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Abstract

Online social networks like Twitter and Facebook pro-
duce an overwhelming amount of information every
day. However, research suggests that much of this con-
tent focuses on a reasonably sized set of ongoing events
or topics that are both temporally and geographically
situated. These patterns are especially observable when
the data that is generated contains geospatial informa-
tion, usually generated by a location-enabled device
such as a smartphone. In this paper, we consider a data
set of 1.4 million geo-tagged tweets from a country dur-
ing a large social movement, where social events and
demonstrations occurred frequently. We use a proba-
bilistic graphical model to discover these events within
the data in a way that informs us of their spatial, tempo-
ral and topical focus. Quantitative analysis suggests that
the streaming algorithm proposed in the paper uncovers
both well-known events and lesser-known but important
events that occurred within the timeframe of the dataset.
In addition, the model can be used to predict the loca-
tion and time of texts that do not have these pieces of
information, which accounts for the much of the data
on the web.

1 Introduction
The perpetual availability of online content and our increas-
ing reliance on the Internet have made social networking
websites such as Twitter and Facebook an indispensable part
of modern social life for many people. As of November
2014, it is estimated that roughly a half billion tweets are
generated on a daily basis 1. The content generated from
these social networking/social media sites is not only vo-
luminous; it also contains a selection of information that is
new and interesting to individual users, corporate and gov-
ernment actors and researchers alike. This information is
useful for many types of analysis, such as sentiment analysis
(Pak and Paroubek 2010) and abnormality detection (Thom
et al. 2012).

One particularly interesting line of work that draws on
social media content is the problem of detecting events.
In event detection, we wish to uncover abnormal subsets
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1http://www.internetlivestats.com/twitter-statistics

of content that may be referring to a particular occur-
rence of interest. A significant amount of this work fo-
cuses purely on the analysis of the textual content of so-
cial media messages (Benson, Haghighi, and Barzilay 2011;
Kumaran and Allan 2004). While the inference of topical
focus is an interesting problem in its own right, the idea
that topical coherence is a signal for an “event” is slightly
misleading. Such algorithms are essentially detecting top-
ics, which are words that clustered together, rather than any
coherent subset of content that has a unique geo-temporal
realization, one we would expect of a typical event. For ex-
ample, topics uncovered that are broadly related to online
games and jokes have little or no link to the physical world
and thus are difficult to consider events.

Having realized this, recent work has begun to focus
on the geo-temporal aspects of event detection (Sakaki,
Okazaki, and Matsuo 2010). However, much of this work
fails to utilize the textual information that previous authors
have capitalized on, information that is vital in interpreting
the topical focus of a particular event (Ritter, Etzioni, and
Clark 2012). For example, events that occur in a residence
and a nearby night club at the same time will contain the
same geospatial and temporal information but are, of course,
different in important ways. A good definition of an event
should thus contain a geographical approximation of where
the event is happening, a temporal range over which the
event lasts and also a specific set of words and/or phrases
that can be used to describe what the event is about.

In this paper, we develop a probabilistic graphical model
that learns the existence of events based on the location, time
and text of a set of social media posts, specifically tweets.
An event is described by a central geographical location and
time, a variance in space and time and a set of words (a
topic) that is representative of the terms that can be used
to describe this event. By incorporating both a central lo-
cation and time and a variance around it, we account for
the fact some events are more concentrated within a spe-
cific region and time (e.g. a marathon) while others might be
distributed across a broader area in time and/or space (e.g.
Occupy Wallstreet). The use of a set of words that are fre-
quently used in tweets from or about the event allows us to
incorporate topic modeling to extract information from the
actual tweet text, from which an understanding of the focus
of the event can be derived.
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Our contributions are twofold. First, we build an event de-
tection model that successfully discovers latent events being
discussed at different points in time and at different loca-
tions in a large, geo-tagged Twitter data set. We demonstrate
the model’s abilities by applying our method to a Twitter
data set collected in an Arab country during a time period
where demonstrations and social movements were frequent.
Second, we build a location and time prediction tool based
on our learned model that allows us to accurately predict the
location or time of a tweet (when this information is held
out) with considerably more accuracy than several baseline
approaches.

2 Related Work
The problem of event detection is well studied. Here, we
provide a brief survey of relevant methods, touching on a
variety of approaches that have been taken in studying the
problem.

Events Extraction from Text
As most information available on the web does not provide
geospatial or temporal information, text based methods rep-
resent an important aspect of event detection methodology.
Three general types of approaches are surveyed here.

Clustering is one of most important techniques in deal-
ing with the event detection problem using text. Cluster-
ing approaches attempt to find latent events by uncover-
ing common patterns of texts that appear in the document
set. These efforts generally fall into two distinct types of
approaches: similarity based methods and statistical ones.
Similarity-based methods usually compare documents by
applying metrics such as cosine similarity (Kumaran and
Allan 2004). These models are usually efficient but ignore
statistical dependencies between both observable and latent
underlying variables. A statistical method such as a graphi-
cal model (Benson, Haghighi, and Barzilay 2011) can incor-
porate more complicated variable dependencies and hierar-
chical structure to event inference.

