
Don’t Be Spoiled by Your Friends:
Spoiler Detection in TV Program Tweets ∗

Sungho Jeon †

The Attached Institute of
Electronics and Telecommunications

Research Institute
Daejeon, South Korea
sdeva14@gmail.com

Sungchul Kim
Dept. of Computer Science

and Engineering
POSTECH

Pohang, South Korea
subright@postech.ac.kr

Hwanjo Yu ‡

Dept. of Computer Science and Engineering
Dept. of Creative IT Engineering

POSTECH
Pohang, South Korea

hwanjoyu@postech.ac.kr

Abstract
Providing a convenient mechanism for accessing the Inter-
net, smartphones have led to the rapid growth of Social Net-
working Services (SNSs) such as Twitter and have served as
a major platform for SNSs. Nowadays, people are able to
check conveniently the SNS messages posted by their friends
and followers via their smartphones. As a consequence, peo-
ple are exposed to spoilers of TV programs that they follow.
So far, there are two previous works that explored the de-
tection of spoilers in texts, not SNS: (1) keyword matching
method and (2) machine-learning method based on Latent
Dirichlet Allocation (LDA). The keyword matching method
evaluates most tweets as spoilers; hence its poor recall per-
formance. The other method based on LDA, although suc-
cessful on large text, works poorly on short segments of text
such as those found on Twitter and evaluates most tweets as
non-spoilers. This paper presents four features that are signif-
icant in the classification of spoiler tweets. Using those fea-
tures, we classified spoiler tweets pertaining to a reality TV
show (“Dancing with the Stars”). We experimentally com-
pared our method with previous methods, with our method
achieving substantially higher precision compared to the key-
word matching and LDA-based methods while maintaining
comparable recalls.

1. Introduction
Motivation: A spoiler is anything that reveals facts such as
crucial events, important reversal, or ending of the whole
story. Spoilers can destroy peoples enjoyment of a movie or
a TV program, particularly in the cases of thriller movies, re-
ality TV shows, or sports broadcasts wherein the winner and
loser of a contest and the final score of a match are critical to
those who did not watch the program. If everyone interested
in a program watches it at the originally aired time, spoilers
are not a problem. Scheduling and time differences between
other countries, however, mean that this is implausible par-
ticularly in the context of sports events. To try to avoid spoil-
ers, people may stay away from certain sites on the Internet
or avoid the news. Some people will even avoid talking to

∗This work was supported by IT Consilience Creative Program
of MKE and NIPA (C1515-1121-0003)

†This work is conducted while Sungho Jeon is at POSTECH
‡Corresponding author

Copyright c� 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

their friends to minimize the chances of receiving a spoiler.
Unfortunately, avoiding spoilers is becoming more difficult
due to the prevalence of smartphones and Social Network-
ing Services (SNSs). SNSs are now a part of our lives; peo-
ple check their SNSs and communicate with their friends
even while working. The popularity of smartphones has ac-
celerated this phenomenon. People can share their emotions
and opinions anytime, anywhere via their smartphone; hence
the increasing possibility of receiving a spoiler. Compared
to news articles, which can often be determined to contain
a spoiler before they are clicked, SNS messages are posted
without any filtering; thus exposing people who use SNS to
the danger of encountering spoilers. For such reason, people
wishing to avoid spoilers must consider avoiding SNSs.

Our goal is to detect spoilers to allow people to avoid
them when checking their SNSs to communicate with their
friends. Specifically, we collected tweets related to the re-
ality TV show Dancing with the Stars US Season 13 over
a seven-week period. Using this data, we proposed distinct
features to distinguish spoilers from non-spoilers by con-
structing a classification model for spoiler detection.

Challenges: To the best of our knowledge, there has been
no spoiler detection research on tweets; existing spoiler de-
tection research has covered long text, not short segments
of text that are common in SNSs. There are two existing
strands of research: a keyword matching method and a ma-
chine learning method based on Latent Dirichlet Allocation
(LDA). Note, however, that the keyword matching method
requires manual effort yet still results in a low success rate.
In contrast, the LDA-based method does not require manual
effort, but its performance on tweet data is much worse than
that for long text such as movie reviews.

