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Abstract

Political inclinations of individuals (liberal vs. conservative)
largely shape their opinions on several issues such as abor-
tion, gun control, nuclear power, etc. These opinions are
openly exerted in online forums, news sites, the parliament,
and so on. In this paper, we address the problem of quantify-
ing political polarity of individuals and of political issues for
classification and ranking. We use signed bipartite networks
to represent the opinions of individuals on issues, and formu-
late the problem as a node classification task. We propose a
linear algorithm that exploits network effects to learn both the
polarity labels as well as the rankings of people and issues in
a completely unsupervised manner. Through extensive exper-
iments we demonstrate that our proposed method provides an
effective, fast, and easy-to-implement solution, while outper-
forming three existing baseline algorithms adapted to signed
networks, on real political forum and US Congress datasets.
Experiments on a wide variety of synthetic graphs with vary-
ing polarity and degree distributions of the nodes further
demonstrate the robustness of our approach.

Introduction
Many individuals use online media to exert their opinions on
a variety of topics. Hotly debated topics include liberal vs.
conservative policies such as tax cuts and gun control, social
issues such as abortion and same-sex marriage, environmen-
tal issues such as climate change and nuclear power plants,
etc. These openly debated issues in blogs, forums, and news
websites shape the nature of public opinion and affect the
direction of politics, media, and public policy.

In this paper, we address the problem of quantifying po-
litical polarity in opinion datasets. Given a set of individuals
from two opposing camps (liberal vs. conservative) debating
a set of issues or exerting opinions on a set of subjects (e.g.
human subjects, political issues, congressional bills), we aim
to address two problems: (1) classify which person lies in
which camp, and which subjects are favored by each camp;
and (2) rank the people and the subjects by the magnitude
or extent of their polarity. Here while the classification en-
ables us to determine the two camps, ranking helps us under-
stand the extremity to which a person/subject is polarized;
e.g. same-sex marriage may be highly polarized among the
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two camps (liberals being strictly in favor, and conservatives
strictly being against), while gun control may not belong to
a camp fully favoring or opposing it (i.e., is less polarized).
Ranking also helps differentiate moderate vs. extreme indi-
viduals, as well as unifying vs. polarizing subjects; such as
(unifying) bills voted in the same way, e.g. all ‘yea’ by the
majority of congressmen vs. (polarizing) bills that are voted
quite oppositely by the two camps.

A large body of prior research focuses on sentiment anal-
ysis on politically oriented text (Cohen and Ruths 2013;
Conover et al. 2011b; 2011a; Pak and Paroubek 2010;
Tumasjan et al. 2010). The main goal of these works is
to classify political text. In this work, on the other hand,
we deal with network data to classify its nodes. Moreover,
these methods mostly rely on supervised techniques whereas
we focus on un/semi-supervised classification. Other prior
research on polarization have exploited link mining and
graph clustering to study the social structure on social me-
dia networks (Adamic and Glance 2005; Livne et al. 2011;
Conover et al. 2011b; Guerra et al. 2013) where the edges
depict the ‘mention’ or ‘hyperlink’ relations and not opin-
ions. Moreover, these works do not perform ranking.

Different from previous works, our key approach is to ex-
ploit network effects to both classify and rank individuals
and political subjects by their polarity. The opinion datasets
can be effectively represented as signed bipartite networks,
where one set of nodes represent individuals, the other set
represent subjects, and signed edges between the individu-
als and subjects depict the +/− opinions. As such, we cast
the problem as a node classification task on such networks.

Our main contributions can be summarized as follows:
• We cast the political polarity classification and ranking

problem as a node classification task on edge-signed bi-
partite opinion networks.

• We propose an algorithm, called signed polarity propa-
gation (SPP), that computes probabilities (i.e., polarity
scores) of nodes of belonging to one of two classes (e.g.,
liberal vs. conservative), and use these scores for classifi-
cation and ranking. Our method is easy-to-implement and
fast—running time grows linearly with network size.

• We show the effectiveness of our algorithm, in terms of
both prediction and ranking, on synthetic and real datasets
with ground truth from the US Congress and Political
Forum. Further, we modify three existing algorithms to
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handle signed networks, and compare them to SPP. Our
experiments reveal the advantages and robustness of our
method on diverse settings with various polarity and de-
gree distributions.

Related Work
Scoring and ranking the nodes of a graph based on the
network structure has been studied extensively, with well-
known algorithms like PageRank (Brin and Page 1998),
and HITS (Kleinberg 1998). These, however, are applied on
graphs where the edges are unsigned and therefore cannot
be directly used to compute polarity scores.

Computing polarity scores can be cast as a network clas-
sification problem, where the task is to assign probabil-
ities (i.e., scores) to nodes of belonging to one of two
classes, which is the main approach we take in our work.
There exist a large body of work on network-based clas-
sification (Getoor et al. 2007; Neville and Jensen 2003;
Macskassy and Provost 2003). Semi-supervised algorithms
based on network propagation have also been used in clas-
sifying political orientation (Lin and Cohen 2008; Zhou,
Resnick, and Mei 2011). However, all the existing meth-
ods work with unsigned graphs in which the edges do not
represent opinions but simply relational connections such as
HTML hyperlinks between blog articles or ‘mention’ rela-
tions in Twitter.

