of the stream.

Romero et al. (2011) classified the 500 most popular hash-
tags to nine classes, we followed their classification guide-
lines, manually classifying the 1000 most popular hashtags
in our dataset, creating a gold standard. A thousand tweets
were sampled for each of the hashtags in our list, creating a
set of one million tweets to cluster.

Following Romero et al. there are nine classes in our gold
standard: Music, Movies, Celebrity, Technology, Games,
Sports, Idioms, Political and None. The hashtag annotation
guidelines are detailed in (Romero, Meeder, and Kleinberg
2011), we slightly alter their guidelines to allow annotation
of full tweets. We list the modified guidelines in Table 1

to an important concept and a marker for the agenda of the tweeter.

Figure 1: Unique hashtags by number of occurrences. The
point marked by the red arrow means that there are about
105.5 unique hashtags that appear only twice.

along with the number of hashtags associated with each class.
We note that this classification is incomplete as hashtags
can potentially have mixed membership, falling under more
than one category, e.g #gagaVmas (reads as [Lady] Gaga [in
MTv’s] Video Music awards) could be classified under the
celebrity, music or movies/TV categories.

Sparseness In this subsection we present some statistics
regarding the experimental dataset described above. The
experimental dataset contains one million tweets: a thousand
tweets for each of the thousand most frequent hashtags. The
total number of tokens in this dataset is over twelve millions
while the number of unique tokens is slightly over 1.2 million
(after decapitalization). Tokens distribution is similar to the
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hashtag distribution and matches Zipf’s law. The number of
words per tweet is normally distributed with an average of
12.2 and a standard deviation of 0.816.

Using all words appearing more than 20 times as features
in a vector space, the dimension of the feature space is 27755
and the average number of non-zero entries for each tweet
is 8.01. Restricting the dimension to the 1000 most frequent
words in the dataset, the average number of non zero entries
drops to 5.31.

Number of Clusters
Finding the optimal number of clusters in a kMeans manner
is NP-Hard (Mahajan, Nimbhorkar, and Varadarajan 2009).
Fixing the dimension of the vector space as k makes the al-
gorithm polynomial (Inaba, Katoh, and Imai 1994). In this
work we do not aim at finding the optimal k, instead, we start
by following (Romero, Meeder, and Kleinberg 2011), hav-
ing k = 9 (see table 1). However, as noted previously, this
proposed classification is incomplete as some tweets can be-
long to more than one category and some categories could be
arguably divided to cleaner sub classes. Moreover, some
categories are exceptionally small or exceptionally large,
therefore including these categories in our experiment might
introduce some bias. In order to accommodate these obser-
vations we also report results for k ∈ {6, 7, 8, 9, 10}, given
by merging, splitting and/or removing classes. Additionally,
we present exploratory analysis of clustering of thousands of
hashtags into 1000 clusters.

Baseline Algorithms
Three clustering algorithms were used as baseline for compar-
ison: (1) a distribution-based assignment to clusters, (2) stan-
dard kMeans, and (3) a modified kMeans designed for web
scale sparse data. For both kMeans based baseline algorithms
tweets are represented by an n dimensional word vector
where, n is the n most frequent words in the corpus and the
values are the tf-idf scores of these words. We use all words
appearing more than 20 times in our data, having n = 27755.
We also experimented with n = {1000, 5000, 10000}. We
note that the vectors are practically binary and that the vec-
tors are extremely sparse due to the 140-characters restriction
of the length of tweets.

Baseline 1 Our first baseline (Dist.BL) assigns tweets to
clusters according to the class distribution observed in the
gold standard, thus cluster sizes correspond to class sizes.
We preferred the distribution of the gold standard over a
uniform distribution because it reflects the fact that some
topical classes are more popular than others. This choice is
more suitable to some of the evaluation measures such as
greedy one-to-one, making comparison between the baseline
to other algorithms more meaningful.

Baseline 2 We use the classic kMeans (MacQueen 1967),
one of the most widely used algorithms for clustering, as our
second baseline. Given k, the desired number of clusters, the
algorithm randomly chooses k centroids and iterates between
two steps: assigning each observation to its closest centroid
and updating the centroids to be the mean of each cluster
formed in the assignment stage. Thus some variations speed

up this process, the standard kMeans algorithm is not well
suited for large scale clustering as each iteration computes
distances between each data point to each centroid.

