
Leveraging Noisy Lists for Social Feed Ranking

Matthew Burgess, Alessandra Mazzia, Eytan Adar, Michael Cafarella
University of Michigan, Ann Arbor

{mattburg, amazzia, eadar, michjc}@umich.edu

Abstract

Active users of social networks are subjected to extreme
information overload, as they tend to follow hundreds (or
even thousands of other users). Aggregated social feeds on
sites like Twitter are insufficient, showing superfluous con-
tent and not allowing users to separate their topics of interest
or place a priority on the content being pushed to them by
their “friends.” The major social network platforms have be-
gun to implement various features to help users organize their
feeds, but these solutions require significant human effort to
function properly. In practice, the burden is so high that most
users do not adopt these features. We propose a system that
seeks to help users find more relevant content on their feeds,
but does not require explicit user input. Our system, BUTTER-
WORTH, automatically generates a set of “rankers” by iden-
tifying sub-communities of the user’s social network and the
common content they produce. These rankers are presented
using human-readable keywords and allow users to rank their
feed by specific topics. We achieve an average top-10 preci-
sion of 78%, as compared to a baseline of 45%, for automat-
ically generated topics.

Introduction
Over the past few years, online social networks have

shifted focus from socialization platforms to information
hubs. Users log onto social networks to obtain the latest
updates from their personal friends as well as commentary,
links, and news from colleagues and subject-matter experts.
The conventional mechanism for displaying this information
is the social feed, a long (usually) time-ordered list of up-
dates. Active users of social networking sites like Twitter can
follow the updates of hundreds or thousands of other users.
This can produce feeds that contain hundreds of new items
per hour, many of which are irrelevant to the user. As social
networks snowball in popularity and friend networks grow
in size, users become increasingly less able to find relevant
content as both context and channels collapse.

Users’ feeds often contain a heterogeneous mixture of in-
formation from many sources and on a variety of topics.
This heterogeneity is caused by context collapse, the phe-
nomenon in which many people, usually situated in differ-
ent contexts, are suddenly grouped together. For instance, a

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

user Alice may be primarily interested in data mining, but
also interested in cooking and literature. She follows topic-
matter experts on all these subjects, but because the primary
consumption mechanism is a single social feed, all messages
will become intermingled regardless of what they are about.

The converse of the context collapse problem is channel
collapse. While context collapse describes the consumption
of information—all the people a user follows push their up-
dates into one place—channel collapse describes the produc-
tion of content. A particular user, Jane, may be followed by
others for many reasons: her family for pictures of the grand-
children, gamer buddies for the latest news on new releases,
and work colleagues for Java coding tips. However, because
Jane has only one output mechanism available to her, any
content she creates—be it pictures of her children or Java
tips—will be seen by all subscribers to her feed, whether
they are interested in the topic or not. Alice, who follows
Jane only because of their shared interest in games, will be
forced to sift through irrelevant Java tips and family pictures.
Conversely, Jane’s father must get through coding and gam-
ing messages before getting to the pictures.

In response to the problems of context and channel col-
lapse, social networking sites have implemented features
that allow users to group their friends into lists. Lists let
users better organize their feeds by grouping friends who
share a similar context; users can then access sub-feeds that
only contain content from friends in that grouping. In many
situations these lists are intended to aid in consumption, but
recent trends in interfaces for these systems also allow lists
to be used for targeting produced content. Allowing users to
target their posts based on the topic of the content has the po-
tential to alleviate channel collapse. While such features can
help users better organize their feeds, they require signifi-
cant human effort, as well as widespread adoption, in order
to be effective.

In this paper we propose BUTTERWORTH, a system that
provides a solution to both context collapse and channel col-
lapse. We observed in pilot experiments that when users cre-
ate lists, they are also implicitly indicating which content
produced by members of that list they are interested in. This
is most often the topics discussed in common by all mem-
bers of that list. For example, when creating a visualization
list, a user includes other users who post about visualization.
Each user in the list may post about whatever other topic she

Proceedings of the Seventh International AAAI Conference on Weblogs and Social Media

31

also finds interesting, but a common topic across all of their
posts will likely be visualization. By finding this common
core, it becomes easy to train a ranking algorithm to high-
light posts related to visualization. Unfortunately, most users
do not create lists.

To address this issue, we designed BUTTERWORTH to
leverage manually created lists when available, but also
to automatically identify people who should be placed to-
gether in a list. Unlike topic-modeling approaches, which
are highly sensitive to input, computationally complex, re-
quire substantial tuning, and are difficult to present to users,
BUTTERWORTH’s novel approach leverages the inherent ho-
mophily of social networks. By mining a specially weighted
version of a user’s social network, BUTTERWORTH can scal-
ably build lists that closely simulate manually created lists,
down to picking human readable list labels. For each of these
topics BUTTERWORTH generates a “ranker” that re-orders
the user’s feed by the relevance of the items to the selected
topic. BUTTERWORTH leverages only a user’s social net-
work and content produced by their friends; it therefore re-
quires no direct supervision from the user.

We have tested each component of BUTTERWORTH and
have shown that it is able to achieve high levels of precision
and recall, on both topic discovery and ranking. We have de-
signed BUTTERWORTH to be broadly applicable to all main-
stream social network platforms, but have chosen Twitter as
our platform due to its popularity and public API.

Related Work
There has been a substantial amount of recent research

on managing social media data. However, this work has ei-
ther emphasized text-only approaches (e.g., better ranking
and topic modeling) or network-only strategies (e.g., com-
munity detection). BUTTERWORTH seeks to leverage both
approaches to create a more robust technique that can be
readily integrated into user interfaces in a manner consistent
with users’ expectations.