Signed networks have only recently attracted attention
(Leskovec, Huttenlocher, and Kleinberg 2010b). Most ex-
isting studies focused on tackling the edge sign prediction
problem (Yang et al. 2012; Chiang et al. 2011; Leskovec,
Huttenlocher, and Kleinberg 2010a; Symeonidis, Tiakas,
and Manolopoulos 2010). Other works include the study of
trust/distrust propagation (Guha et al. 2004; DuBois, Gol-
beck, and Srinivasan 2011; Huang et al. 2012), and prod-
uct/merchant quality estimation from reviews (McGlohon,
Glance, and Reiter 2010). These works do not address the
problem of classifying and ranking nodes in signed graphs.

With respect to studies on political orientation through so-
cial media, (Adamic and Glance 2005; Adar et al. 2004) use
link mining and graph clustering to analyze political com-
munities in the blogosphere. While these and most clustering
algorithms are designed to work with unsigned graphs, there
also exist approaches for clustering signed graphs (Traag
and Bruggeman 2009; Lo et al. 2013; Zhang et al. 2013).
Clustering, however, falls short in scoring the nodes and
hence quantifying polarity for ranking.

Related, (Livne et al. 2011) utilize graph and text min-
ing techniques to analyze differences between political par-
ties and their online media usage in conveying a cohesive
message. Most recently, (Cohen and Ruths 2013) use su-
pervised classification techniques to classify three groups
of Twitter users with varying political activity (figures, ac-
tive, and modest) by their political orientation. Other works
that exploit supervised classification using text features in-
clude (Conover et al. 2011a; Golbeck and Hansen 2011;
Pennacchiotti and Popescu 2011).

Similar to (Adamic and Glance 2005), there exist related
works that study the social structure for measuring polarity.
These works rely on the existence of (unsigned) social links

between the users of social media and study the communities
induced by polarized debate; an immediate consequence of
the homophily principle, which states that people with sim-
ilar beliefs and opinions tend to establish social ties. (Livne
et al. 2011) and (Conover et al. 2011b) both use modularity
(Newman 2006) as a measure of segregation between polit-
ical groups in Twitter. (Guerra et al. 2013) compare modu-
larity of polarized and non-polarized networks and propose
two new measures of polarity based on community bound-
aries. Again, these works do not study the opinion networks
with signed edges.

As our main task is quantifying polarity, work on sen-
timent analysis is also related. There exist a long list of
works on sentiment and polarity prediction in political text
(Tumasjan et al. 2010; Awadallah, Ramanath, and Weikum
2010; Conover et al. 2011b; He et al. 2012), as well as in
tweets, blogs, and news articles (Pak and Paroubek 2010;
Godbole, Srinivasaiah, and Skiena 2007; Thomas, Pang, and
Lee 2006; Balasubramanyan et al. 2012). These differ from
our work as they use text-based sentiment analysis, while we
focus on the network effects in signed graphs.

Proposed Method
Problem Overview
We consider the problem of polarity prediction and rank-
ing in opinion datasets (e.g. forums, blogs, the congress).
Opinion datasets mainly consist of a set of people (e.g.
users in a forum, representatives in The House) and a set
of subjects (e.g. political issues, political people, congres-
sional bills). Each person often maintains a positive or nega-
tive opinion toward a particular subject (e.g. a representative
votes ‘yes’ for a bill, a person ‘likes’ a political individual).
This opinion is often an exposition of the person’s latent
political leaning—liberal or conservative. For example, we
could think of a person with strong negative opinion toward
gay&lesbian rights to be more conservative. As such, the
subjects can also be grouped into several classes—liberal-
or conservative-favored.

Our goal is twofold. First we aim to predict the latent po-
litical classes of the people as well as the subjects in opinion
datasets. Second, we aim to rank both the people and the
subjects with respect to the magnitude of their polarity in
the political spectrum.

An opinion dataset can be represented as a bipartite graph
with signed edges in which person nodes are connected to
subject nodes, with links representing the +/− opinions. The
objects in this network belong to certain classes (e.g. liberal
and conservative). As such, we tackle the above problems by
formulating a graph-based classification objective, estimate
the class probabilities for prediction and furthermore use the
estimated probabilities for ranking.

Problem Formulation
Notation We are given a signed bipartite opinion net-
work Gs = (N,E), in which a set of n person nodes
U = {u1, . . . , un} and a set of m subject nodes V =
{v1, . . . , vm} are connected with signed edges e(ui, vj , s) ∈
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E, where edge signs s ∈ {+,−} depict positive and nega-
tive opinions of people toward subjects, and U ∪ V = N .
A neighborhood function N , Nui

⊆ V and Npj
⊆ U , de-

scribes the underlying bipartite network structure.
In our proceeding formulation, each node in N is rep-

resented as a random variable that takes a value from
an appropriate class label domain; in our case, LU =
{L,C} (L for liberal and C for conservative), and
LV = {LF,CF} (LF for liberal-favored and CF for
conservative-favored). In this classification task, we de-
note by YN = YU ∪ YV the nodes the labels of which need
to be assigned, and let yi refer to Yi’s label.
Objective formulation Next we define the objective func-
tion for our classification task. The key idea is to consider
this task as network-based classification. We propose to use
an objective formulation that utilizes pairwise Markov Ran-
dom Fields (MRFs) (Kindermann and Snell 1980), which
we adapt to our problem setting.