Baseline 3 In order to address issues of scalability and
sparseness, Sculley (2010) proposed the Web-Scale Fast
kMeans (WSFkM) algorithm which includes two modifi-
cations of the standard kMeans algorithm: first, he uses mini-
batch optimization for kMeans which reduces computation
costs by orders of magnitude, and secondly, a projected gra-
dient descent is used, providing a projection into the L1 ball.
This algorithm was tested on a set of one million web pages.
In this work we test its applicability to much sparser data - a
collection of a million tweets.

Evaluation Methods
A meaningful evaluation of clustering results is a challeng-
ing task to which many measures have been proposed, see
(Pfitzner, Leibbrandt, and Powers 2009; Reichart and Rap-
poport 2009; Reichart, Abend, and Rappoport 2010) for sur-
veys. Even provided with a gold standard external measure (a
correct assignment of elements to classes), there is a number
of competing measures that can be used, each has its advan-
tages and disadvantages. In this section we briefly present an
array of such measures based on different approaches such as
pair-counting, information theory and greedy mapping. Note
that measures differ in range and interpretation.

We use the following notation in all of the measures de-
scribed: Let C indicate the correct classification, let K indi-
cate the induced clusters and ack the number of items from
class c in cluster k.

Rand-Index The Rand Index (Rand 1971) is one of the
widely used measures for clusters evaluation.

RI =

∑
tp+

∑
tn∑

tp+
∑

fp+
∑

tn+
∑

fn
(1)

Where a true positive pair (tp) is a pair of documents
(d1, d2) such that d1, d2 ∈ ci and d1, d2 ∈ kj . True negative
(tn) is a pair of documents such that d1 ∈ ci, d2 ∈ cj , d1 ∈
ki, d2 ∈ kj where i 6= j. False positive (fp) pair is defined
as a pair (d1, d2) such that d1, d2 ∈ ki but d1 ∈ ci, d2 ∈ cj
where i 6= j. A pair is false negative (fn) if d1 ∈ ki, d2 ∈
kj , i 6= j while d1, d2 ∈ cj . RI is a counting-pairs measure
ranging from 0 (worst) to 1 (best).

V-measure The V-measure is an entropy based measure,
focused on clusters’ homogeneity and completeness (Rosen-
berg and Hirschberg 2007). Its range is [0,1].

V (C,K) =
2hc

h+ c
(2)

Where,

H(C) = −
|C|∑
c=1

∑|K|
k=1 ack
N

log

∑|K|
k=1 ack
N

(3)

H(K) = −
|K|∑
k=1

∑|C|
c=1 ack
N

log

∑|C|
c=1 ack
N

(4)
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H(C|K) = −
|K|∑
k=1

|C|∑
c=1

ack
N

log
ack∑|C|
c=1 ack

(5)

H(K|C) = −
|K|∑
k=1

|C|∑
c=1

ack
N

log
ack∑|K|
k=1 ack

(6)

h =

{
1 H(C,K) = 0

1− H(C|K)
H(C) H(C,K) 6= 0

(7)

c =

{
1 H(K,C) = 0

1− H(K|C)
H(K) H(K,C) 6= 0

(8)

The main disadvantage of the V-measure is that it favors
clustering with many small clusters.

VI-measure Like the V-measure, VI-measure (Meila
2007) is also an entropy based measure (VI for Variation
of Information).

V I(C,K) = H(C|K) +H(K|C) (9)
Where H(C|K) and H(K|C) are the same as in the V-

measure.
The VI-measure values are between [0, 2log N], where N

is the size of the dataset. The disadvantage of this measure is
its range. It is hard to compare between results of different
datasets in different sizes since the values have different
ranges. The VI-measure has two main advantages over the
V-measure: it satisfies the metric axioms and it is convexly
additive thus changes are local. Splitting or merging clusters
only impact the clusters involved.

In contrast to RI and V , the values of the VI-measure
decreases as the clustering becomes more complete and more
homogeneous. The perfect clustering has V I = 0.

NVI-measure NVI-measure (Reichart and Rappoport
2009) is a normalization of the VI-measure.

NV I(C,K) =

{
H(C|K)+H(K|C)

H(C) H(C) 6= 0

H(K) H(C) = 0
(10)

Where H(C|K), H(K|C), H(C) and H(K) are the same
as in the V-measure. This normalization keeps the two advan-
tages of the VI-measure while fixing the range and allowing
comparison to other datasets. The values of the NVI-measure
decreases as the quality of clusters increases.

Greedy many-to-one This is a simple measure based on
mapping clusters to classes in a greedy manner (Zhao and
Karypis 2002).