The bulk of work in social media ranking has focused
on classifying posts in a user’s feed (Dahimene, Mouza,
and Scholl 2012; Das Sarma et al. 2010; Hong et al. 2012;
Paek et al. 2010; Pal and Counts 2011; Sriram et al. 2010;
Uysal and Croft 2011). Both Hong et al. (Hong et al.
2012) and Das Sarma et al. (Das Sarma et al. 2010) pro-
posed ranking mechanisms based on collaborative filter-
ing techniques. Hong et al. used a click-through rate based
model while Das Sarma et al. compared various mecha-
nisms based on different types of user supervision, includ-
ing having the user provide pair-wise comparisons of feed
items. Paek et al. and Dahimene et al. (Paek et al. 2010;
Dahimene, Mouza, and Scholl 2012) built ranking and fil-
tering methods that are personalized for each user and which
explicitly model the user that is producing the tweet. Uysal
et al. (Uysal and Croft 2011) describe methods to predict the
likelihood of retweets (a user propagating a tweet to friends),
and used the likelihood of retweet as the ranking score.
Pal et al.’s algorithm for finding relevant Twitter users (Pal
and Counts 2011) is an unusual point in the space as it at-
tempts to identify topic experts using a classifier that lever-
ages features such as follower counts and retweeted content.

These approaches address both content and context collapse
by learning user preferences and hiding irrelevant content.
However, these models do not necessarily aid a user in orga-
nizing her information–an explicit goal of BUTTERWORTH.
Additionally, while effective with enough training data, such
systems often require a great deal of training data to be use-
ful. One of the goals for BUTTERWORTH was not to require
direct input from the user, but instead leverage the inherent
homophily in a user’s social network to provide high quality
groups, and subsequently, rankings.

A different approach to data management focuses on or-
ganizing and classifying rather than ranking. If content is
clustered for a user based on topic, she may identify and se-
lect the information that is relevant to her. Topic modeling
based methods (both on users and content) feature promi-
nently in this space (Hong and Davison 2010; Lin, Snow,
and Morgan 2011; Ramage, Dumais, and Liebling 2010;
Xu et al. 2011). Inspired by these ideas, an earlier version of
BUTTERWORTH attempted to build Latent Dirichlet Alloca-
tion (LDA) topic models. While useful for describing lists,
we encountered many common problems: they were com-
putationally costly, highly sensitive to noise, and required
too much tuning to work effectively across a broad spec-
trum of users. Further, providing interpretable descriptions
for topic models is a notoriously difficult problem, and even
“optimal” models may not be consistent with reader pref-
erences (Boyd-Graber et al. 2009). Prior work has demon-
strated that unlike topic models, the names of lists in which
a particular Twitter user appears are much better representa-
tions of the expertise of that user (Wagner et al. 2012). Be-
cause of these common problems, we chose to move away
from topic modeling.

In addition to the topic-modeling work for analyzing the
individuals a user may follow, there has been a small amount
of work on explicitly managing lists on social networks. Kim
et al. (Kim et al. 2010) conducted an analysis of lists on
Twitter and concluded that topic-centric lists contain users
who tend to publish content on similar topics, reinforcing
the motivation for our distant supervision heuristics. An-
other analysis by Fang et al. (Fang, Fabrikant, and LeFevre
2012) studied sharing “circles” on Google+, and discovered
that circle sharing enabled users with few contacts to grow
their networks more quickly. In this arena, our work is most
similar to that of Guc (Guc 2010), which describes a filtering
mechanism for “list-feeds”; however, that work is framed as
a standard supervised learning problem that also requires ex-
plicit training data from the user.

Finally, a number of research systems have focused on
creating interfaces that enable users to more efficiently
browse their feed (Bernstein et al. 2010; Hong et al. 2010;
Tseng, Chen, and Chen 2012). For example, Eddi (Bern-
stein et al. 2010) displays a browsable tag cloud of all the
topics in a user’s feed, allowing the user to more easily
find tweets related to her interests. FeedWinnower (Hong
et al. 2010) is an interface that allows users to rank tweets
by different tunable parameters such as time and topic.
Tseng et al. proposed a (graph) visualization system called
SocFeedViewer (Tseng, Chen, and Chen 2012), that al-
lows users to analyze a topological view of their social

32

graph. SocFeedViewer implements community detection al-
gorithms to group similar users; as with BUTTERWORTH’s
lists, these community feeds may contain irrelevant content,
a problem that SocFeedViewer does not address. Many of
these systems apply one or more of the ranking and clas-
sification techniques described above. This, unfortunately
yields lower precision and recall. The higher quality group-
ing and ranking strategy of BUTTERWORTH can be readily
integrated into various commercial and research interfaces
and directly improve their function.

Problem Overview

Since BUTTERWORTH is focused on an end-user bur-
dened by irrelevant feed content, we present user scenarios
that describe today’s current situation as well as the feed
interaction enabled by BUTTERWORTH. We then give an
overview of BUTTERWORTH’s major components.

User Scenario

To see how users struggle with today’s social feeds, re-
call our example user Alice. Alice has joined Twitter to
find information about data mining, literature, and cooking.
She follows many users who generate content on her main
interests, but she also follows other users for various rea-
sons (e.g., they are co-workers, family members, etc.). While
sometimes Alice enjoys browsing her feed to see the latest
content from her friends, at other times she wants to see only
content related to her main topics of interest. With the tradi-
tional feed mechanism, Alice suffers from context collapse;
if she wants to see only content related to cooking, she must
manually search through her feed to find cooking tweets.
Since Alice is interested in cooking, she could devote some
time to using Twitter’s list feature to group together all of
her friends who write about cooking. When Alice clicks on
her cooking list she is shown a sub-feed consisting of only
content from the users in the cooking list. Sadly, this does
not help Alice very much, since she realizes that the friends
she follows for cooking information also write about many
other topics. Alice’s lists allow her to break up her feed into
contextualized groups, but this is not enough, as channel col-
lapse fills even her list-specific feeds full of irrelevant con-
tent.