MRFs are a class of probabilistic graphical models that
are suited for solving inference problems in networked data.
An MRF consists of an undirected graph where each node
can be in any of a finite number of states (in our case, class
labels). The state of a node is assumed to be dependent on
each of its neighbors and independent of other nodes in the
graph.1 In pairwise MRFs, the joint probability of the graph
can be written as a product of pairwise factors, parameter-
ized over the edges. The factors are also referred as clique
potentials in general MRFs, which are essentially functions
that collectively determine the graph’s joint probability.

Specifically, let Gs = (N,E) denote a signed network of
random variables as before, where N consists of the unob-
served variables Y which need to be assigned values from
the label set L = LU ∪ LV . Let Ψ denote a set of clique
potentials that consists of two types of factors:
• For each Yi ∈ YU and Yj ∈ YV , ψi, ψj ∈ Ψ are prior

mappings ψUi : LU → R≥0, and ψVj : LV → R≥0, where
R≥0 denotes non-negative real numbers.
• For each e(Y Ui , Y

V
j , s) ∈ E, ψs

ij ∈ Ψ is a compatibility
mapping ψs

ij : LU × LV → R≥0.

Given an assignment y to all the unobserved variablesYN

and x to observed ones XN (variables with known values,
if any), our objective function is associated with the joint
probability distribution

P (y|x) =
1

Z(x)

∏
Yi∈YN

ψi(yi)
∏

e(Y Ui ,Y Vj ,s)∈E

ψs
ij(yi, yj) (1)

where Z(x) is the normalization function. Our goal is to
infer the maximum likelihood assignment of states (labels)
to unobserved variables (nodes) that will maximize the ob-
jective function above.

Problem definition Having introduced the network clas-
sification task and our objective, we define the polarity clas-
sification and ranking problems formally.
Given

1This assumption yields a pairwise MRF which is a special case
of general MRFs (Yedidia, Freeman, and Weiss 2003).

- a bipartite opinion network Gs = (N,E) of people and
subjects connected with signed edges,

- compatibility of two objects with a given pair of labels
being connected to each other, and

- prior knowledge (probabilities) of network objects be-
longing to each class;

P1. Classify the network objects Yi ∈ YN , into one of two
respective classes; LU = {L,C}, and LV = {LF,CF},
where the class assignments yi maximize Equation (1), and
P2. Rank the network objects by the magnitude of their po-
litical polarity.

Signed Polarity Propagation Algorithm
Finding the best assignments to unobserved variables in our
objective function, i.e. P1 above, is the inference problem.
The brute force approach through enumeration of all possi-
ble assignments is exponential and thus intractable. In gen-
eral, exact inference is known to be NP-hard and there is no
known algorithm which can be theoretically shown to solve
the inference problem for general MRFs. Therefore, we em-
ploy a computationally tractable (in fact linearly scalable
with network size) approximate inference algorithm called
Loopy Belief Propagation (LBP) (Yedidia, Freeman, and
Weiss 2003), on signed political networks.

The SPP algorithm applied on a signed bipartite network
is based on iterative message passing and can be concisely
expressed as the following equations:

mi→j(yj) = α1

∑
yi∈LU

ψs
ij(yi, yj) ψ

U
i (yi)∏

Yk∈Ni∩YV\Yj

mk→i(yi), ∀yj ∈ LV (2)

bi(yi) = α2 ψ
U
i (yi)

∏
Yj∈Ni∩YV

mj→i(yi), ∀yi ∈ LU (3)

where mi→j is a message sent by person i to subject j (a
similar equation can be written for messages from subjects
to people), and it captures the belief of i about j, which is
the probability distribution over the labels of j, i.e. what i
‘thinks’ j’s label is, given the current label of i and the sign
of the edge that connects i and j. Beliefs refer to marginal
probability distributions of nodes over labels; for example
bi(yi) denotes the belief of person i having label yi (again,
a similar equation can be written for beliefs of subjects).
α’s are the normalization constants, which respectively en-
sure that each message and each set of marginal probabil-
ities sum to 1. At every iteration, each node computes its
belief based on messages received from its neighbors, and
uses the compatibility mapping to transform its belief into
messages for its neighbors. The key idea is that after enough
iterations of message passes between the nodes, the ‘conver-
sations’ are likely to come to a consensus, which determines
the marginal probabilities of all the unknown variables.