GM1(C,K) =
1

N

|K|∑
k=1

max
c∈C
{ack} (11)

Greedy one-to-one The induced clusters (K) are mapped
to the gold standard classes (C) (Reichart, Abend, and Rap-
poport 2010).

G11(C,K) =
1

N

|K|∑
k=1

aikk (12)

Where ik is the class index assigned to an induced cluster
k by the Kuhn-Munkres algorithm for maximum matching
in a complete bipartite graph (Munkres 1957).

F-measure F-measure tailored to multi-class clustering
evaluation (Fung, Wang, and Ester 2003):

F (C,K) =
∑
c∈C

|c|
N

max
k∈K
{F (c, k)} (13)

Recall(c, k) =
ack
|c|

(14)

Precision(c, k) =
ack
|k|

(15)

F (c, k) =
2 ∗Recall(c, k) ∗ Precision(c, k)

Recall(c, k) + Precision(c, k)
(16)

Gold Standard Sets
All the measures mentioned above require a gold standard of
ground truth classification. We computed each of the mea-
sures using a number of different gold-standard sets. These
annotated sets are shared at the authors web page.

Tweets Gold Standard (TGS) We sampled 1000 tweets
from our dataset and had them manually classified by two
human annotators. The annotators agreed on 97.4% of the
sampled tweets, that constituted the TGS gold standard. In
order to classify tweets, our SMSC algorithm reduces the
clustering task to a hashtag clustering task. The TGS set
allows us to evaluate the algorithm directly on tweets and
to verify the conformity between the indirect hashtag-based
multi-stage clustering and the content of an individual tweet.

Hashtags Gold Standard (HGS) The core assumption
driving this work is that tags can be leveraged for bootstrap-
ping in content based clustering of a sparse collection of
documents. In order to classify tweets, our SMSC algorithm
reduces the clustering task to a hashtag clustering task. We
thus follow the classes definition and classification provided
by (Romero, Meeder, and Kleinberg 2011)5, creating a gold-
standard of manually classified hashtags. The HGS set allows
us to test our algorithm on a larger scale as only the hashtags
need to be manually classified.

No Tags TGS (NTTGS) In order to evaluate the online
component of our algorithm we use another gold standard
set. The NTTGS is the manually annotated set used as the
TGS but it is used after the hashtags were removed from the
tweets in order to simulate a stream of untagged data.

Results
In this section we report results for the range of experimental
settings. All reported results were obtained by averaging
experiments in a 10-fold manner. Similar rankings of algo-
rithms were obtained in each individual execution.

5Though we used twice as many hashtags.
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Alg. RI ↑ V ↑ VI ↓ NVI ↓ GM1 ↑ G11 ↑ F ↑
Dist.BL 0.68 0.02 3.6 1.95 0.356 0.21 0.24
kMeans 0.72 0.07 3.63 1.96 0.38 0.2 0.22
SMSC 0.8 0.29 2.82 1.51 0.52 0.42 0.44

Table 2: Batch clustering results against the tweets gold standard (TGS), vectors
based on 10000 most frequent words and random centers. For ease of reading, we
indicate (in all tables) whether a higher score is better (↑) or whether a lower score is
better (↓).

Alg. RI ↑ V ↑ VI ↓ NVI ↓ GM1 ↑ G11 ↑ F ↑
Dist.BL 0.72 0.001 3.8 2.01 0.31 0.18 0.21
kMeans 0.75 0.06 3.74 1.96 0.36 0.22 0.23
WSFkM 0.22 0.002 (1.91) (1.004) 0.31 0.31 0.3

SMSCht 0.78 0.18 3.27 1.72 0.46 0.36 0.42
SMSC 0.80 0.27 2.94 1.54 0.5 0.4 0.46

Table 3: Batch clustering results against the hashtag gold standard (HGS), vec-
tors based on the 10000 most frequent words and random centers. (See footnote 7
regarding results in parenthesis.)

Batch component
Table 2 presents results of a baseline of the standard kMeans
and results of the batch component of our algorithm (SMSC)
against the 1000 tweets in the tweet’s content gold standard
(TGS). Our algorithm’s Rand index is 0.8, the Greedy many-
to-one is 0.52 and the F score is 0.44. The greedy mapping
and the F score values confirm that classification of such a
sparse data is hard and that class definitions are fuzzy. How-
ever, our algorithm significantly outperforms the baseline in
all seven measures (note that in some measures, indicated by
↑, a higher score is better while in other measures, indicated
by ↓, a lower score means better results).