Alice’s experience is very different when she uses BUT-
TERWORTH. Once Alice logs into Twitter, BUTTERWORTH
automatically identifies her topics of interest and presents
them to her. If Alice has already created a list, such as her
cooking list, then BUTTERWORTH can incorporate it into
the topics presented (though manual list creation is not re-
quired). Alice is then able to choose a topic that interests
her; when she does, messages in her feed are ranked by their
relevance to the topic selected. Alice’s feed is no longer af-
fected by context collapse, since BUTTERWORTH automat-
ically generates lists that correspond to her interests. In ad-
dition, her feed is no longer affected by channel collapse,
since BUTTERWORTH pushes the relevant content to the top
of her feed.

System Architecture
BUTTERWORTH comprises three main components, as

seen in Figure 1. The list generator partitions friends into
lists by analyzing their social network. These user lists are
then fed into the list labeler that generates a concise label
representing the list’s (central) topic. The generated lists are
then sent to the topic ranker, which trains ranking models
for this core topic. The models can then be used to rank the
user’s feed by the selected topic.

List Generator The first step in the BUTTERWORTH
pipeline is to automatically discover groups of users that
discuss similar topics within a user’s ego network, and to
partition the members of this network into lists. The ego-
network is a subset of the social network (in this case, a
modified and weighted follower/followee graph). It is de-
rived from the friends connected to a core “ego” individual
and the links among these friends, excluding any edges to
the ego node. The goal of this module is to generate lists
(we call these topical lists) such that each list corresponds
to one of the user’s topics of interest. Even if a user’s main
objective on Twitter is to obtain information on topics of in-
terest, they likely follow users for a variety of other reasons.
For instance, a user may follow their co-workers or family
members. The generated lists for a user may therefore also
include these contextual lists that are less topically coherent
(e.g., lists that contain users who all live in the same town or
are all family members). After computing these topical and
contextual lists, the list generator filters out all contextual
lists (as described in the Graph Clustering section).

For an example we turn back to Alice. The list generator
takes as input Alice’s ego network and partitions all of her
friends into lists. Some of these lists will correspond to her
interests like cooking and data mining, and others will con-
tain her college friends, co-workers, etc. The list generator
then removes the contextual lists, so that only the topical
lists remain.

While generating high-quality lists is an important prob-
lem, it is not BUTTERWORTH’s end goal; we formulate these
lists in order to produce high quality topic rankers. While
low-quality lists can have a bad effect on downstream rank-
ing performance, we show experimentally that perfect lists
are not required for high-quality ranking. The ideal output
of the list generator is a set of lists that comes close to the
quality of lists that users generate themselves, which is how
we evaluate this component in the experiments.

List Labeler BUTTERWORTH’s second component is the
list labeler. It generates relevant and human-understandable
labels for each of the lists generated in the previous step.
These labels are also attached to the generated rankers and
are intended for display to the user in the system interface,
enabling her to select which topic ranking she wants applied.
For example, the list labeler should name Alice’s cooking
list as “cooking” or something similar. While it is, of course,
possible to formulate lists without generating accompanying
labels, the resulting interface would be substantially harder
to use—Alice would need to resort to clicking on all the
BUTTERWORTH-given topics and reading sets of tweets to
discover the topic behind each one.

33

User's Ego-Network Unlabeled Lists Topic-Labeled Lists

Cooking

Sports

Per-Topic Ranking

List
Generator

List
Labeler

Topic
Ranker

User's Feed

Figure 1: BUTTERWORTH has three components. The list generator groups a user’s social contacts into topically coherent lists.
The list labeler synthesizes labels for those lists. The topic ranker learns a ranking model for each topic by using each list to
heuristically label training data.

We propose two different labeling algorithms, using net-
work as well as textual features (including list labels gen-
erated by others, content, and user biographies). An ideal
output for the list labeler is a topic string that is semanti-
cally close to the label a human would give to the same list.
We evaluate the list labeler’s output by comparing it to some
simple synthetic baselines, as well as asking human judges
to rate its relevance.

Topic Ranker The final component of BUTTERWORTH is
generating a ranking model for each identified topic. The
topic ranker takes as input the past tweets from the set of
users in each list that was labeled in the previous step. It
proceeds in two steps. First, it generates a label (“relevant”
or “irrelevant”) for a subset of the user’s tweets. Second, it
uses this synthetically generated labeled data to train a naı̈ve
Bayes model. Once a ranking model is trained for each topic,
the model can be applied to rank a user’s feed by the corre-
sponding topic. For example, after Alice selects the cooking
topic, her entire feed would be re-ordered such that the cook-
ing tweets are pushed to the top of the list. Note that we pur-
posely rank the entire feed to deal with both false-positive
and false-negative assignment of users in the list generation.

In order to train each ranker, we propose various heuristics
to automatically generate “relevant” and “irrelevant” labels
for training examples—a form of distant or self-supervised
learning. The main intuition behind these heuristics is that
since the users contained in each list discuss similar topic(s),
the most frequently discussed topics are most likely to be
relevant. An ideal output of the ranker would order a user’s
feed such that all of the content relevant to the list appears at
the top of their feed. We use standard information retrieval
techniques to evaluate the ranking quality.

Algorithms
Here we describe how we implement each of the compo-

nents above: the list generator, the labeler, and topic ranker.

List Generation
The goal of list generation is to take a user’s ego-network

and partition the friends into topically coherent lists. Fortu-
nately, partitioning the nodes of a graph into subsets is one
of the topics addressed by graph clustering research. In par-
ticular, the algorithm of Pons and Latapy (Pons and Latapy
2005) takes as input an undirected weighted graph, then pro-
duces a disjoint set of node sets. An edge weight in the input

network generically describes the strength of the link be-
tween two nodes. In principle, we can take the (unweighted,
directed) ego-network to create a (weighted, undirected) in-
put to the clustering algorithm, and then call each of the al-
gorithm’s clusters a list.

Of course, the quality of clustering depends largely on the
network we formulate as input. By choosing edge weights
differently, we can obtain different kinds of clusterings. We
have found that using weights that take into account shared
topics leads to groupings that emphasize these topics while
de-emphasizing contextual relationships (family, childhood
friends, etc.) that are, for our purposes, “spurious.”