The details of the SPP algorithm is given in Algorithm 1,
which first initializes the messages and the priors (lines
3-6). It then proceeds by making each set of Yi ∈ YU
and Yj ∈ YV alternately communicate messages with their
neighbors in an iterative fashion as discussed before until the
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Algorithm 1: SIGNED POLARITY PROPAGATION

1 Input: Bipartite graph Gs=(N,E) of people, subjects, and
+/− opinions, compatibility potentials ψs

ij

2 Output: Polarity label for every person i and subject j
3 foreach e(Yi, Yj , s) ∈ E s.t. Yi, Yj ∈ YN do // initialize
4 foreach yi ∈ LU , yj ∈ LV do
5 mi→j(yj)← 1, φUi (yi)← 1/|LU |
6 mj→i(yi)← 1, φVj (yj)← 1/|LV |

7 repeat// perform message propagation
8 // update messages from people to subjects
9 foreach e(Yi, Yj , s) ∈ E s.t. Yi, Yj ∈ YN do

10 foreach yj ∈ LV do
11 mi→j(yj)←

α1

∑
yi∈LU

ψs
ij(yi, yj)φ

U
i (yi)

∏
Yk∈Ni∩YV\Yj

mk→i(yi)

12 // update messages from subjects to people
13 foreach e(Yi, Yj , s) ∈ E s.t. Yi, Yj ∈ YN do
14 foreach yi ∈ LU do
15 mj→i(yi)←

α3

∑
yj∈LV

ψs
ij(yi, yj)φ

V
j (yj)

∏
Yk∈Nj∩YU\Yi

mk→j(yj)

16 until all messages m(y) stop changing
17 foreach Yi, Yj ∈ YN do // compute beliefs
18 foreach yi ∈ LU , yj ∈ LV do
19 bi(yi) = α2φ

U
i (yi)

∏
Yj∈Ni∩YV

mj→i(yi)

20 bj(yj) = α4φ
V
j (yj)

∏
Yi∈Nj∩YU

mi→j(yj)

messages stabilize (lines 7-16), i.e. convergence is reached.2
At convergence, we calculate the marginal probabilities, that
is of assigning Yi with label yi, by computing the final belief
bi(yi) (lines 16-20).

We use these maximum likelihood label probabilities for
classification; e.g. for each person ui, we assign the label
Lui
← maxyi

bi(yi). As for ranking, i.e. P2 above, we sort
the objects by class probabilities, e.g. rUSPP ← sort(bi(yi =
L)) sorts people from most conservative to most liberal.

To completely define the SPP algorithm, we need to in-
stantiate the clique potential factors Ψ, i.e. compatibilities
and priors, which we discuss next.
Priors. The prior beliefs ψUi and ψVj , respectively of people
and subjects, can be suitably initialized if there is any prior
knowledge of the objects (e.g. Barack Obama is a liberal
person). As such, our method is flexible to integrate avail-
able side information. In case there is no prior knowledge
available, each node is initialized equally likely to have any
of the possible labels, i.e. 1

|L| as in Algorithm 1 (lines 5-6).
Compatibility matrices. The compatibility potentials can
be thought of as matrices with entries ψs

ij(yi, yj), which
gives the likelihood of a node having label yi, given that

2Although convergence is not theoretically guaranteed, in prac-
tice LBP converges to beliefs within a small threshold of change
(e.g. ε = 10−4) quickly with accurate results (Pandit et al. 2007).

it has a neighbor with label yj on which s/he exhibits a
s ∈ {+,−} opinion, i.e. the edge sign is s. Note that un-
like earlier models, we use clique potentials based on the
edge labels s in our formulation. This is exactly because the
compatibility of class labels of two adjacent nodes depends
on the sign of the edge connecting them: e.g., L +−→ LF is
highly compatible, whereas L −−→ LF is not likely. A sample
instantiation of compatibilities is shown in Table 1.

Note that while LBP has been theoretically studied for
uniqueness on signed graphs (Watanabe 2011), we are the
first to formulate and employ signed LBP for the political
polarity problems P1 and P2 in practice.

Table 1: Instantiation of opinion-based compatibility poten-
tials. Entry ψs

ij(yi, yj) is the compatibility of a subject node
having label yj having a person node neighbor with label yi,
given the opinion of i on j is s ∈ +/−, for small ε.

s: ‘+’ Subjects
People LF CF
L 1-ε ε
C ε 1-ε

s: ‘−’ Subjects
People LF CF
L ε 1-ε
C 1-ε ε

Competitor Methods
In this section we describe three alternative methods that
we compare to in the experiments. In particular, we mod-
ify three well-known clustering/classification algorithms to
handle signed networks for our problem setting: weighted-
vote relational classifier (Macskassy and Provost 2003),
hubs-and-authorities (HITS) algorithm (Kleinberg 1998),
and spectral clustering (Ng, Jordan, and Weiss 2001).

weighted-vote Relational Network Classifier
The wvRN is a neighbor-based classifier by Mackassy and
Provost (Macskassy and Provost 2003), which estimates
class-membership probability of each node as the weighted
mean of the class-membership probabilities of its neighbors.
In our setting the underlying network is bipartite and the
edges are signed, thus the above definition translates to:

PrUi (L) =
1

Zi

( ∑
j∈N+

i

w+
ijPrVj (LF )−

∑
j∈N−i

w−ijPrVj (CF )

)

PrVj (LF ) =
1

Zj

( ∑
i∈N+

j

w+
ijPrUi (L)−

∑
i∈N−j

w−ijPrUi (C)

)
whereN+ (N−) denotes the neighbors of a node that are

linked to it by positive (negative) weights w+ (w−). In our
case, w+=1 and w−=−1, for positive and negative opinions.
Z’s are normalization constants, i.e. Zi =