Contributions: We manually inspected tweets to select
spoiler tweets from all tweets (total of 176,426 tweets), al-
lowing us to split our data set into 5,618 spoiler tweets and
non-spoiler tweets for the rest. Based on a manual study
on spoiler and non-spoiler sets, we discovered four distinct
features: Named Entity, Frequently Used Verb, Objectivity,

and Main Tense of Tweet. Using the features, we classified
spoiler tweets for a reality TV show using SVM. In our eval-
uation, simple comparison by accuracy was meaningless due
to the imbalance between the spoiler and non-spoiler sets.
Accuracy was determined by how many non-spoiler tweets
were found, because spoiler tweets accounted for only 3.2%

Proceedings of the Seventh International AAAI Conference on Weblogs and Social Media

681

of our working data set. To address this problem, we used
f-score, which considers both recall and precision and com-
pares the results with previous methods for spoiler detection.
Our method achieved substantially higher precision while
maintaining comparable recalls.

2. Model
For the sake of our goal – to detect spoiler in tweets, we con-
sider this problem as a classification problem; i.e., to classify
spoiler given a set of features. We used LibSVM which is
popular open-source SVM library to achieve our goal.

2.1 Feature1: Named Entity
The name of the person leaving or surviving plays the most
important role in the spoilers of DWTS. This information
is the most common cause of spoiler tweets for reality TV
shows. In our manual study, however, all spoiler tweets that
we found had “named entity,” nickname, or job, unlike non-
spoiler tweets. We used the Twitter Named Entity Recog-
nizer (Ritter et al. 2011).

If we only use frequency as a score of named entity, its
influence can be changed as a function of the data size; thus,
we divided the sum of the total frequency of the named en-
tity.

2.2 Feature2: Frequently Used Verb
We observed that frequently used verbs differed in the
spoiler set and non-spoiler set based on our manual study.
Words related to survival or failure such as “wins”, “elimi-
nated”, and “voted” are common in spoilers, whereas words
such as “watch”, “love”, and “think” top the frequency list in
the non-spoiler set. Similarly, with the named entity score,
we calculate the score of frequently used verbs as the fre-
quency of verb divided by the sum of the total frequency
of frequently used verbs having a frequency of greater than
five.

2.3 Feature3: Objectivity and URL
We also noticed that objective spoilers containing only the
title of spoiler news articles were more common than sub-
jective spoiler tweets, which expressed the writer’s emotion.
For example, an objective spoiler tweet would be, “Chaz
Bono gets eliminated from Dancing with the Stars Sad news
for Chan Bono fans. He was eliminated from Dance *URL”;
a subjective spoiler tweet is, “Yaaaayyy!!!! Hope and Max
went home on Dancing with the Stars. Now the real finals
begin. #HASHTAG.” We chose 50 objective spoiler tweets
and subjective tweets from the spoiler set to train the Ling-
Pipe subjectivity tool. When we conducted a subjectivity
analysis, we verified our hypothesis, i.e., the ratio of objec-
tive tweets in the spoiler set is higher than that in the non-
spoiler set. These objective spoiler tweets usually carry a
URL linking to a news article, so we considered whether a
tweet has a URL. Therefore, the purpose of this feature is to
detect news spoiler tweets that have only a news article title
and a link without emotion.

2.4. Feature4: Main Tense of Tweet
We believe both “named entity” and “frequently used verb”
play a critical role, but they are not enough. There is fur-
ther consideration – in tweets such as “Kadashian will sur-
vive”, “Kadashian survives”, and “Kadashian survived”, the
same “named entity” and “frequently used verb” are used,
but the “the tense of the tweet” determines whether the tweet
is a spoiler. Of course, people mix up or hardly care about
present and past tenses on Twitter, but the future tense is
rarely used in this way. Tweets using future tense cannot be
spoiler tweets since they represent wishes or desires, as with
“hope” or “want”.