Each ego-network consists of a set of nodes, N , and a set
of directed edges, E, where each edge indicates the pres-
ence of a follower-followee relationship. For simplicity, we
first convert each directed edge in E to an undirected edge.
Then, we use a combination of network features and textual
features to produce E′, the set of weighted edges.

For each pair of nodes (u, v), where u ∈ N and v ∈ N ,
we produce a weighted, undirected edge eu,v using a modi-
fication of the user similarity measure presented in (Adamic
and Adar 2003):

sim(u, v) =
∑

x∈sharedneighbors

1

log[degree(x)]

+
∑

t∈sharedterm

tfidf(ut) ∗ tfidf(vt) + E(u, v), (1)

where E(u, v) = 1 when eu,v ∈ E, and 0 otherwise.
If sim(u, v) > 0, then eu,v is added to E′ with weight
sim(u, v). To produce the “shared term” weights, we first
produce a TF-IDF-weighted term vector for each node n ∈
N , limiting the per-user vocabulary to the 10 top-scoring
words. In examining the networks produced by our edge
weighting algorithms, we realized that many networks ap-
peared extremely dense. To correct for this, we discard all
edges with weight less than a threshold parameter α.

Graph Clustering After we have produced a weighted,
undirected graph, we perform graph clustering to obtain a set
of lists. Currently, we apply a common approach based on
random walks (Pons and Latapy 2005), as implemented in
the iGraph R package. The clustering algorithm uses prop-
erties of random graph walks to produce a disjoint set of

34

Table 1: The top three ranked tweets for automatically generated lists labeled environment, fashion, and sports (list labels are
also automatically generated).

Environment Join us in helping get the 2012 Olympics off plastic bags!...
Heading to Patagonia Santa Monica store to bring 5 Gyres display on plastic pollution..
Starbucks Trash: Behind the Scenes :: My Plastic-free Life — Less Plastic...

Fashion Anchors away in this Vintage Yellow Sailor dress! Newly listed...
STUNNING Vintage Paisley Teal Spring Dress!...
Vintage Silk Heart Blouse with a Tie Neck listed...

Sports I posted 12 photos on Facebook in the album ”Warrior Around the NHL...
LeBron James and Michael Jordan (92): are thus the only players to win NBA title...
Denver Nuggets Sign Quincy Miller...

communities, and we consider each community produced as
a list.

After identifying the lists, we must decide whether each
list and its members are topically cohesive. To do this, we
compute the entropy (Shannon 2001) of the list, in which
the list’s probability distribution is defined as a bag-of-words
model over all tweets in the list. Our intuition behind using
entropy is that if a list’s tweets share common topics, then
the distribution over words will be skewed to a small subset
of the whole vocabulary and thus have low entropy. We clas-
sify all lists with entropy lower than a empirically learned ε
value as topical.

Topic Labeling
When generating a label for a topic list, we use one of

two algorithms: the BESTOVERLAP method, or the USER-
INFOBIGRAM method. This specific choice was the result of
experimenting with a variety of other techniques described
in the Experiments section.

In the BESTOVERLAP method, we exploit Twitter’s large
user base to implicitly “crowdsource” topic list labeling. For
each topical list, we create a set of candidate names by look-
ing at all previously-created Twitter lists that contain mem-
bers of our newly generated list. To label our new list, we
simply pick the name of the previously created list that max-
imally overlaps with the individuals in our list. For example,
if our list contained users A, B, and C and we find two other
previously created lists—“foodies,” which contains A and B
and “cooking,” which contains A, B, C, and D—we label our
new list “cooking.” If multiple Twitter lists overlap equally,
up to three names are concatenated to form the list label.

For the USERINFOBIGRAM method, we examine the op-
tional text that Twitter users can enter to describe them-
selves (e.g. “I love NYC, tech & funk” or “CS PhD stu-
dent at the University of Rochester... My research involves
real-time crowdsourcing, human computation, and AI”). For
each newly created list we generate a “corpus” of all user in-
formation fields of list members. The list is then labeled with
the most frequent bigram in this synthetic corpus.

We found through experimentation that the BESTOVER-
LAP method works best when our generated lists have more
members (increasing the chance of overlap and the size of
overlap with previously created lists). After considering var-
ious limits, we use a minimum threshold of 10 list members

to decide when to switch from BESTOVERLAP to USERIN-
FOBIGRAM.

Topic Ranking

The last step in the BUTTERWORTH pipeline is to build
ranking models for each topic. The input for each ranking
model is the past tweets of each member of the correspond-
ing list, comprising a set of unlabeled tweets T . Of course,
these tweets are not labeled as “relevant” or “irrelevant.”
However, we can exploit the fact that all of the tweets come
from users grouped together in a single list. We propose var-
ious heuristics for automatically labeling a subset of the ex-
amples in T . Our learning scenario falls into the category of
distant supervision, in which a heuristic labeling function H
is applied over all of the examples in T to produce a labeled
set TL ⊆ T . We only use H to try to infer positive train-
ing examples—obtaining high-quality negative examples is
much easier. For each list, we randomly sample |TL| from
the corpus of tweets not produced by users in the list. After
obtaining a labeled training set, we then extract the bag-of-
words features from each training example and train a naı̈ve
Bayes model for each list. The final feed ranking is produced
by sorting the tweets by their relevance probability, as scored
by the trained model for each list. Below we propose three
different variants of the labeling function H .

Naı̈ve Method In the naı̈ve method we use all of the
tweets produced by the list members as our positive train-
ing set, and sample from out-of-list tweets for our negative
training set. More formally, we let H be a constant func-
tion, labeling all of the examples in T as positive, to create
TL = T . While this method is very simple, it achieves sur-
prisingly good results, as our experiments show.