∑
j∈N+

i
w+

ij −∑
j∈N−i

w−ij = |Ni|. Finally, PrUi (C) = 1 − PrUi (L) and

PrVj (CF ) = 1− PrVj (LF ); PrUi ,PrVj ∈ [0, 1].
We use the above equations to iteratively update class

probabilities of all nodes. Nodes with unknown labels are
initially assigned class priors. Due to the loopy nature of
propagation, convergence is not guaranteed, although in
our experiments the probabilities converged within a small
threshold of change (ε=10−4) in consecutive iterations.
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The class-membership probabilities are used for classifi-
cation; e.g. for people Lui

← maxyi
PrUi (yi). For ranking

we sort each set of the network objects by one of the class
probabilities; e.g. for people rUwvRN ← sort(PrUi (yi = L)).

Signed HITS Algorithm
We also adapt Kleinberg’s HITS algorithm (Kleinberg 1998)
to compute the liberality of the people and the subjects.
These values are defined in terms of one another in a mu-
tual recursion: the liberality of a person/subject is the scaled
sum of the liberality values of subjects/people linked to it by
positive opinion minus the sum of those linked by negative
opinion. We give the corresponding equations below.

LUi = f

( ∑
j∈N+

i

w+
ijLF

V
j +

∑
j∈N−i

w−ijLF
V
j

)

LFVj = f

( ∑
i∈N+

j

w+
ijL
U
i +

∑
i∈N−j

w−ijL
U
i

)
where f(.) denotes the normalization function f(x) =
2

1+exp(x) − 1 such that LUi , L
V
j ∈ [−1, 1], and w± and N±

are defined as before.
We use the equations above to iteratively update the lib-

erality values of the network objects. Those nodes with un-
known labels are initially assigned values LUi = LVj = ε ≈
0, i.e. unbiased priors. For convergence, we set a maximum
number of iterations or use an ε-stopping criterion.

The sign of the liberality scores are used to classify; e.g.
for people Lui

← L if LUi > 0 and Lui
← C otherwise. To

rank we sort by the liberality scores, e.g. rUHITS ← sort(LUi )
orders people from most conservative to most liberal.

Signed Spectral Clustering
Spectral clustering (Ng, Jordan, and Weiss 2001) uses the
second smallest positive eigenvector of the Laplacian ma-
trix of a given graph to partition it into two clusters. The
Laplacian matrix is built using the adjacency matrix of the
graph, which often consists of all non-negative entries. One
way to modify it for signed graphs is to build an augmented
adjacency matrix, where the first part represents the positive
entries, and the second part represents the negative entries.

In particular, we build A = [A+A−] ∈ Rn×2m where

a+ij =

{
aij , if aij > 0 ,

0, otherwise
a−ij =

{
−aij , if aij < 0 ,

0, otherwise
such that all the entries of A are non-negative.

Next we construct Ã =

(
0n×n A
AT 02m×2m

)
and define

the Laplacian of Ã as L = D − Ã where D is the diagonal
matrix with entries dii =

∑n+2m
j=1 ãij . We use the normal-

ized Laplacian L̄ = D−1/2LD−1/2, and compute its second
eigenvector v2 ∈ R(n+2m)×1 that corresponds to the second
smallest eigenvalue.

For partitioning, we use the first n entries v1:n2 for people
and the next m entries vn+1:n+m

2 for subjects, where nega-
tive and positive values determine the two clusters c1 and c2
for each set of objects; e.g. for people ui ∈ c1 if v1:n2,i > 0

and ui ∈ c2 otherwise. We assign the two class labels to the
two clusters to achieve maximum agreement with ground
truth.3 We also use these entries for ranking; e.g. for people
rUSpec ← sort(v1:n2 ).

Experiments
To evaluate the effectiveness of the proposed method in
comparison to the competitor methods, we used both syn-
thetic and real datasets. As measures of effectiveness we
consider both (1) the accuracy in polarity prediction, and (2)
the accuracy in polarity ranking.

Synthetic data
To study the behavior of the methods, we created several
synthetic bipartite graphs G(U, V,E), |U | = n, |V | = m,
with nodes having various degree and polarity distributions.

First, we sampled degree values 1 ≤ d(ui) ≤ m and
1 ≤ d(vj) ≤ n from probability distribution Pd. We
truncated the values to lie in correct ranges and rounded
to nearest integers. Similarly, we sampled polarity val-
ues −1 ≤ p(ui), p(vj) ≤ +1 from probability distri-
bution Pp. To generate edges, we created a list of ran-
domly permuted (ui, vj) pairs, where each ui and vj ap-
peared in the list d(ui) and d(vj) times, respectively.
We only used the largest connected component and dis-
carded the rest. Finally, we assigned the sign of each edge
e(ui, vj) to sign(p(ui))sign(p(vj)) with probability 1 −
(1−|p(ui)|)(1−|p(vj)|), and to−sign(p(ui))sign(p(vj))
with probability (1− |p(ui)|)(1− |p(vj)|).