Another type of event detection model utilizes the fact
that the arrival of new events will change the distribution of
the existing data. Such approaches are thus concerned with
developing criterion for detecting abnormal changes in the
data. For example, Matuszka, Vinceller, and Laki (2013) as-
sumes a life cycle for each possible keyword for an event,
penalizing the term if it appears consistently in the data. The
result is an event defined by keywords that only appear in
some specific subset of the observed data. Zubiaga et al.
(2012) use techniques such as outlier detection to detect ab-
normalities in the data set which is considered a potential
consequence of a new event.

The third type of work defines events indirectly by link-
ing documents together. Models such as the one proposed
by Štajner and Grobelnik (2009) define each document as a
node in a graph and then build connections between them
once they are classified as being a part of the same event. Fi-
nally, there is also a large amount of work focusing on using
information retrieval techniques such as TF-IDF as features
to extract events(Brants, Chen, and Farahat 2003).

Events Extractions from Space and Time
Beyond the extraction of events purely from text, there have
also been several efforts to incorporate temporal and geospa-
tial information. Sakaki, Okazaki, and Matsuo (2010) ana-
lyzed the statistical correlations between earthquake events
in Japan and Twitter messages that were sent during the dis-
taster time frame. An abrupt change of volume of tweets in
a specific geo region indicated a potential disaster in that
area. Hong et al. (2012) constructed a probabilistic graphi-
cal model that contains both a geographical component and
a topical component to discover latent regions from Twitter
data. Their efforts, however, are not strictly focused on event
detection, as they do not consider the temporal domain. In
contrast, Ritter, Etzioni, and Clark (2012) and Panisson et al.
(2014) extract events into a hierarchy of types, in part utiliz-
ing the temporal information in both the text and the times-
tamp of the tweet itself. However, their work does not con-
sider the spatial information explicit in geospatially tagged
tweets.

Graphical Models and Sampling Techniques
Graphical models are powerful tools that can be used to
model and estimate complex statistical dependencies among
variables. For a general overview, we refer the reader to (Jor-
dan 1998), which contains a much richer discussion than
is possible here. By constructing statistical dependencies
among both observed and latent variables, graphical mod-
els can be used to infer latent representations that are not
observed in the data. Latent Dirichlet allocation (Blei, Ng,
and Jordan 2003), used to discover such latent topics/events
from text, is perhaps the most widely known example in this
area.

One issue often raised in graphical models is the difficulty
in estimation. As the complexity of the model increases, ex-
act inference become difficult or even impossible. Various
sampling strategies such as Gibbs sampling (Casella and
George 1992) has thus been developed to find approximate
solutions.

3 Model
We use a probabilistic graphical model to characterize the
relationship between events and tweets (referred to here as
documents). Using plate notation, Figure 1 illustrates the
structure of the model. Note that there are D documents
and E events, where E is a value pre-determined by the
researcher. The model has three major components. First,
an event model contains information about a specific event,
such as the parameters that characterize its spatial and tem-
poral distributions. Second, a document model contains the
location, time and event index of each document. Third,
there is a language model, which contains information
about the topical content of the documents. Table 1 gives
a summary of all notation that will be used as we describe
the model in this section.

Event Model
An important observation incorporated into our model is that
events are in many ways natural extensions of topics; events
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Figure 1: Illustrations of the model in plate notations

have a topical focus but also include a spatial and temporal
region in which they are likely to occur. We thus assume
events are defined by three things. First, each event has a
geographical center θ(L)

e as well as a geographical variance
controled by a diagonal covariance matrix with each value
defined by σ(L)

e . The location of a document that belongs
to event e is assumed to be drawn from a two dimensional
Gaussian distribution governed by these parameters.

l∼N(θ(L)
e , I·σ(L)

e ) (1)

Second, each event is defined by a temporal domain. Simi-
lar to the spatial distribution of an event, event time is also
modeled as a Gaussian distribution, except with mean θ(T )

e

and a variance of σ(T )
e :

t∼N(θ(T )
e , I·σ(T )

e ) (2)

The mean and standard deviations of both Gaussian distribu-
tions are latent variables and will need to be inferred by the
model. Finally, events are determined by a topic (or distribu-
tion over words) that characterizes the event. The details of
this are implemented within the document model and Lan-
guage model, discussed later in this section.

Document Model
A document contains the information we obtain for a
specific tweet. In our model, we only consider tweets that
have both a geo-location tag (latitude/longitude pair) l and a
time stamp t. Tweets also consist of a word array w which
contains the actual words that appear in the tweet.