Results of the standard kMeans are similar, in most mea-
sures, to the distribution-based baseline, demonstrating the
challenge posed by sparseness and the limitations of the stan-
dard approach. Achieving these results on the TGS set estab-
lishes the validity of the reduction from tweets to hashtags
that is performed in stage 1 of SMSC.

We next check the scalability of the batch component.
Table 3 presents results of four algorithms, evaluated against
the million tweets in the HGS set. Our SMSC algorithm
outperforms all other algorithms in all measures6.

Surprisingly, the WSFkM baseline, designed to address
large and sparse collection of web pages, performed poorly
on our data. Examining the actual clusters produced by the
WSFkM baseline, we see that one big cluster was created
containing all tweets but a handful. We attribute that to the
batch sampling used in order to achieve scalability. This
sampling cannot handle extremely sparse micro-messages,
though proven suitable for clustering web pages.

6The WSFkM baseline seemingly achieves the best results in
the VI and NVI measures, however, these results are meaningless
as the WSFkM creates one cluster containing almost all instances
and k − 1 clusters each containing 1 or two instances. Since VI
and NVI favor big clusters, the case of which most instances are
assigned to the same cluster achieves low (good) score. This very
peculiarity is discussed in the section Extreme Cases for the Two
Measures in (Reichart and Rappoport 2009).

Alg. RI ↑ V ↑ VI ↓ NVI ↓ GM1 ↑ G11 ↑ F ↑
Dist.BL 0.68 0.02 3.6 1.95 0.356 0.21 0.24
kMeans 0.72 0.07 3.63 1.96 0.38 0.2 0.22
SMSC 0.71 0.099 3.33 1.77 0.43 0.32 0.33

Table 4: Online clustering results against the tweets gold standard (NTTGS), vec-
tors based on 10000 most frequent words. Centroids are computed by the batch com-
ponent initialized with random centers. The kMeans results are for standard batch
kMeans algorithm.

dim RI ↑ V ↑ VI ↓ NVI ↓ GM1 ↑ G11 ↑ F ↑
27755 0.79 0.25 2.99 1.56 0.48 0.38 0.43
10000 0.8 0.27 2.94 1.54 0.5 0.4 0.46
5000 0.8 0.27 2.96 1.54 0.48 0.41 0.44
1000 0.78 0.25 2.94 1.53 0.48 0.4 0.45

Table 5: Batch clustering results against the HT gold standard for various vector
dimension (d).

Online component
Table 4 presents results of the online clustering of untagged
tweets. The online component of our SMSC algorithm out-
performs the baseline in all seven measures and outperforms
the standard kMeans in six of the measures while results for
the RI are comparable. The results presented in Table 4 can
serve only as a basic indication for the quality of clusters
achieved by our SMSC, however they do not reflect the real
advantage of the SMSC. One should recall that the standard
kMeans operates in a batch mode – iterating until a stable
partitioning is found, thus impractical for a massive stream of
documents, while the online component operates in a linear
time with very low constants (the desired number of clusters).

Variations in parameters of the SMSC
In this section we present detailed results for different set-
tings of the SMSC algorithm. In order to further test how
SMSC copes with sparseness, we experimented with various
dimensions of the vector space defined by the virtual docu-
ments. The features for the vectors are the tf-idf values of
the n most frequent words in the data, where n varies from
1000 to 27755 (all words appearing more than 20 times in the
data). Best results are obtained with n = 10000, achieving
best score in five of the seven measures, though results on
other dimensions are comparable (see Table 5) .

Table 6 lists the average number of non-zero entries in
each dimension as well as the running times (in seconds)7.
While the kMeans clustering takes more than an hour even
in the narrowest dimension (top 1000 words) and almost ten
hours with the full length vectors (27755 words), the SMSC
algorithm converged in 27 seconds in the narrow setting and
in only five minutes in the full dimension setting. The Web
Scale Fast k-Means baseline converges in less than 2 seconds
in all settings, however, we do not report it in Table 6 due to
its poor performance on our data (see Table 3). The efficiency
of the batch component makes it practical to recompute from

7Compare to the average number of non-zero elements in the
vectors of the standard kMeans, given in Sparsness subsection.
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Alg. / dim 1000 5000 10000 27755
kMeans 5703 6486 18632 34744
SMSC 27 52 129 308

Non-Zero 447.5 1096.7 1438.4 1831.8

Table 6: Convergence time (in seconds) of the batch component, given different
dimensions of the vector space. All tests were performed on a single machine with
6 Intel(R) Core(TM) i5-2400 3.10GHz CPU units and 8GB memory. Non-Zero indi-
cates the average number of non-zero elements in the vectors of the virtual documents
used for the SMSC.

time to time in order to capture emerging topics and trends,
as suggested in stage 5 of the algorithm.