Top-K Hashtags and Unigrams By labeling all of the ex-
amples in T as positive, the naı̈ve method creates a noisy
training dataset. Instead, we would like a heuristic that tries
to label as positive only the examples that are surely positive.
Here we propose heuristics that try to leverage the observa-
tion that the more prevalent content in T likely corresponds
to the more relevant content to the end user. Instead of label-
ing all of the examples in T as positive, we label a smaller
subset that contains examples that are the most likely to be-
long to the positive class. We use a modified TF-IDF score

35

to find the unigrams and hashtags1 that are most likely to
be contained in the positive class. We score each hashtag or
unigram occurring in T using the following TF-IDF scoring
function for a given list l:

TF ∗ IDF (w) = Fl(x)× log

(
N

IDF (x)

)
, (2)

where Fl(x) is the number of occurrences of the hashtag
or unigram w in the list l, N is the number of tweets in the
corpus and IDF (w) is the number of tweets that contain w.
We define two heuristic functions, one for unigrams and one
for hashtags. H labels all of the examples in T that contain
at least one of the top-k unigrams or hashtags, where k is a
chosen parameter.

Experiments
Below we describe a set of four experiments to test vari-

ous aspects of BUTTERWORTH. All of our experiments use
data collected from Twitter which we describe below.

Dataset Description
In order to evaluate BUTTERWORTH, we need a ground-

truth dataset containing real users who have manually cre-
ated their own lists. If our algorithmic list-generation com-
ponent can accurately recreate these lists, and if we can use
the resulting lists to formulate accurate topic labels and rank-
ings, then we can be confident that BUTTERWORTH will be
effective in a general deployment.

Unfortunately, it is not straightforward to find a random
sample of users that has created high quality lists. We ob-
tained such a sample from Twitter as follows:

1. We chose by hand a set of 10 high-quality lists drawn from
www.listorius.com. They cover a range of topics, includ-
ing computer science, cooking, and others. Each list has
between 300 and 500 users. Together, these users formed
a large seed set of users who are likely to be members of
many lists.

2. We then obtained all lists that contained any of the seed
users. This formed a large set of lists likely to be of high
quality.

3. We found the creator of each list, yielding a set of nearly
400,000 users. We have now found a subset of Twitter
users who have created high-quality lists — this is exactly
the subset from which we want to draw our test sample.

4. Last, we randomly sampled 100 users from the follower
set, and removed users who were using private accounts
or who were non-English speakers. The resulting 80 users
formed the test-user set. These users had created any-
where from 1 to 20 lists (mean of 7.79 and median of 7
lists). Figure 2 shows the final distribution of lists created
by these test users.

1Hashtags are user-specified single-word descriptions that sig-
nal the topic of a tweet and always begin with a “#”, i.e., #Food or
#Climate

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 18 19 20

Nu
m

be
r o

f U
se

rs

Number of Created Lists

Figure 2: Distribution of the number of lists created by users
in the test set (20 is the maximum allowed by Twitter)

Each of the obtained lists, which we call organic lists,
has a user-given name (i.e., label) and a set of list mem-
bers. Finally, we created an ego-network for each test user
that comprised all of the test user’s followers/followees, all
members of a test user’s organic lists, and any friend rela-
tionships among these users. The average ego-network size
is 1383.72 and the median is 805. For our experiments we
downloaded up to 1,000 tweets from each user in the result-
ing network.

List Generation
To evaluate our list-generation algorithms, we experi-

mented with several alternative edge-weighting schemes.
For each ego user in our dataset, we produced one weighted,
undirected ego-network graph for each weighting scheme.
Next, we ran the clustering algorithm on each graph, pro-
ducing a set of disjoint lists. Because all users in our dataset
had at least one organic list, we evaluated the sets of lists
produced by the community detection algorithm against the
user’s manually created organic lists. We evaluated the fol-
lowing weighting schemes: network only, in which the edge-
weighting function sim(u, v) considers only the neighbors
as features, and three additional schemes in which the edge-
weighting function sim(u, v) considers neighbors and a
TFIDF-weighted term vector as features, limiting the per-
user vocabulary to k words, where k ∈ {10, 100, 1000}.

We also tested the edge-weight parameter α with values
that were functions of the average edge weight and stan-
dard deviation for each network: α ∈ {1, average edge
weight - standard deviation, average edge weight, average
edge weight + standard deviation}. Figure 3 shows the re-
sults of this experiment. We see that taking k = 0 and α = (
average edge weight−standard deviation) results in the high-
est value of F-measure, 0.83. Thus, we chose this algorithm
as our edge-weighting scheme.

Our goal in this list-generation experiment was to pro-
duce lists that mimicked each user’s manually created or-
ganic lists. However, community finding was performed on
each user’s entire ego-network, which included friends that
were not placed on any organic lists. Therefore, in evalu-
ating the machine produced lists against the manually cre-
ated organic lists, we created a confusion matrix for each

36

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

no cutoff 1 - sd + sd

F1
 S

co
re

network only

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

no cutoff 1 - sd + sd

F1
 S

co
re

k = 10

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

no cutoff 1 - sd + sd

F1
 S

co
re

k = 100

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

no cutoff 1 - sd + sd
F1

 S
co

re

k = 1000

Figure 3: F1 scores for the list-generation module, varying k
and α.

user as follows: for each pair of friends that was placed in
any organic list (f1, f2), the pair is a true positive if the
friends were both placed in the same organic list, and were
both placed in the same machine produced list; the pair is a
false positive if they were both placed in the same machine-
produced list, but were not placed in the same organic list,
etc. We cannot include users who were not placed on any or-
ganic lists in our evaluation metrics because we do not know
why they were not included in the list — they may belong
on the list, but the user lazily left them off, or they truly do
not belong. However, we will show in the next few sections
that even with imperfect list generation, our results are still
quite good.