Several latent variables are also present in the document
model. First, an event identity e defines which single event

out of the E possible events in the event model that this spe-
cific document belongs to. We assume a multinomial prior γ
for each e in each document.

e ∼ Mult(γ) (3)

Second, each word wi in the document has a correspond-
ing category variable zi that determines which of 4 cate-
gories of topics this word has been drawn from. Category
”0” is a global category, which represents global topics that
frequently occur across all tweets. Category ”L” defines a
set of regionally specific topics that are specific to particular
geospatial subareas within the data. Category ”T” represents
a set of temporally aligned topics that contain words oc-
curring within different temporal factions of the data. Cate-
gory ”E” defines topics that are representative of a particular
event e, distinct from both other events and more specific to
the event than topics in the other categories. By controlling
for global, temporal and spatial topics, these event-specific
topics allow us to uncover the defining terms of this partic-
ular event beyond those specific to a general spatial or tem-
poral region. The variable z is controlled by a multinomial
distribution whose parameter is a per document category dis-
tribution π:

z∼Mult(π) (4)

For each document a π is generated by a prior α from a
Dirichlet distribution:

π∼Dir(α) (5)

To index into the topics of the location and time cate-
gories, each location l and time t is converted into a loca-
tion index l̄ and a time index t̄, respectively. These conver-
sions are conducted by applying two functions f(l) and g(t).
These resulting indices are used for the language model to
retrieve the corresponding topics from these categories in a
manner that will be introduced later.

l̄ = f(l) (6)

t̄ = g(t) (7)

Language Model
The language model defines how words within a document
are drawn from topics (within specific categories) based on
the full set of parameters associated with the document.
Topic distributions for each category are generated using a
Dirichlet prior β:

Φ
(∗)
∗ ∼Dir(β) (8)

Each topic contains the probability of each word in the
vocabulary occurring within it. While this is the traditional
representation of LDA, note that our approach is a general-
ization of the original model (Blei, Ng, and Jordan 2003),
since now topics are also hierarchically organized by the
four different categories. For a model with one global topic,
L location topics, T time topics and E event topics, the
total number of topics across the four categories is thus
K = 1 + L+ T + E.
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Each word wi is chosen from a corresponding topic based
on its category variable z and the corresponding geo, tem-
poral and event indices l̄, t̄ and e, respectively, depending on
which category is being used. This is represented mathemat-
ically in Equation 9 below:

P (wi|l̄, t̄, e, zi,Φ(0),Φ(L),Φ(T ),Φ(E))

= P (wi|Φ(0))I(zi=0)·P (wi|Φ(L), l̄)I(zi=L)·
P (wi|Φ(T ), t̄)I(zi=T )·P (wi|Φ(E), e)I(zi=E)

(9)

Spatial and Temporal Boundaries
To generate the location index (i.e. l̄) and time index (i.e.
t̄), we need to define two transformation functions that map
from a real vector space to an integer space. To do so, we
first divide the geographical and temporal space into a lattice
within a pre-determined boundary. For geospace, a preset
boundary BL = (xlow, xhi, ylow, yhi) is determined based
on the data. The geoarea is then divided evenly by the num-
ber of locations L to form a

√
L ×
√
L square lattice. Each

cell in the lattice has a unit length of UL = (x, y), with
ULx = (BLxhi −B

L
xlow

)/
√
L and ULy = (BLyhi −B

L
ylow

)/
√
L

respectively. The transformation function for location data
f(l) is then defined in Equation10:

f(l) = b(lx−BLxlow)/ULx c∗
√
L+b(ly−BLylow)/ULx c (10)

Similar to the way that l is mapped to l̄, a function that maps
t into an index space t̄ is also defined in equation 11. Here we
treat t as a real valued scalar bounded in range from BTx to
BTy . A unit length UT is also calculated to be the unit length
of each time cell in the lattice, which is (BThi −BTlow)/T .

g(t) = b(l −BTlow)/ULc (11)

In our model we treat the timestamp of a document as a real-
valued variable by dividing the UNIX time by the number of
seconds in a month. By doing this we converted the informa-
tion so that tweets are represented by a real-valued variable
that defines the month and year in which they occur. This
meets the requirement of the Gaussian distribution in which
we used to model the temporal span of a particular event.

Generative Model
The graphical model we defined above can be used as a gen-
erative model that produces new tweets that have a geo coor-
dinate, a time stamp and a set of words constituting the text
of the message. The generative process is as follows:
• Pick an event e ∼ Mult(γ).
• Pick a location l ∼ N(θ

(L)
e , σ

(L)
e )

• Pick a time t ∼ N(θ
(T )
e , σ

(T )
e )

• Pick a category distribution π ∼ Dir(α)
• For each word wi, first pick zi ∼ Mult(π) then pick

wi ∼ Φ(∗)

4 Model Inference
Given the number of hidden variables as well as the hierar-
chical structure of the model, exact inference is intractable.