We experimented with the cross product of two degree
distributions Pd; (1) generalized Pareto, and (2) Normal, and
three polarity distributions Pp; (a) Beta, (b) Bimodal, and (c)
Uniform, with varying parameters.
Accuracy measures For polarity prediction, we use the
accuracy of the methods in assigning the nodes their correct
polarity sign. In particular, prediction accuracy is equal to
Acc(h) =

∑
ni∈U∪V

1{sign(h(ni))=sign(p(ni))}
(n+m) , where h(.)

denotes the score assigned by a given method to a given
node, and 1{.} is the indicator function.

In this work, not only do we care about the classifica-
tion accuracy of the methods, but we also care about their
effectiveness in ranking the nodes by their polarity in the
spectrum.4 For ranking accuracy, we need a measure that
accounts for the position of the nodes in their ranked order
produced by the method, which penalizes for high polarity
nodes being ranked lower in the order. Discounted cumu-
lative gain (DCG) is a widely used measure especially in
information retrieval that serves this purpose. For the rank-
ing r(h) of nodes by a given method, DCG is defined as
DCGr(h) =

∑m+n
i=1

2p(ni)−1
log2(i+1) . The maximum DCG value

is achieved when the nodes are sorted in order by their orig-

3Since the two clusterings are the same up to a permutation.
4We use the ranking accuracy rather than absolute polarity mag-

nitude estimation accuracy, as the scores computed by different
methods are not directly comparable to polarity scores. For exam-
ple, SPP and HITS compute probabilities.
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Accuracy of methods nDCG of methods baselines
Degree distribution Polarity distribution SPP Spec HITS wvRN SPP Spec HITS wvRN min rand

10
0

10
1

10
2

10
3

degree

c
o

u
n

t

−1 0 1
polarity

co
un

t

Pareto(1,1,1) β(a, b : 0.1) 0.945 0.509 0.560 0.440 0.985 0.879 0.889 0.948 0.764 0.880

−1 0 1
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Figure 1: Classification (left) and ranking (right) accuracies of four competing methods at changing polarities, when degree
distribution follows (top) generalized Pareto (1,1,1), and (bottom) generalized Pareto (1,5,1).

inal polarity values p(ni), denoted as iDCG. We normalize
the above with iDCG such that nDCG = DCG

iDCG ∈ [0, 1].
Since our goal is to rank highly positive polarity nodes

at the top and highly negative polarity nodes at the bottom,
positions of both ends of the ordered list matter. To account
for that, we compute two nDCG scores for each method;
one where the nodes are ranked in descending order of their
h(.) values with original polarity values being 1+p

2 ∈ [0, 1],
and another with an ascending ordering and polarity val-
ues flipped, i.e. 1−p

2 ∈ [0, 1]. The final ranking accuracy
is nDCGr(h) = (nDCGdesc

r(h) + nDCGasc
r(h))/2 ∈ [0, 1].

Results The skewness of the polarity scores determines
the difficulty of the prediction and the ranking tasks. Intu-
itively, the tasks become easier if many nodes have polar-
ity scores close to −1 or +1. We generated polarity scores
of varying skewness using three distributions Pp as shown
in Figures 1&2. Beta distribution β(a, b) generates highly
skewed values for smaller a, b. Bimodal biN (σ) generates
two normal distributions centered at −0.5 and 0.5, respec-
tively with varying standard deviation σ. Finally, uniform
distribution produces the least skewness in scores.

We generated graphs with two different degree distribu-
tions; generalized Pareto(K,σ, θ) where K denotes the
weight of the tail, σ the scale, and θ the minimum thresh-
old, as well asN ormal(µ, σ). Pareto creates highly skewed
power-law-like degree distributions as observed in many
real-world graphs. In our experiments we set the number of
nodes n = m = 1000. For Pareto we used K = 1, θ = 1,

and σ = {1, 5}, and for Normal µ = 100 and σ = {20, 40}.
Various σ parameters are used to evaluate the effect of the
degree variance on the performance of the algorithms.

For each degree and polarity distribution, we compared
the performance (in classification and ranking) of our
SPP method and the three competitor algorithms Spec (Ng,
Jordan, and Weiss 2001), HITS (Kleinberg 1998), and
wvRN (Macskassy and Provost 2003), as described in §.

Figure 1 (top) shows the classification accuracy and
the nDCG ranking accuracy results for degree distribution
Pareto(1, 1, 1) and varying polarities. The last two columns
of the figure depict nDCG scores of two baselines; first
(min) is the lower bound when the reverse of the optimal or-
dering is used, and the second (rand) is the average nDCG
of 100 random orderings.5

We observe that SPP is one of the top two performing
methods (shown in bold-face) in all cases and its accuracy
is always above 0.7. While performing well at certain po-
larities, the accuracies of HITS and wvRN fluctuate signifi-
cantly. On the other hand, the accuracy of SPP drops grad-
ually with decreasing skewness in polarities as one might
expect. An important result to note here is that Spec per-
forms very poorly at all polarity levels—this could be due to
its search for a good “cut” in the graph which often does not
exist for graphs with highly skewed degree distributions.

Similar conclusions are drawn from Figure 1 (bottom) for
degree distribution Pareto(1, 5, 1). Increasing the variance

5Standard deviations ranged between 1× 10−4 and 5× 10−4.
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Figure 2: Classification accuracy (left) and ranking accuracy (right) of four competing methods at changing polarities, when
degree distribution follows (top) Normal (100, 20), and (bottom) Normal (100, 40).