To evaluate our topicality threshold, we performed a 5-
fold cross-validation on a set of 100 manually classified lists.
Two human evaluators constructed the training and testing
set by manually classifying 100 randomly chosen organic
lists as either topical or non-topical. We then calculated the
entropy of the lists, and learned an ε cutoff value by choosing
the cutoff to maximize the F-measure. Our final ε value was
then chosen as the average of the 5 runs, yielding ε = 1.374
and F-measure = 0.92.

Topic Labeling
We evaluated eight potential labeling algorithms be-

fore choosing the BESTOVERLAP and USERINFOBIGRAM
methods, described in the Algorithms section. We performed
two experiments to evaluate these algorithms. First, we
chose a random sample of 100 organic lists from our dataset.
For each list, we produced 8 labels—one from each label-
ing algorithm. To evaluate how similar each label was to the
organic list’s original label, we computed the pointwise mu-
tual information (PMI) score of each label, relative to the
original label. To compare all labeling techniques, we then
calculated the root mean squared error (RMSE) of each al-
gorithm’s PMI scores.

The algorithms we evaluated were: (1) the BESTOVER-
LAP method; (2) the LISTUNIGRAM method, in which topic
lists are labeled with the most common unigram from the
names of all previously created Twitter lists; (3) the TWEET-
UNIGRAM method, in which topic lists are labeled with the
most common unigram occurring in the past 1,000 tweets

Table 2: RMSE and average relevance values for labeling
algorithms.

Algorithm RMSE Avg relevance
BESTOVERLAP 6.79 1.72
LISTUNIGRAM 7.38 –
TWEETUNIGRAM 7.54 –
TWEETBIGRAM 6.64 0.91
TWEETWIKI 7.87 –
USERINFOUNIGRAM 7.35 –
USERINFOBIGRAM 6.56 1.14
USERINFOWIKI 7.52 –

from all list members; (4) the TWEETBIGRAM method, in
which topic lists are labeled with the most common bigram
occurring in the past 1,000 tweets from all list members;
(5) the TWEETWIKI method, in which we compute the top-
5 unigrams occurring in the past 1,000 tweets from all list
members, search Wikipedia with these unigrams, and la-
bel the topic list with the most common unigram occur-
ring in the parent categories for the top 10 search results;
(6) the USERINFOUNIGRAM method, in which topic lists
are labeled with the most common unigram occurring in the
user info fields from all list members; (7) the USERINFOBI-
GRAM method; and (8) the USERINFOWIKI method, which
is identical to the tweet wiki method, but chooses the top-5
unigrams occurring in the user info fields from all list mem-
bers in the first step. Results from this experiment are pre-
sented in Table 2.

Because the BESTOVERLAP, TWEETBIGRAM, and
USERINFOBIGRAM methods all had similarly low RMSE
scores, we conducted a second evaluation, just using these
three algorithms. Our goal in this second evaluation was to
evaluate the meaningfulness and relevance of a label. Two
human evaluators manually classified each label for the 100
random organic lists as very relevant (a score of 2), relevant
(a score of 1) or irrelevant (a score of 0) when compared
with the organic list’s original label. These results are also
presented in Table 2. The BESTOVERLAP method outper-
forms the TWEETBIGRAM and USERINFOBIGRAM meth-
ods significantly (p < .01). Although the USERINFOBI-
GRAM method appears to outperform the TWEETBIGRAM
method, the difference is not significant.

Topic Ranking
In order to evaluate the ranking, we needed to obtain

ground truth about the relevance of tweets to the topic name
of a list. We randomly sampled 100 organic lists from the
test user set for which we wanted to obtain labels. We used
Amazon’s Mechanical Turk to obtain binary labels of rele-
vant or irrelevant to a prescribed list name. For each of the
100 organic lists we sampled 100 tweets, and asked three
Mechanical Turk workers (“Turkers”) to grade whether a
tweet was relevant to the list name or not. Since the list
names were generated for personal use by Twitter users,
some were less informative (e.g., “mac,” “vegas tweeple”),
and as a result the Turkers were not able to give high-quality
ratings. Since we only gave the Turkers two options, for the

37

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ec

isi
on

Recall

baseline naïve hashtag (k=100) unigram (k=8)

Figure 4: Precision and recall of the hashtag, unigram, naı̈ve
ranking methods against a baseline.

incoherent list names the vast majority of the answers se-
lected were “irrelevant,” as the Turkers did not understand
the list name. We used for ranking only those lists for which
Turkers unanimously agreed that at least 15% of tweets were
relevant. After filtering out lists with incoherent names, we
obtained a set of 55 lists that we used for testing. From each
list, we used only the examples to which the Turkers re-
sponded unanimously, yielding a total of 3,215 labeled ex-
amples. The mean percentage of relevant tweets over the 55
lists was 52%. We evaluated the performance of the ranking
models using standard information retrieval metrics.

Our first set of experiments test the effect of the k param-
eter for the hashtag and unigram methods. We then com-
pare the hashtag, unigram, and naı̈ve methods against a base-
line. We show the robustness of each heuristic under various
amounts of noise in order to determine the sensitivity of the
ranking module to the output of the list-generation module.

Tuning the k parameter Figures 5 show the Mean Av-
erage Precision (MAP) scores for various values of the k
parameter. As the plots show, the MAP scores do not vary
much between the different k values. As long as we choose
a k value that is not very small, the performance of the ranker
is consistently good. When k is too small, the naı̈ve Bayes
model is not supplied enough training data and performance
suffers. We choose k = 8 (unigram) and k = 100 (hashtag)
for the following experiments, as those values performed
slightly better than others.

Comparing Proposed Methods to Baseline By default
Twitter ranks a user’s feed in reverse chronological order, so
we compared our method against this baseline. Ranking the
tweets by time is essentially the same as randomly order-
ing with respect to their topical relevance. Figure 4 shows
the precision-recall curves for the naı̈ve, hashtag, and un-
igram methods as compared to the baseline. As shown in
the figure, our methods significantly outperform the base-
line, which quickly converges to a precision of around 50%,
which is the average percentage of relevant topics over all
lists. All three of our proposed methods have a very similar
performance, in which the unigram method slightly outper-
forms the other two methods. The naı̈ve Bayes classifier is
robust to noise, so it is not surprising that the naı̈ve method

Table 3: Precision at k.
precision@k unigram (k = 8) baseline

1 0.77 0.52
5 0.76 0.46
7 0.76 0.44
10 0.78 0.45

performs well.