Table 1: Notations
Symbol Size Comments
D 1 number of documents
L 1 number of location plates
T 1 number of time plates
E 1 number of events
Z 1 number of topic categories
K 1 number of topics
V 1 number of vocabularies
Wd 1 number of words in document
l D ×2 location lat and lon
t D timestamps
e D event index
w Wd word in a document
l̄ D location index of a document
t̄ D time index of a document

θ(L), σ(L) E mean and sd of event locations
θ(T ), σ(T ) E mean and sd of event time

z Wd topic category of word
π D × Z category distribution
Φ K × V word distribution for topics
α Z dirichlet prior for π
β V dirichlet prior for Φ
γ E multinomial prior for e
O - Observed variables
Ω - latent variables solved in E step
Θ - latent variables solved in M step

Instead, we use a Gibbs-EM algorithm (Andrieu et al. 2003;
Wallach 2006) to infer the model parameters. Before we
detail the inference procedure, we clarify three pieces of
notation, O, Ω and Θ, that define the sets of variables we
are concerned with during the inference procedure. The set
O = {l, t, w} defines the set of observed variables. The set
Ω = {e, z, π,Φ(0),Φ(L),Φ(T ),Φ(E)} defines variables that
will be solved during the E stage of the algorithm. Variables
falling into this set are mainly those related to the language
model. The variable Θ = {θL, θT , σL, σT } is a set of pa-
rameters that will be estimated during the M step. Note that
we do not perform inference on the Bayesian hyper parame-
ters {α, β, γ}, treating them as static constants to be defined
by the researcher. To avoid confusions, we have omitted all
the Bayesian hyper parameters in our equations and we will
follow this convention in the rest of the paper.

E Step
During the Expectation (“E”) step, we assume that param-
eters in Θ are already known as the result of a previous
Maximization (“M”) step. We then use Gibbs sampling to
generate samples for the parameters in Ω over a number of
Gibbs iterations and use the average of these samples to ap-
proximate the expectation of the E step. Before we do this,
however, we first integrate out Φ(∗) and π, resulting in a
more efficient collapsed Gibbs sampling problem. Equation
12 gives the collapsed distribution we are interested in sam-
pling from. Here Γ is the gamma function and nz,kd,r denotes
the number of times that a document d has a word r that
falls into topic k of category z. If any of d, r, k or z are re-
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placed by “*”, the value should be interpreted as one which
takes the sum over this particular variable. Note again that
in contrast to the standard LDA model, here we need to pay
attention to both topic k and the category z.

P (z, e|Θ, O) =

∫
φ(0)

∫
φ(L)

∫
φ(T )

∫
φ(E)

∫
π

P (z, e, π,Φ(0),Φ(L),Φ(T ),Φ(E)|Θ, O)

=
D∏
d=1

Γ(
∑Z
z=1 αz)∏Z

z=1 Γ(αz)

∏Z
z=1 Γ(nz,∗d,∗ + αz)

Γ(
∑Z
z=1 n

z,∗
d,∗ + αz)

×

Γ(
∑V
r=1 βr)∑V

r=1 Γ(βr)

∑V
r=1 Γ(n0,1

∗,r + βr)

Γ(
∑V
r=1 n

0,1
∗,r + βr)

×

L∏
l̄=1

Γ(
∑V
r=1 βr)∑V

r=1 Γ(βr)

∑V
r=1 Γ(nL,l̄∗,r + βr)

Γ(
∑V
r=1 n

L,l̄
∗,r + βr)

×

T∏
t̄=1

Γ(
∑V
r=1 βr)∑V

r=1 Γ(βr)

∑V
r=1 Γ(nT,t̄∗,r + βr)

Γ(
∑V
r=1 n

T,t̄
∗,r + βr)

×

E∏
e=1

Γ(
∑V
r=1 βr)∑V

r=1 Γ(βr)

∑V
r=1 Γ(nE,e∗,r + βr)

Γ(
∑V
r=1 n

E,e
∗,r + βr)

(12)
Word Category The word category variable z is sampled
for each word in each document. The conditional probability
of a specific category for word n in document d given all the
other variables is proportional to the conditional probability
given in Equation 13. While space constraints do not allow
us to present the full derivation of the conditional probabil-
ity, ideas utilized in the proofs of the original LDA algorithm
in Griffiths and Steyvers (2004) can be directly applied to
our efforts to derive the equation.

P (z(d,n) = z)|z (d,n),Θ, O)

∝ P (z(d,n) = z), w (d,n), w|Θ, O)

∝ (n
z,∗−(d,n)
d,∗ + αk)

n
z,∗−(d,n)
∗,r + βr∑V

r=1 n
z,∗−(d,n)
∗,r + βr

(13)

Category and Word Distribution After the category
variable z is sampled for each word in each document in
the data, we update all word distributions Φ(∗) as well as
the category distribution π for each document according to
Equation 14 and Equation 15. Again, while proofs are omit-
ted, similar proofs can be found in Griffiths and Steyvers
(2004). One thing worth noticing, however, is that πd,z is
a bit different from its counterpart θd,k in the classic LDA
model because of the second dimension k, which is a topic
index in the classic LDA. In the present model, this value
is changed to z, thus representing a draw from a category
rather than a topic.