To improve the performance of statistical machine trans-
lation, (Gong et al. 2012) identified the main tense of doc-
ument. We modified the their method used to identify the
tense of each document. When we applied the original work
to our method, we only found about 2,000 tweets using the
future tense. We see two problems. First, flawed syntax and
misspelled words in tweets cause false recognition of POS
tags. We modified the method to enable the detection of that
false recognition because the original work only focused on
verbs. Second, the original work was built on the rule-based
method, yet it used very few rules to catch diverse words and
phrases commonly used in daily conversation. To solve this
problem, we added additional rules; our method remembers
previous POS tags for recognizing “be” verbs such as is and
are to catch more future representations. Furthermore, the
representation of desire – such as hope or wish – involves fu-
ture tense, and these representations are used to indicate fu-
ture meaning; thus, we regarded these representations as fu-
ture tense. Consequently, future tense tweets had frequency
of 83 in the spoiler set and 13,619 in the non-spoiler set.

3. Experiment
3.1 Data
We collected tweets related to the reality TV show, “Danc-
ing with the Stars, US. Season 13” (DWTS) during the pe-
riod 2011-10-14 ∼ 2011-12-01. DWTS was aired 12 times
during this period, and the number of collected tweets was
176,426. We first identified 5,618 spoiler tweets manually,
and then investigated the differences between spoiler and
non-spoiler tweets to determine the features that should be
used to classify spoilers.

3.2 Stepwise Regression
We evaluated the strength and usefulness of our method on a
real-world data set. First, we performed stepwise-regression
to verify the usefulness of our proposed features (Table 1).
The P-value of four features – along with each positive co-
efficient of terms in the regression equation – proves that
our method is meaningful. Features were added to the re-
gression in the order of “named entity” (NE), “frequently
used verb” (Fverb), “objectivity + URL” (Obj), and “tense
of tweet” (Tense).

3.3 Parameter Tuning
As we mentioned earlier, accuracy is not appropriate as a
performance measure, since the size of the spoiler set ac-

682

Table 1: Stepwise Regression Results
Step Variable Co- β Standard P-value

entered efficient error
0 - -0.036 - - -
1 NE 1.85 1.85 0.04 0
2 Fverb 3.05 3.05 0.02 0
3 Obj 0.03 0.03 < 0.001 0
4 Tense 0.03 0.03 0.002 < 0.001

Table 2: Classification Experiment Results
Step Entered Recall Precision F-score

feature
1 Named Entity 0.3084 0.8291 0.4496
2 +Verb 0.5653 0.8611 0.6826
3 +Objectivity 0.7699 0.7957 0.7825
4 +Tense 0.7697 0.7987 0.7839

counted for only 3% of the entire data set, the accuracy
of the model could be over 90% without referring to any
spoiler tweet. To address this problem, we decided to use f-
score instead as a measure of accuracy and to report recall
and precision as well. The classification results were influ-
enced by training and testing data sets; we reported the re-
sult of three-fold cross validation. The performance of Sup-
port Vector Machine (SVM) is significantly influenced by
the kernel type and parameters, so we performed our ex-
periment with four kernel types and various parameters. We
modified two parameters – cost and γ – in our experiment as
changed parameters: cost = 2−5 − 215, and γ = 2−15 − 23.
Based on our results, the performance of SVM culminated
with f-score of 0.7912.

3.4 Comparison of Features
We observed a change in performance when we added fea-
tures in the order of the result of stepwise regression (Ta-
ble 2). The f-score was 0.4496 when we experimented using
only “named entity”, persistently increasing as we added ad-
ditional features. Finally, our model had an f-score of 0.7839
when we used all features.