Robustness to Noise The previous experiments tested the
proposed methods on user-generated lists, which we assume
are high quality. Since part of BUTTERWORTH’s purpose is
to automatically generate lists, we also wanted to see how
sensitive each of the methods were to varying levels of noise.
We simulated mistakes in list generation by replacing a vary-
ing percentage of tweets in each test list with random tweets
from outside the list. For example, a noise level of 30%
for a given list would correspond to 30% of the tweets in
the training set being replaced with random tweets sampled
from users outside the list. Figure 6 shows the precision-
recall plots for all three methods with various levels of noise.
We can see that the naı̈ve method is the most robust to in-
creasing levels of noise—it is only truly affected at levels
of noise above 70%. The other methods are more affected
by noise, likely because they quickly begin to only include
hashtags/unigrams that correspond to irrelevant topics.

End-to-end Experiment
The previous experiments evaluated each component of

BUTTERWORTH in isolation, but we have yet to test the ef-
fectiveness of BUTTERWORTH as a whole. In order to test
BUTTERWORTH as a complete system, we need to experi-
ment on an end-to-end workflow that tests the quality of the
rankers given generated lists and their labels from the list
generator and list labeler, respectively. We propose an ex-
periment with the following workflow:

1. Randomly select 100 generated topical lists (from our set
of test users) that contain at least 5 members

2. Label each of the 100 generated topical lists using the BE-
STOVERLAP list-labeling algorithm

3. Use the unigram (at k=8) topic ranker to rank a random
sampling of 100 tweets from each of the generated lists
and output the top 10 ranked results. For a baseline, we
also output 10 randomly ordered tweets.

To evaluate the results of this experiment, we employed
three human evaluators to score the top 10 results from both
the baseline and the topic ranker. We present the results from
this experiment in Table 3. As we can see, the topic ranker
greatly outperforms the baseline, with 78% precision@k,
compared with 45% precision@k achieved by the baseline.
Table 1 shows a few examples of BUTTERWORTH’s output.

We can compare the average precision achieved by the
baseline, 45%, with the average rate of relevant tweets
found in organic lists—52%. These very similar rates indi-
cate that the topical lists generated by the list- generation

38

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

1 5 10 25 50 100 150 200 250 300 350 400

MA
P

Sc
or

e

2 4 6 8 10 15 20 25 50 75 100

Figure 5: Varying the k parameter for the hashtag (left) and unigram (right) methods.

0 0.5 1
10% 50% 70% 90%

0 0.5 1
0.5

0.6

0.7

0.8

0.9

1

0 0.5 1

Pr
ec

isi
on

Recall

naïve hashtag unigram

Figure 6: A comparison of the effects of varying the percentage of noise on precision and recall for the naı̈ve, hashtag, and
unigram methods.

module mimic the quality and topical coherence of human-
constructed lists. Because there are many components in
BUTTERWORTH’s pipeline, there is a high potential for er-
ror propagation and compounding. However, we can see
that BUTTERWORTH performs quite well, maintaining high-
quality ranking despite potential noise in list generation.

Discussion
While BUTTERWORTH performs well for the general sce-

narios we experimented with, there are some user cases
which require adaptation of the strategies we employ. Cur-
rently, BUTTERWORTH places each friend in exactly one
cluster (i.e., a hard-clustering). If a friend tweets about mul-
tiple topics of interest to the user, then the clustering pro-
cedure will identify only one of these interests. We propose
two possible solutions to this problem. First, we could sim-
ply modify our clustering algorithm to allow friends to be
part of many clusters (e.g., through soft- or hierarchical-
clustering). Figure 6 demonstrates that BUTTERWORTH is
capable of ranking well under noisy list generation. Thus,
we believe the potentially noisier clusters produced by a
fuzzy clustering algorithm would not drastically affect rank-
ing quality.

Instead of modifying our clustering algorithm, we could
alternatively use the ranker on all tweets rather than those
produced by a specific list. A solution at the interface level
would enable users to choose the set of friends to which the
ranker would be applied. For instance, if BUTTERWORTH
detected that the user is interested in cooking, the modified

interface would enable the user to apply the cooking-ranker
to just a specific friend, just the generated list of cooking
friends, or to their entire set of friends. To test the feasibility
of this modified interface we re-ran the end-to-end experi-
ment (Table 3) using a user’s entire feed as input to each
ranker. We found that BUTTERWORTH performs slightly
better, giving 82% precision@10. This slight improvement
may be due to the fact that BUTTERWORTH can find the
“best” tweets on a given topic regardless of who produced
them. In some cases, these may be as good or better than
those produced by list members.

A second potential issue with BUTTERWORTH is linked
to our user interaction model. Our system explicitly ranks a
user’s feed by topics of their interest and therefore loses tem-
poral ordering. We believe this issue can also be fixed with
a modified interface design that surfaces BUTTERWORTH’s
ranking in a different way. Instead of completely reordering
a users feed on a page, we propose an interface that uses the
generated rankers to color the tweets in a user’s temporally-
oriented feed. Thus, the salience of a tweet in the feed would
vary based on the score that the ranker produces for each
tweet. This interface would allow a user to view both topi-
cally and temporally relevant content.