Φ
(i)
k,v =

ni,k∗,v + βv∑V
v=1 n

i,k
∗,v + βv

(14)

πd,z =
nz,∗d,∗ + αz∑D
d=1 n

z,∗
d,∗ + αz

(15)

Event Index In addition to sampling the category vari-
ables and distributions over the categories, we also must
sample the event index e for each document d. The condi-
tional probability for sampling the event index for a specific
document based on all other variables is given in Equation
16. It is determined by three terms: a prior multinomial dis-
tribution on e, two Gaussian distributions, one each on lo-
cation and time, and a term defining the joint likelihood of
each word in the tweet. Observing that this expression can
be further simplified and only those words wi with zwi = E
are actually affecting the probability of sampling e, we are
left with Equation 16

P (ed|Ω\ed,Θ, O)

∝
∏
i;zi=e

P (wi|zi,Φ(zi))·P (l|θ(L)
e , σ(L)

e )·

P (t|θ(T )
e , σ(T )

e )·P (ed|γ)

∝ 1

σ
(L)
e σ

(T )
e

·γ(E = e)·
∏
i;zi=e

Φ(e)(w = wi)·

e
− 1

2 [
(L−θ(L)

e )T (L−θ(L)
e )

σ
(L)
e

2 +
(T−θ(T )

e )T (T−θ(T )
e )

σ
(T )
e

2 ]

(16)

M step
In the M step, we treat all the variables in Θ as parameters
and estimate them by maximizing the likelihood function.
Since we use Gibbs sampling in the E step, the likelihood
function is an average over all samples drawn from the E
step.

For each Gibbs step s we use a superscript to annotate the
variables that are drawn from this specific step. The objec-
tive function of the M step Q(Θ) can be written in Equation
17. The goal of this M step is to find the latent variables in Θ
that maximize this objective function. To achieve better op-
timization results, we add an L2 penalty term to the location
and time deviations in our objective function in addition to
the log likelihood. The penalty term has a factor (1 + re),
where re is the ratio of documents that belong to event e.
If the ratio re for a specific event is high, it will receive a
stronger penalty in the size of its spatial and temporal devi-
ations, causing these variances to be restricted.

Q(Θ) =
1

S

S∑
s=1

log(P (O,Ω(s)|Θ(t)))

+
1

2
λ((||σ(L)||22 + ||σ(T )||22)(1 + re))

∝ 1

S

S∑
s=1

D∑
d=1

[
− (log(σ

(L)

e
(s)
d

) + log(σ
(T )

e
(s)
d

))

− 0.5(
||ld − θ(L)

e
(s)
d

||

σ
(L)

e
(s)
d

2 +
||td − θ(T )

e
(s)
d

||

σ
(T )

e
(s)
d

2 )
]

− 1

2
λ((||σ(L)||22 + ||σ(T )||22)(1 + re))

(17)

Event Centers Event centers for both location and time
can be estimated in a straightforward manner by maximizing
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the objective function.

ˆ
θ

(L)
e =

∑
s

∑
d;e

(s)
d =e

ld∑
s

∑
d;e

(s)
d =e

(18)

Similarly, we can also acquire a MLE estimation for
ˆ
θ

(T )
e :

ˆ
θ

(T )
e =

∑
s

∑
d;e

(s)
d =e

td∑
s

∑
d;e

(s)
d =e

(19)

Event Variance In the estimation of the variance in space
and time for each event, the penalty term we have introduced
means that we can no longer use the MLE to find an optimal
value for them. While this complicates inference, the penalty
term is an important part of the model. It is introduced be-
cause in model development, we observed that as the num-
ber of EM steps increased, larger events tended to rapidly
acquire more documents during training. This, in turn, in-
creases the variance of these events to a value larger than we
would expect to see for a spatially constraint event. This sit-
uation becomes worse over time and eventually these events
come to dominate the analysis. The introduced L2 penalty
restricts this from occurring.

To solve for the variances, we use a gradient descent ap-
proach to find the optimal value. In order to do so, we take
the derivative of the EM objective function and acquire the
gradient of the event deviations in Equation 20 and Equation
21. We then apply a standard gradient descent algorithm.

∂Q(Θ)

∂σ
(L)
e

=

∑
s

∑
d:ed=e

−1

σ
(L)
e

+
||l−θ(L)

e ||
σ
(L)
e

3 − λσ(L)
e (1 + re)

S
(20)

∂Q(Θ)

∂σ
(T )
e

=

∑
s

∑
d:ed=e

−1

σ
(T )
e

+
||t−θ(T )

e ||
σ
(T )
e

3 − λσ(T )
e (1 + re)

S
(21)

Initializations Several variables need to be properly ini-
tialized in order for the EM algorithm to converge to the
correct distribution. The parameters z and e are initialized
randomly within their domains. The variables θ(L) and θ(T )

are initialized by learning a kernel density estimator from the
data first and then drawing e samples from it. This initializa-
tion gives areas in space and time where tweets are concen-
trated a higher chance of becoming centers in location or
time, respectively. Finally, the variables σ(L) and σ(T ) are
generated from a uniform distribution from 0 to 1.