(σ = 5) yields a less skewed degree distribution. In ef-
fect, the classification accuracies of all methods increase—
classifying high degree nodes is easier as more neighbors
provide more information.

With respect to the ranking accuracies (nDCG) of the
methods, we observe that SPP achieves significantly better
ranking than random ordering at all polarity levels, which
does not hold for the competitor methods. The nDCG val-
ues of Spec and HITS are close to that of random ordering
when their prediction accuracies are also close to random.
Interestingly, we notice that the nDCG of wvRN can be quite
high while its prediction accuracy is quite low (e.g. first row
in Fig. 1 (top)). Further analysis showed that the converged
scores of wvRN are highly concentrated around 0, and while
the relative ordering of nodes could be mostly correct, their
signs are often mispredicted.

In Figure 2 we useNormal degree distribution (µ = 100)
with σ = 20 (top) and σ = 40 (bottom). With far fewer low
degree nodes, the accuracy of SPP increases significantly
at all polarities. As before, the performances of HITS and
wvRN largely oscillate, and the accuracies of all methods
increase when the degree variance is increased, as we ob-
served with Pareto (more neighbors, more information).
SPP continues to perform well with very high accuracies.
Note that Spec starts performing well on these graphs with
more uniform degrees; unlike scale-free graphs these have
better “cut”s. However, Spec can be slow for graphs with
high density, since it relies on eigenvector computation. We

compare the scalability of Spec to SPP in the next section.
Overall, SPP performs consistently well at a variety of

degree distributions and polarity levels, and proves to be the
most reliable method among all the competing methods.

Real-world data
We also validated our method’s performance on two real-
world datasets, US Congress6 and PolForum7. Both of these
datasets are crawled from public data and are available at the
indicated URLs.

US Congress consists of the roll call votes for the 111th
US Congress. It includes The Senate and The House of Rep-
resentatives in years 2009-10. The 111th Senate has 108
senators, and The 111th House has 451 representatives. The
data contains the senators’ votes on 696 bills and the repre-
sentatives’ votes on 1655 bills, respectively. The signed bi-
partite graphs we built from this data consist of congressmen
versus the bills, in which a signed edge denotes the ‘yes’
(+1) or ‘no’ (−1) roll-call vote of a congressman for a bill,
where the absence of an edge (0) denotes non-attendance.

PolForum consists of a crawl from a political forum where
users write posts on their opinion about various political is-
sues such as religion, gay&lesbian rights, gun control, etc.
The edges in the signed bipartite graph of users versus polit-
ical issues denote the ‘in favor’ (+1) or ‘against’ (−1) opin-

6http://www.govtrack.us/data/
7http://www.politicalforum.com/forum.php
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ion of a user on an issue, where no edge (0) denotes no posts
of the user on the particular issue.

To infer the signs of edges, i.e. whether a user is ‘in fa-
vor’/‘for’ or ‘against’ an issue, we first performed sentiment
analysis on the posts. The results of sentiment scoring, how-
ever, were unsatisfactory.8 This may be due to the complex-
ity of natural language (e.g. ambiguity, sarcasm) encoun-
tered in such discussion forums. Thus we resorted to manual
labeling.9 Table 2 provides a summary of our datasets.

Table 2: Real datasets used in this work. D: democrat, R:
republican, L: liberal, C: conservative.

Datasets U Nodes V Nodes Edges

US Senate 64 (D) + 42 (R)
Senators 696 Bills 66416 yes/no

Votes

US House 268 (D) + 183 (R)
Representatives 1655 Bills 680930 yes/no

Votes

PolForum 7 (L) + 5 (C)
Users 21 Issues 72 for/against

Opinions

Results Both of the real datasets contain ground truth po-
larity labels; Conservative (−1) and Liberal (+1) for the po-
litical forum users, and Republican (−1) and Democrat (+1)
for the congressmen.

Classification Accuracy: Table 3 shows the prediction ac-
curacy of all the methods. We notice that SPP performs quite
well on these datasets with near perfect accuracy. Spec also
achieves high accuracies across all datasets. The node de-
grees of our real graphs are quite uniform—for example
almost all congressmen are expected to vote on a bill. As
verified by the synthetic data experiments in the previous
section, Spec performs well on such graphs. In comparison,
SPP achieves the highest accuracy across all datasets.

Table 3: Classification accuracies of the methods.
Methods US Senate US House PolForum
SPP 1.0000 0.9933 1.0000
Spec 1.0000 0.9911 1.0000
HITS 0.9717 0.6497 0.9167
wvRN 1.0000 0.5965 0.9167

Running time: While Spec achieves comparable accuracy
to SPP on the real datasets, the running time of Spec grows
significantly larger than that of SPP with increasing graph
size. As shown in Figure 3, SPP scales only linearly with
respect to the number of edges in the graph, which means
that it is suitable for very large graphs.

Sensitivity: Next we study the sensitivity of the classifi-
cation accuracy to the ε parameter used in our method (see
Table 1). In Figure 4 we depict the SPP accuracy for vari-
ous ε ∈ [0, 0.5]. The results show that the accuracies remain
consistently high for all of the datasets.