Conclusion
We have a few ideas about how to improve BUTTER-

WORTH’s future performance. First, users who have over-
lapping interests may also build overlapping lists, write sim-
ilar text, retweet related content, and link to similar URLs;

39

the list-generation step should thus incorporate information
sources beyond network structure. Second, each social net-
working site has some particular features — say, privacy set-
tings unavailable in other systems—that might shed addi-
tional light on how to construct better lists, which we should
exploit. In addition, now that we have constructed a robust
back-end architecture, we have begun to consider the design
of the UI for BUTTERWORTH. The mechanism by which the
user accesses lists (manually created and automated, topical,
and contextual), provides feedback, controls lists and rank-
ing behavior can, and should, be taken into account to create
a usable user experience. The interactions of the user with
the system can be utilized to further inform the intelligent
components of BUTTERWORTH.

In this work we have described BUTTERWORTH, a sys-
tem for automatically performing topic-sensitive grouping
and ranking of the messages in a user’s social feed. Unlike
existing approaches for message ranking, BUTTERWORTH
requires no explicit guidance from the user and works across
a spectrum of users and scales. By breaking apart the simple
“follow” relationship into multiple topical lists, BUTTER-
WORTH addresses the context collapse problem. By lever-
aging each of these lists to generate rankers that can be ap-
plied to the user’s feed, the system alleviates channel col-
lapse. This is achieved through use of a novel architecture
that leverages a user’s social network. By weighting this net-
work to encourage topical sub-community extraction, BUT-
TERWORTH is able to identify groups of users that share a
common interest. The lists generated by BUTTERWORTH are
accurately labeled, and the rankers trained from these lists
improve the relevance of a feed from 45% to 78%.

Acknowledgements
The authors would like to thank Avishay Livne for help in

collecting data for this project, Qiaozhu Mei for helpful dis-
cussions, Andrea Pellegrini for help with formatting figures
and the anonymous reviewers for their helpful comments.
This work was supported by National Science Foundation
grant IGERT-0903629.

References
Adamic, L. A., and Adar, E. 2003. Friends and neighbors
on the web. Social Networks 25(3):211 – 230.
Bernstein, M. S.; Suh, B.; Hong, L.; Chen, J.; Kairam, S.;
and Chi, E. H. 2010. Eddi: interactive topic-based browsing
of social status streams. In UIST’10, 303–312.
Boyd-Graber, J.; Chang, J.; Gerrish, S.; Wang, C.; and Blei,
D. 2009. Reading tea leaves: How humans interpret topic
models. In NIPS’09.
Dahimene, R.; Mouza, C.; and Scholl, M. 2012. Efficient
filtering in micro-blogging systems: We won’t get flooded
again. In Ailamaki, A., and Bowers, S., eds., Scientific
and Statistical Database Management, volume 7338 of Lec-
ture Notes in Computer Science. Springer Berlin Heidelberg.
168–176.
Das Sarma, A.; Das Sarma, A.; Gollapudi, S.; and Panigrahy,
R. 2010. Ranking mechanisms in Twitter-like forums. In
WSDM’10, 21–30.

Fang, L.; Fabrikant, A.; and LeFevre, K. 2012. Look who
I found: Understanding the effects of sharing curated friend
groups. In WebSci’12, 137–146.
Guc, B. 2010. Information Filtering on Micro-blogging Ser-
vices. In Master’s Thesis. Swiss Federal Institute of Tech-
nology Zürich.
Hong, L., and Davison, B. 2010. Empirical study of topic
modeling in Twitter. In Proceedings of the First Workshop
on Social Media Analytics, 80–88. ACM.
Hong, L.; Convertino, G.; Suh, B.; Chi, E. H.; and Kairam,
S. 2010. FeedWinnower: layering structures over collections
of information streams. In CHI ’10, 947–950.
Hong, L.; Bekkerman, R.; Adler, J.; and Davison, B. 2012.
Learning to rank social update streams. In SIGIR’12.
Kim, D.; Jo, Y.; Moon, I.-C.; and Oh, A. 2010. Analysis of
Twitter lists as a potential source for discovering latent char-
acteristics of users. In Workshop on Microblogging at the
ACM Conference on Human Factors in Computer Systems.
(CHI 2010).
Lin, J.; Snow, R.; and Morgan, W. 2011. Smoothing tech-
niques for adaptive online language models: topic tracking
in tweet streams. In KDD’11, 422–429. ACM.
Paek, T.; Gamon, M.; Counts, S.; Chickering, D. M.; and
Dhesi, A. 2010. Predicting the importance of newsfeed posts
and social network friends. In AAAI’10, 1419–1424.
Pal, A., and Counts, S. 2011. Identifying topical authorities
in microblogs. In WSDM’11, 45–54.
Pons, P., and Latapy, M. 2005. Computing communities
in large networks using random walks. In Computer and
Information Sciences - ISCIS 2005, volume 3733 of Lecture
Notes in Computer Science.
Ramage, D.; Dumais, S.; and Liebling, D. 2010. Character-
izing microblogs with topic models. In WDSM’10.
Shannon, C. E. 2001. A mathematical theory of communica-
tion. SIGMOBILE Mob. Comput. Commun. Rev. 5(1):3–55.
Sriram, B.; Fuhry, D.; Demir, E.; Ferhatosmanoglu, H.; and
Demirbas, M. 2010. Short text classification in Twitter to
improve information filtering. In SIGIR ’10, 841–842.
Tseng, C.-Y.; Chen, Y.-J.; and Chen, M.-S. 2012. Socfeed-
viewer: A novel visualization technique for social news
feeds summarization on social network services. In Web Ser-
vices (ICWS), 2012 IEEE 19th International Conference on,
616 –617.
Uysal, I., and Croft, W. B. 2011. User oriented tweet rank-
ing: a filtering approach to microblogs. In CIKM ’11, 2261–
2264.
Wagner, C.; Liao, V.; Pirolli, P.; Nelson, L.; and Strohmaier,
M. 2012. It’s not in their tweets: Modeling topical expertise
of Twitter users. SocialCom ’12.
Xu, Z.; Lu, R.; Xiang, L.; and Yang, Q. 2011. Discovering
user interest on Twitter with a modified author-topic model.
In WI-IAT’11, volume 1, 422 –429.

40