Prediction
One of the most important applications of the model pro-
posed in the paper is to predict the location and time of
tweets based on the words contained within them. To achieve
this goal, we use another EM algorithm again to infer the
hidden variables as well as the variable(s) we are interested
in predicting. In the prediction setting, event specific param-
eters θ and σ and topic categories Φ(∗) are already trained
and our goal is to infer z,e and either l, t or w given some or
all of the other variables.

Category Variable and Event Index In our prediction
EM algorithm, we estimate the category variable z and the
event index e in the E step. This is almost the same process
as the one in the training, as all other variables are again
fixed. The only difference is that during the training stage,
nz,kd,i is initialized according to a randomly generated z and
e while in the prediction stage these variables are the result
of a trained model.

Predict Location and Time To predict location and time,
we use the samples generated from the E step to make a point
inference on one or both, depending on the task at hand. As
opposed to the M step in the training stage, in our predic-
tion task all event variables have already been learned and
our goal is to estimate l and t instead. Equation 22 is the
objective function for both l and t. Utilizing the fact that the
addition of several Gaussian distributions is proportional to
another Gaussian distribution, the summation term for the
location and time distributions can each be absorbed into a
single Gaussian distribution. The part of the likelihood func-
tion that contains the summation of word probabilities can
also be simplified to consider only those words with topics
related to either L or T . This results in an objective function
that has a location component and a time component, each
of which contains a Gaussian term and a grid density term.

Q′(l, t) ∝ 1

S
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(22)
Speeding Up the Optimization From Equation 22, we
observe that the estimation of l and t can be done inde-
pendently, as the objective functions of each entity are ab-
solved of terms from the other. However, to infer either l or
t based on the objective function is difficult using conven-
tional optimization methods such as gradient descent since
it involves optimizing an objective function that is not con-
tinuous. This occurs because the transformation from l and
t to l̄ and t̄ makes the objective function no longer differ-
entiable. Search based optimization techniques can still be
applied but are exceedingly slow.
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We thus develop a method particular to our specific issue
that can estimate l and t rapidly. To see how we can speed up
the optimization, observe that the grid density term in Equa-
tion 22 is fixed when variables fall within a single grid cell.
For example for all l such that l̄ are the same, these l will fall
into the same cell. For all variables falling into the same cell,
it is up to the Gaussian term to determine the optimal value.
For each grid cell, if the Gaussian center falls outside of it,
the optimal point within the cell is the point along the cell
boundary that is closest to the Gaussian center. If the Gaus-
sian center falls inside of the grid cell, the optimal point will
be the Gaussian center. Using the fact, we can effectively
reduce the complexity of the optimization to a linear time
algorithm in the number of squares in the location lattice, L
when evaluating l or linear to the number of elements in the
temporal lattice, T when evaluating t.

5 Experimental Results
In order to show the value of our approach in analyzing
real-world data, we ran our model on a Twitter data set col-
lected within the geographical boundary of Egypt from Oc-
tober 2009 to November 2013. We are particularly interested
in this data set because social movements were frequent in
Egypt at this time(Anderson 2011) and Twitter has been con-
sidered by many to have played at least some role in both
planning and promoting of these demonstrations and gath-
erings (Lotan et al. 2011; Comunello and Anzera ). We ex-
amine two aspects of the model in our experiment. First, we
provide a qualitative interpretation of several events uncov-
ered from a trained model to illustrate our ability to discover
major events that can match reports from newspaper and on-
line sources. Second, we provide a quantitative analysis of
the prediction accuracies of location and time in a held out
testing data set. In all cases, experiments are run with 400
Gibbs sampling steps, by fixing L = 100 and T = 100 and
varying the number of events E unless otherwise noted. We
set hyperparameters to be the following values: α = 0.05,
β = 0.05, γ = 1.0.

Data Set
We pre-processed the data so that only tweets written in Ara-
bic remained, having observed that nearly all tweets utiliz-
ing the English character set were use a non-standard lan-
guage that is phonetically similar to Arabic but was largely
uninterpretable. For example, while with the help of a na-
tive speaker we were able to discern that ”tab3an” means
”of course”, large portions of these tweets were not inter-
pretable. We filter out all tweets that are composed of less
than 95% of Arabic characters2. After these preprocessing
steps, we are left with roughly 1.4 million tweeets over with
a vocabulary size of approximately 180K words. The geo-
boundary we use is defined by the latitude/longitude point
(21.89, 24.84) in the lower right corner and the point (32.16,
37.70) in the upper right corner. This covers the entirety of