In addition, we used a hashtag co-occurrence based repre-
sentation (SMSCht in Table 3) instead of the bag of words
representation. While the hashtag co-occurrence based rep-
resentation performs better than all baselines, it is being
outperformed by the bag of words representation based on
the virtual documents. This result shows that although related
hashtags tend to appear together more than unrelated hash-
tags, co-occurrence is still relatively sparse, comparing to the
bag of words in the virtual documents, thus bootstrapping of
content and tags is needed.

Cluster and class distribution analysis
As discussed in the Evaluation Methods section, clustering
evaluation measures can be hard to compare and interpret. In
this section we provide a deeper view of the clusters and the
domain.

In an optimal partition we expect completeness and homo-
geneity – all tweets of class k will be clustered in a single
cluster c, and each cluster c only contains tweets of a sin-
gle class k. However, this is hardly the case in real world
clustering tasks, especially when the data is as sparse, noisy
and informal as in social media streams. Twitter idioms, for
example, are not expected to be related as what makes a tweet
idiomatic is not the real content but the playful addition of
an idiomatic hashtag to the content (e.g. ‘#theresway2many ways

to procrastinate in the library when you have internet...’ vs. ‘#theresway2many
microphones being wasted on talentless hacks’). Having more than half of
the idioms in one cluster (cluster 5 in Figure 2) suggests that
the Twitter ‘culture’ imposes some patterns on seemingly
unrelated idioms. This is a fascinating phenomena from a
socio-linguistic perspective, however we leave it for future
research.

Another notable class is games for which more than 80%
of the tweets are clustered in two clusters (clusters 4 & 7),
reflecting the fact that the games class (as defined in Table
1) has a strong connection to the technology class (due to
the use of game consoles like X-Box, SPS, WII) and present
some confusion with the sport class (with terms such as win,
lose, game, play etc.).

Tweets of the music class present relatively poor complete-
ness and homogenity, as they are scattered between a number
of clusters (clusters 2,4 and 9 each contains about 20% of
the tweets of this class, the rest is divided between the other
five clusters). This is reasonable as many musical tweets
carry no real information thus a bag of word approach fails
to find similarity. The following four tweets present a some-

what extreme example: (1) ”When you love someone and they break your

heart, don’t give up on love; have faith, restart” #JoeJonas (a fan quoting a
song by the Jonas Brothers), (2) PEARL JAM TEN GOLD RECORD

AWARD For Sale: http://bit.ly/4szFuW via @addthis #giftideas #christmas and the
spam-like8 (3) @JonasBrothers #BrazilwantsJB #JBcomebacktoBrazil #Brazil-

wantsJBagain and (4) #justinbieberarmy #justinbieberarmy #teenisland @teenis-

land #justinbieberarmy #teenisland.
Examination of the homogeneity of clusters (the percent-

age of each class within the cluster) is also needed due to
the high variance in class size (Table 1). For example, while
games, the smallest class, seems to dominate one of the clus-
ters with 50% of the class instances falling into this cluster
(cluster 4, Figure 2), it actually occupies only 10% of the
cluster, almost unnoticed among other tweets from much
bigger classes (Figure 3).

On the other hand, cluster 5 is dominated by the idioms
class occupying almost 90% of the cluster and politics domi-
nating cluster 8 (Figure 3). Tweets from the class none are
dominant in all clusters though this is to be expected due to
the lack of clear definition of this class and due to the fact
that none is the biggest class consisting of 34% of our data
(see Table 1).

Varying the number of clusters
In order to further learn the connections between classes we
experimented with different number of clusters, altering the
gold standard accordingly. Some of the variations include
merging the music and celebrity classes (many singers are
also teen idols and reality show figures), removing the none
and/or the idioms classes (these classes are unproportionally
big and vaguely defined) and splitting political to religious
and (inter)national politics.

We find that while removing none improved results, re-
moving idioms actually worsen results. Comparison suggests
that while instances of the none present low homogeneity
and do not share any specific patterns (as this class contains
very many topics that were not defined by (Romero, Meeder,
and Kleinberg 2011)), a significant part of the idioms does
share a latent pattern. This is similar to the results observed
in the basic k = 9 clustering tasks.