Additionally, we measured the performance of each fea-
ture to test which one wields the most significant influence
(Table 3). We thought that “named entity” or “frequently
used verb” is most powerful, because the coefficients of
these features in stepwise regression were higher than oth-
ers. Moreover, based on our intuition, these two features
are most important. Contrary to our expectation, however,
we could get the highest f-score (0.6776) when measuring
with only tense and second highest f-score (0.6078) with
objectivity + URL. We attribute this to the binary scoring
of “tense” and “objectivity + URL” features, unlike other
features that used scoring as frequency divided by total fre-
quency. Although we normalized the score of “named en-
tity” and “frequently used verb”, binary scoring wields a
more powerful influence when used individually similar to
the keyword matching filtering method.

Table 3: Performance When Each Feature Was Used Indi-
vidually

Feature Recall Precision F-score
Named Entity 0.3084 0.8291 0.4496
Verb 0.4306 0.8726 0.5765
Objectivity 0.5844 0.6333 0.6078
Tense 0.9852 0.5164 0.6776

4. Comparision of Baseline Methods
Despite the absence of research studies on spoiler detection
in Twitter at present, there are two fields of research related
to spoiler detection in other domains: 1) keyword-matching
method 2) machine-learning method based on LDA.

4.1 Keyword-Matching Method
First, the simplest method, a keyword-matching method,
simply filters out according to important words in their do-
main, such as the actor name in a drama or the match score at
a sporting event (Nakamura and Tanaka 2007). Note, how-
ever, that this method is not realistic because the method of
choosing these important words is not determined. We im-
plemented this method by choosing important words such as
“named entity” and “frequently used verb” to filter out spoil-
ers from tweets. The advantage of this method is the high
recall performance, i.e., blocking all tweets that carry even a
small possibility of being a spoiler. Paradoxically, however,
this advantage also makes for a significant disadvantage – it
has very low precision performance because it regards most
tweets as spoilers; that is, it flags many false positives. When
we compared this method with ours, we found it to have
higher recall performance, but much lower precision than
ours; hence the lower f-score as well. As such, this method
– although the simplest – is also an impractical method.

4.2 Machine-Learning Method Based on LDA
The other relevant research is a machine-learning method
based on LDA (Guo and Ramakrishnan 2010). They ranked
1,000 IMDB movie comments via predictive perplexity and
filtered out spoilers when they regarded the top N comments
as spoilers and considered report performance of recall and
precision. Note, however, that ordinary LDA is not appli-
cable to short texts such as tweets (Rosa et al. 2011); per-
formance in terms of recall and precision is not good even
for movie comments, which generally consist of several sen-
tences. One problem with LDA is that we have to inves-
tigate the appropriate number of topics. Various methods
were proposed to solve this problem – we used perplex-
ity, which is widely used in the language-modeling commu-
nity, as well as the original work to predict the best number
of topics. Calculating the average per-word held-out like-
lihood, predictive perplexity measures how the model fits
with new documents; lower predictive perplexity means bet-
ter fit. As with the original work, we used the classic per-
plexity method, which can be calculated as: P (W |M) =

exp−
�M

m=1
log p(�̃wm|M)�M

m=1
Nm

. We increased the topic number

683

Figure 1: Comparison between our model, baseline1, and
baseline2. Blue bar (Left): Our model; Red bar (Middle):
Baseline1; Green bar (Right): baseline2.

from 50 to 650 in steps of 50 to find the appropriate number
of topics; thus, we came up with 450 as the most appropriate
number of topics. We conducted the baseline2 experiment
using three-cross validation as our model. (we used 0.1 as
document topic prior and 0.01 as the topic word prior.)

4.3 Comparison: Recall, Precision, F-Score
We compared with baseline1 which was implemented using
named entity and frequently used verb to filter out spoilers
by keyword matching and baseline2 and our model (Figure
1). Baseline1 had the highest recall, but much lower pre-
cision than in our model; thus our model had the highest
f-score. Compared to our model, the recall was higher and
the precision was 0.76 lower in baseline1. The f-score of our
model was also 0.71 higher than baseline1.