2This percentage excludes English punctuations and Twitter
mentions which usually fall into the English character sets. For
more details on the data as part of a larger set, we refer the reader
to (Carley, Wei, and Joseph )

Table 2: Basic Statistics of the Data Set
Geo Boundary (21.89,24.84),(32.16,37.70)
Time Covered from Oct,2009 to Nov,2013
Num.Tweets 1,436,186
Num.Words 183,478

Table 3: Spatial and temporal parameters of each event
E Geo Center G SD Start Time End Time

E1 30.86,29.87 0.43 2011-01-30 2011-03-21
E2 31.23,30.93 0.24 2013-09-10 2013-09-26
E3 31.77,30.84 0.32 2012-01-29 2012-03-22
E4 29.98,31.05 0.37 2012-10-15 2012-11-22
E5 31.20,29.57 0.37 2013-09-09 2013-10-13

the area of Egypt. Table 2 is a summary of basic statistics in
our data set.

Qualitative Analysis of Events
We believed that looking for real life interpretations of the
events we have detected was an intuitive first step for model
validation. To do so, we selected five events from the out-
put of our trained model that spanned different geographi-
cal regions and time periods. The events discovered by the
algorithm are summarized in Table 3. Please note that all
event geo-centers are in the format of (Lat,lon) pair and the
start date and end date are determined by θ(T )

e − σ(T )
e and

θ
(T )
e + σ

(T )
e . The spatial distribution of the five events is il-

lustrated in Figure 2, where each point represents a tweet and
a particular event being ascribed to by the color and shape.
The figure displays up to 20,000 randomly sampled tweets
that the model associated with these five events. Figure 2
also overlays a contour graph for all points in the graph. The
contour plot is constructed using a mixture Gaussian dis-
tribution. To construct such a mixture Gaussian distribution,
we use γ to serve as the mixture weight and use the event ge-
ographical centers and deviations for each Gaussian compo-
nent. The result is a single distribution on a two-dimensional
space that represents latitude and longitude. Curved circles
in the contour plot represent the probability density of the
distribution. Regions with multiple such curves are the ones
that have steep change in their mixture Gaussian distribu-
tions. The contour plot shows three clear geographical clus-
ters that correspond to three large cities in Egypt: Alexan-
dria (left), Cairo (bottom right) and El-Mahalla El-Kubra
(top right). As is also clear, certain events are located within
the same cities. Without the temporal and lexical dimensions
of the model, it would thus be difficult to discern differ-
ences between these events. However, exploring these distri-
butions makes it relatively easy to observe the very different
focus of each of these sets of tweets.

Figure 3 displays the temporal distributions of the five
events of interest. Though we have analyzed each event in-
dependently in validating the model, we focus here on the
most relevant event, labeled Event 1(E1). This event’s tweets
were heavily centered in Cairo and took place during the
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Figure 2: Geographical visualizations of the events and
tweets belong to these events

Figure 3: Temporal visualizations of the events

earlier portion of 2011. Without considering the topical fo-
cus of the event, these clues suggest that it corresponds to
the initial protests that spurred the rapid spread of the social
movement generally referred to as the Arab Spring (Ander-
son 2011). The protests were held largely in Tahrir Square,
located within Cairo. Additionally, the central date associ-
ated with the protests was January 25 and start from January
28 the government started to force the protestors to leave.
Nevertheless, the main protest lasted for approximately three
weeks with continuous demonstrations continued after that.
The model’s inferred start date for Event 1 was January 30th,
extending to an end date of March 21st.

The topic for Event 1 in the event category in Table 4
supports the idea that Event 1 uncovers the protests in Tahrir
Square. Here we see words such “burn”, “arrested”, “honor”,
“injustice”, “tortured”, all of which match what we would
expect to have seen and have expected to be protested dur-
ing the demonstrations. Indeed, the focal date of the protests
occurred on January 25 and we correspondingly observe

Table 4: Top words for each event

E1 jan25 arrested Egypt Ghonim
burn injustice Libya tortured

E2 guilt minimum death hurts
Arif home pulse lord of

E3 scar pharmacist disease immediately
eye urticaria evil transplantation

E4 live promise tireless condensed
need granulate thanks traipse

E5 end voice winter lord, thou
god I want lord to god

that the popular term ”jan25” appear frequently in our data
set. The most representative words in Event 1’s topic also
include the name “ghonim”, referring to the activist Wael
Ghonim who played a central role in the protests.

While we focus here on Event 1, we note that the other
events in our dataset do appear to have a qualitative real-
ization in the real world. For example, Event 3 describes a
(comparatively) minor event related to an outbreak of hand
and foot disease in Egypt around February of 2012 3.

Quantitative Analysis
While our qualitative analysis shows the real-world rele-
vance of model output, it does not provide an illustration
of how well the model fits the data, nor how it performs in
a predictive setting. In this section, we compare three vari-
ants of the model and use each for three different prediction
tasks given varying amounts of information about the test
data. We train each model on a training data set composed
of a randomly selected set of 90% of the data, leaving 10%
of the data for testing. We explain the models used, the pre-
diction tasks and the level of information we use from the
test data in turn below.