Further results for various number clusters and different
classes are presented in Table 7. Note that not all the num-
bers in Table 7 are comparable, as experiments differ in the
number N of instances to cluster and in the desired number
k of clusters (see Evaluation methods Subection regarding
results comparability).

Exploratory analysis of fine grained clustering
In previous sections we presented a clustering framework
for large scale clustering of micro-messages into general do-
mains. We provided extensive evaluation, demonstrating that
tweets clustering can be reduced to hashtag clustering by
concatenation of tweets to longer documents. In this sec-
tion we briefly discuss the applicability of this framework to
finer granularities of clusters. We tried to cluster the 10000
most frequent hashtags into 1000 clusters. We repeated the

8Although appearing as noise, these tweets are tweeted and
retweeted by fans of the singer Justin Bieber and the Jonas Brothers.
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Figure 2: Distribution of gold standard classes in clusters (class completeness). Y axis corresponds to cluster size. The sum of a colored fraction across bars equals to the class
size.

Figure 3: Percentage of class in each cluster with respect to cluster size (cluster homogeneity)

clustering process five times, eventually keeping only the
clusters that remained relatively stable. These stable clusters
contained 7232 hashtags. Unlike the previous settings de-
scribed in the sections above, in this setting we do not have
an annotated gold standard set that can be used for accurate
evaluation of the clustering results. Creating such a gold
standard is not feasible as annotators must be well aware of
the different nuances of the usage of thousands of hashtags
as well as assigning these hashtags to thousand categories.
We can thus offer only exploratory evaluation of the results.
Exploratory analysis is rather common in the application of
clustering techniques in data mining tasks.

The average cluster size is 8.2 with a standard deviation
of 15.7, size median is 5 and there are three outliers contain-
ing more than 200 seemingly random hashtags. Manually
examining the clusters, many seem to be of very good qual-
ity, for example the clusters: (#camera #cameras), (#recycle #ecology)

and (#neda9 #freeiran #iranelection #iranrevolution #tehran #iranelecton #mousavi10

9Neda Agha-Soltan – was killed during the 2009 Iranian election
protests and became the symbol of the demonstrations.

10Mir-Hossein Mousavi – an Iranian politician, leader of the
opposition (“green movement”) during the 2009 elections.

#iranelction #moharram)11.
One of the interesting findings in this exploratory analysis

is that idioms are clustered together in finer grained clusters,
e.g. (#justbecause #justcause #justcuz #justbeacuse #justbecuz #justbcuz #jusbe-

cause) although there is no explicitly expected topic for these
hashtags. This is in line with the results described in the
Cluster and class distribution analysis subection, suggesting
that idioms (mainly twitter association games) have a latent
structure.

Conclusions
In this work we presented SMSC – a scalable, accurate and
efficient multistage clustering algorithm. Our algorithm lever-
ages users’ practice of adding tags to some messages by boot-
strapping over virtual non sparse documents. Experimenting
on a large corpus of tweets from Twitter, we demonstrated
that SMSC achieves better results than other clustering al-
gorithms. The algorithm is scalable and more efficient in
practice than other algorithms. Moreover, the framework
proposed is generic in the sense that the kMeans algorithm

11Typos and variation like #iranelection and #iranelction are as
they appear in the data.
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Classes RI ↑ V ↑ VI ↓ NVI ↓ GM1 ↑ G11 ↑ F ↑
base 0.80 0.27 2.94 1.54 0.5 0.4 0.46

(m+c) 0.77 0.22 3.02 1.68 0.49 0.36 0.41
-n 0.82 0.27 2.82 1.5 0.49 0.43 0.49
-i 0.73 0.15 3.2 1.8 0.44 0.29 0.31

-n-i 0.81 0.24 2.84 1.52 0.43 0.38 0.41
-ni(m+c) 0.74 0.19 2.69 1.6 0.5 0.44 0.46

p/2 0.79 0.21 3.3 1.71 0.46 0.32 0.36

Table 7: SMSC clustering results on different numbers of clusters. base: 9 classes
detailed in Table 1. (m+c): music and celebrity merged, -n: none removed, -i: idioms
removed, p/2: political is split to 2 classes – religious and national policy. Evaluation
against the HT gold standard, vector size = 10000, and random centers.

used in stage 2 of the algorithm can be replaced by other
clustering algorithms, depending on the nature of the desired
clusters.

Future research directions include further adaptation of the
algorithm to finer granularities. In future research we also
plan to address (socio-)linguistic issues such as the latent
pattern seemingly exists in the idioms class and use the pro-
posed clustering method to further explore other patterns in
information diffusion and propagation.
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