Baseline2 based on LDA delivered poorer results in all
aspects of performance compared to our model. We attribute
such to the fact that our target is different from that of the
original work, i.e., movie comments consisting of several
sentences, unlike tweets where one sentence usually makes
up the entire document. Thus, their method is not applicable
to tweets. The performance of baseline2 was significantly
lower than others, requiring much more time to execute.

4.4 Comparison: Processing Time
Lastly, we compared the processing time of our method and
baseline methods (Table 4). Practically, this system can be
used as plugin of web browser or SNS. To do that, process-
ing time is one of the most important factors; it is worth
sacrificing performance to get better processing time per-
formance if we consider making a plugin form. Obviously,
baseline 1 is fastest and simplest; it just reads a tweet once
and blocks the tweet if it has a danger keyword. In contrast,
baseline 2 needs more than 1 day. One of the disadvantages
of LDA is slow processing time given the bigger data size, so
baseline 2 cannot be applied as a plugin form. The process-
ing time of SVM is also significantly influenced by param-
eters aside from performance. As a result of our parameter
tuning, the best parameters are cost = 215 and γ = 23, but
it takes a very long time with these parameters. We could
get faster processing time at the expense of performance by
changing parameters. As a result, we could get a relatively
high f-score in 1 minute by sacrificing of f-score when cost
= 2 and γ = 2. Thus, if we adjust the parameters, we can get

Table 4: Comparsion of Processing Time Between Our
Model and Basline Methods with Three-fold Cross Valida-
tion

Method Processing Time F-score log2 C log2 γ

Baseline1 < 1 min 0.0807 - -
Our Model 1.1 min 0.7568 1 1
Our Model 14.5 min 0.7668 10 3
Our Model 192 min 0.7912 15 3
Baseline2 > 1440 min 0.0165 - -

a relatively high f-score and a fast processing time which are
enough to apply the plug-in form.

5. Conclusion
This paper has proposed a method for detecting spoilers in
reality TV show tweets by SVM. Our main goal is to detect
spoilers using distinguishable features. We made spoiler sets
manually and propose four major features, “named entity”,
“frequently used verb”, “objectivity + URL”, and “tense”
based on our manual study. These features show a distinct
distribution in spoiler sets and non-spoiler sets. There is cur-
rently no spoiler detection research focusing on tweets, but
there are two works related to spoiler detection. The first
method, a keyword matching method, can achieve high re-
call performance but considers most tweets to be spoilers;
hence its very low f-score. The second method, which is
based on LDA, is not applicable to short texts as used in
our experiments. According to our experiments, we found
that our method is superior in terms of f-score. We com-
pared baseline 1 and baseline 2 in terms of recall, precision,
and f-score. In particular, our model achieved significantly
better performance in terms of precision.

References
Gong, Z.; Zhang, M.; Tan, C.; and Zhou, G. 2012. N-gram-
based tense models for statistical machine translation. In Pro-

ceedings of the 2012 Joint Conference on Empirical Methods

in Natural Language Processing and Computational Natural

Language Learning, 276–285. Association for Computational
Linguistics.
Guo, S., and Ramakrishnan, N. 2010. Finding the storyteller:
automatic spoiler tagging using linguistic cues. In Proceed-

ings of the 23rd International Conference on Computational

Linguistics, 412–420. Association for Computational Linguis-
tics.
Nakamura, S., and Tanaka, K. 2007. Temporal filtering system
to reduce the risk of spoiling a user’s enjoyment. In Proceed-

ings of the 12th international conference on Intelligent user

interfaces, 345–348. ACM.
Ritter, A.; Clark, S.; Etzioni, O.; et al. 2011. Named entity
recognition in tweets: an experimental study. In Proceedings

of the Conference on Empirical Methods in Natural Language

Processing, 1524–1534. Association for Computational Lin-
guistics.
Rosa, K.; Shah, R.; Lin, B.; Gershman, A.; and Frederking, R.
2011. Topical clustering of tweets. Proceedings of the ACM

SIGIR: SWSM.

684