Model variants The first model variant we consider is
the full model proposed in Figure 1, marked as M=L+T.
Second, we use a model with only the location compo-
nent, ignoring information on time and thus ignoring t̄, and
Φ(T ). We denote this as M=L. Finally, we use a model that
does not utilize location information, eliminating the loca-
tion variables l, l̄ and Phi(L). This is denoted as M=T.

Prediction tasks In the first task, we use each model and
the information given to us in the test data to predict the
words in each tweet. We evaluate this by using perplexity.
Second, we use each model to predict the time of each tweet
in the test data. Finally, we use each model to predict the
location of each tweet in the test data.

Utilization of test data For all of the three prediction
tasks, we vary the level of information we use from the test
data in order to make the specified prediction. When ana-
lyzing perplexity, we vary whether or not we provide the
model with time information, location information, neither
or both. Giving the full model temporal or location informa-
tion should naturally improve its ability to predict the words

3http://www.fao.org/news/story/en/item/129919/icode/
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Figure 4: Perplexity over the number of events

used in the tweet. Note that when we give the model nei-
ther time nor location, the full model reduces to an LDA-
like one. For predicting location, we vary whether or not the
full model is given time, while for predicting time we vary
whether or not the full model is given location. In both cases,
all models are given the words in each document in the test
data.

Perplexity analysis
We define the log perplexity of a document Dtest in Equa-
tion 23. The value is equal to the negative sum of the log
probability of all words appearing in our test data set. The
higher the probability of each word in the model, the lower
the perplexity.

log(PPX(Dtest)) = − 1

NW

∑
d∈D

∑
w∈Wd,∗

log(p(Wd,w))

(23)
Experimental results for perplexity are illustrated in Fig-
ure 4, where each colored line represents a different
model/test data combination. For example, the line marked
with ”M=L+T,D=L+W” represents the results with Model
M=L+T trained on a data set where both location and text in-
formation are given for training while ”M=L+T,D=W” rep-
resents the same model where only text is given during train-
ing. On the x-axis we vary the number of events the model is
trained with. Two important observations can be made about
the plot. First, the figure shows that up to a point, model
performance improves with an increasing number of events
regardless of the model and test data used. When the num-
ber of events becomes large enough (e.g. 50) the decrease
in perplexity is not as substantial as before, suggesting that
the number of events is large enough to capture the major
event information in our data set. Second, and more impor-
tantly, Figure 4 shows that the full model performs signifi-
cantly better than all other models when given temporal and
text information about the test data and when trained with a
large enough number of events.

Prediction of location and time
The prediction of location and time shows similar pattern to
perplexity, indicating that with certain number of events ap-

Figure 5: Mean square error (MSE) of predicting location
over the number of events

Figure 6: Mean square error (MSE) of predicting time over
the number of events

proaches, the full model performs better than the alternative
models. And the more data we provide in training, the bet-
ter prediction results we will achieve. This is illustrated in
Figure 5 and Figure 6. Results thus indicate that the model
is able to make good use of the provided information and
improves on models that do not take into account location or
time.

6 Conclusions and Future Work
In this paper we proposed a probabilistic graphical model to
discover latent events that are clustered in the spatial, tem-
poral and lexical dimensions. Both the qualitative analysis
and quantitative analysis we present justified our model on
a large Twitter data set. Results show that our model im-
proved over baseline approaches on a variety of prediction
tasks. These qualitative efforts show that our work can be
used in a variety of application areas where event extraction
and location/time prediction of social media data is of in-
terest, like in the detection of protests and demonstrations
as shown here but also in detecting, for example, important
local sporting events that may be relevant to different users.

One important component of the model is the Gaussian
assumptions on the distributions of both the geo-spatial co-
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ordinates and the time stamps of the events. These assump-
tions ensure the existence of event location and time centers
which are represented by the density mass in the Gaussian
distribution. They also enable the model to discover events
ranging from geo-spatially/temporally constrained to those
that are more universal. The assumptions of using Gaussian
to model location and time are also validated in prior work
such as Hong et al. (2012) and Sakaki, Okazaki, and Matsuo
(2010). Still, it may be interesting to explore other options
for the structure of the geospatial and temporal distribution
of events in the future.

There are several ways in which the present work can be
further extended. First, both location and time are converted
into an index through an evenly distributed selection func-
tion. There may be better approaches in cases where geo-
temporal distributions are uneven, as is frequently the case in
real-world data. Second, a control on granularity of the event
should be added so that when tweaking the granularity of the
variables, one can generate (or discover) events that are more
localized or globalized. Finally, the assumption that a spatial
and temporal related topic is allocated on an evenly spaced
grid requires further investigation. One immediate solution
is to use techniques such as k-d tree to generate topics on
regions of different sizes.
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