Ranking Accuracy: Next we evaluate our method in pre-
dicting the extent of polarization in the real datasets, i.e. its

8We used http://www.clips.ua.ac.be/pages/pattern-en, which
assigns a senti-score [−1, 1] to a given text and assigned the sign
of the sum of senti-scores of all posts of a user for an issue. Manual
analysis, however, revealed many incorrect assignments.

9We labeled edges as in favor or against, and users as conserva-
tive or liberal.
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ranking performance. Many political scientists rely on DW-
NOMINATE scores (Poole and Rosenthal 1991) to assign
a single liberal-conservative score to each congressperson.
At the heart of the NOMINATE methods are algorithms that
analyze preferential and choice data, such as legislative roll-
call voting behavior, and utilize those to arrange individuals
and choices in a two-dimensional space. Most of the varia-
tion in voting patterns are explained by placement along the
liberal-conservative first dimension. Therefore, we down-
loaded the DW-NOMINATE scores for the 111th Senate
and the House10, and considered the first dimension of these
DW-NOMINATE scores as the ground truth polarity scores
for the congressmen. We use these scores to evaluate the
ranking of our method.

In Figure 5 we demonstrate that SPP correlates with this
most-cited roll-call method DW-NOMINATE at extremely
high levels. The scatter plots depict the ranks produced by
DW-NOMINATE on the horizontal axes and SPP on the
vertical axes11—the congressmen tend to cluster on the 45
degree diagonal line, indicating that the two measures are
highly similar. Specifically, Spearman’s rank correlation be-
tween SPP and DW-NOMINATE is 0.94 for US Senate,
and 0.89 for US House. Compared to DW-NOMINATE,
however, SPP is easier to implement and compute. As such,
it is noteworthy that SPP has remarkably high level of cor-
relation with DW-NOMINATE, despite lacking the com-
plex machinery of the prevailing method. Moreover, SPP is
general and is not limited in application to only congres-
sional data, whereas DW-NOMINATE scores are specifi-
cally crafted for such data.

While we were able to attain ground truth scores on polar-
ity for congressmen, there does not exist such scores neither

10http://ibm.co/1aQOmzr, http://ibm.co/110BLDd
11A rank of 1 denotes the most liberal congressman.
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Figure 5: Congressmen ranks indicated by DW-NOMINATE (x axes) and our SPP (y axes) for the 111th (left) US Senate
and (right) US House. The two methods produce comparable ranks: Spearman’s rank correlation is respectively 0.94 and 0.89.
Separation of parties is also clear from the rankings. Democrats: blue, Republicans: red (figures best in color).

for the corresponding bills nor the political issues or forum
users in our PolForum dataset. To study the ranking perfor-
mance of our method on those, we exploit visualization.

We depict the adjacency matrix of the US Senate bipar-
tite graph below, where the rows (senators) and the columns
(bills) are ordered in increasing order of their democratic
partisanship. The figure clearly reveals the two political
groups of congressmen in the Senate, the two main groups
of bills favored by these groups, as well as the “unifying”
bills which were mostly voted ‘yes’ by all the senators.12
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Finally, we show the adjacency matrix of PolForum rank-
ordered by SPP in Figure 6. For this dataset, the order-
ing of the political issues reveals interesting insights. We
observe that religion and abortion lie in opposite ends of
the spectrum, mostly favored by conservative and liberal
users, respectively. Liberal users also strongly advocate for
gay&lesbian rights. On the other hand, gun control is found
to reside in the gray zone—there is not much consensus
among liberal users on the issue of gun control. Analysis of
forum posts by these users showed that while several argued
for it, others argued against it by opposing the restriction of
civil liberties. This lack of agreement on gun control is not a
freak occurrence. For example, roll-call votes on gun control
also routinely split party coalitions in the Congress, with so-
cially conservative Democrats joining most Republicans in
opposing more regulation and socially liberal Republicans
joining most Democrats in supporting gun control.13

Conclusion
We have addressed the problem of political polarity pre-
diction and ranking. Our solution revolves around using a
signed bipartite network representation of individuals assert-
ing +/− opinions on political subjects, and formulating the

12Similar results for US House are omitted for brevity.
13http://en.wikipedia.org/wiki/NOMINATE (scaling method)
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Figure 6: Adjacency matrix of PolForum after rows (Users)
and columns (Issues) are ordered in SPP ranking order. The
green triangles/red circles denote ‘for’/‘against’ opinions.

problem as a node classification task on opinion networks.
We proposed a linear algorithm that exploits network ef-
fects to learn both the polarity labels as well as the rankings
of people and issues in a completely unsupervised manner.
We compared our method14 to three well-known algorithms,
weighted-vote relational classifier (Macskassy and Provost
2003), HITS (Kleinberg 1998), and spectral clustering (Ng,
Jordan, and Weiss 2001), adapted to handle signed edges.
Experiments on synthetic and real data showed the effective-
ness and scalability of our approach on a variety of opinion
networks, for both classification and ranking. Future work
can look at changes in polarization over time, performing
incremental updates of the beliefs on dynamic networks.
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