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Abstract
Due to the huge amount of data produced on large social
media, capturing useful content usually implies to focus on
subsets of data that fit with a pre-specified need. Considering
the usual API restrictions of these media, we formulate this
task of focused capture as a dynamic data sources selection
problem. We then propose a machine learning methodology,
named WhichStreams, which is based on an extension of a
recently proposed combinatorial bandit algorithm. The eval-
uation of our approach on various Twitter datasets, with both
offline and online settings, demonstrates the relevance of the
proposal for leveraging the real-time data streaming APIs of-
fered by most of the main social media.

1 Introduction
In the last decade, social networks have become an invalu-
able source of data for many applications and services. Col-
lecting data from such social media thus stands as a key issue
for several academic and industrial organizations. Alterna-
tively to giving (costly) access to huge repositories of histor-
ical data, most of social media also offer streaming services
that allow real-time tracking of their users’ activity. How-
ever, leveraging such online streaming services to collect
useful data for a specified task usually faces some restric-
tive constraints, both technical - related to the required com-
putational resources - and business - limitation policies set
by the queried social media. Real-time capture of the whole
activity from a social media is therefore usually impossible.
A classical strategy is then to define filters that allow the
collection process to focus on useful data that fit with a pre-
defined need. This corresponds to selecting data sources to
follow (users, topics, keywords, etc...) in order to restrict the
capture to a focused subset of the whole activity. However,
such data sources sampling is very difficult to handle man-
ually, as it is proposed by various specialized companies. In
this paper, we propose an intelligent sampling strategy able
to adapt itself to both the specified data need and the opera-
tional constraints of the capture. Besides its benefits for real-
time applications, our proposal is also useful for collecting
social datasets with expected properties.

Let us consider, for instance, the case of the very famous
social media Twitter, on which more than an average of 7000
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messages (tweets) are posted every second. Being able to
consume such a huge amount of data requires to own very
important computational and storage capacities, especially if
one wishes to extract usable information for a given partic-
ular task. Moreover, as most of the main social media, Twit-
ter has quickly understood the wealth of its data and now
avoids the capture of its whole activity. Only data related to a
limited set of indicators (authors or keywords for examples)
can be collected simultaneously, which limits the knowledge
about the media to a restricted subset of its global activity.
In this context, defining a given data need can turn out to be
a very difficult problem: How to define a static set of rele-
vant indicators, while one does not know the distribution of
the data over the network ? Moreover in dynamic contexts
like social media ? While a data collection about a topic can
be performed by defining a specific list of keywords, data
obtained with such a method are likely to be very noisy or
out of scope, due to the poor expressiveness of such a need
formulation and the usually high number of matching mes-
sages. The companies which offer data access services well
know this effect and many of them use human operators for
tracking and modifying the target sources, which is expen-
sive and cannot be done on a large scale.

In this work, we consider streaming systems which, given
source users to follow, delivers the content produced by
these sources during a specific time interval. Being given
a reward function defined for the task in concern according
to the utility of the data delivered by each source, we pro-
pose a solution to this sampling problem from unknown en-
vironments, which is based on a machine learning method,
namely an extension of combinatorial bandit algorithms.
Starting from an initial set of seed users, our WhichStreams?
method explores, evaluates and continuously redefines the
set of source users to follow. This allows one to progres-
sively learn to focus on the most relevant sources of the
media, under the specified operational constraints (limita-
tions on the simultaneous capture ability, bounded resources,
no prior information about the media, restricted knowledge
about its activity). Note that this method works for any in-
formation goal that can be expressed as a reward function
as this will be defined later on. It can be used for example
for collecting topical messages, identifying thematic influ-
encers or capturing data that tend to satisfy a panel of given
end-users.
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The contributions of the paper are the following:

• We present a task of focused data capture from large so-
cial media with unknown distributions under restrictive
constraints;

• We formalize this task as a combinatorial bandit problem
and propose an algorithm for solving the problem;

• We provide experimental evaluations on both offline
datasets and live streaming experiments, that show the
ability our method to automatically orient a realtime data
capture toward relevant data sources in complex environ-
ments such as large social media.

The paper is organized as follows: Section 2 introduces
our task of dynamic data collection from social media. Sec-
tion 3 describes our algorithm for optimizing data collection
from sources according to some reward criterion. Section 4
reports experiments allowing us to assess the performance of
our approach. Section 5 presents related work and discusses
possible extensions.

2 Dynamic Data Capture
The task of dynamic data capture from social media can then
be seen as a problem of sources selection: the capture of the
whole activity of the media being not possible, the aim is to
efficiently define a subset of users that are likely to produce
relevant content for the specified data need. We propose to
consider this problem in the context of very large social me-
dia, where the choice of data sources cannot be performed
manually due to the huge amount of data produced and to
the high number of sources to investigate. For instance in our
experiments (see section 4), although our approach could be
applied on several other social media (all of which that of-
fer real-time data streaming APIs), we focus on data capture
from Twitter, where the total number of users is greater than
240 millions, with 5000 as the limit of simultaneously fol-
lowed ones. In this context, selecting which users to follow
is a difficult question, which requires the use of machine
learning techniques that enable an efficient exploration of
the possible sources of the queried media.

Consider a process which, at each time step, is allowed to
collect the content produced by a subset of users in a social
network. Given a reward function that renders the usefulness
of the collected content from any followed user for a speci-
fied task, the aim is to define a decision strategy that allows
the process to progressively move towards the most relevant
users of the media. This decision strategy is defined so that
it maximizes the cumulative score - evaluated by the reward
function - provided by the followed users over time. In the
following, this decision strategy is called selection policy.
On Twitter for instance, the data captured from a user dur-
ing a given time interval correspond to the set of tweets she
publishes during this period, and the reward function can
correspond to some thematic or influence score functions
(see section 4).

In our context, a major difficulty is that one do not know
anything a priori about the users of the media nor the re-
lations that can exist between them: getting the list of all
user accounts or the list of the friends of a given user for

examples is usually not possible in our case, as it would re-
quire to query an often costly or restricted API (query fre-
quency being usually very limited). We thus consider in this
paper that, except from what is obtained via the streaming
API considered, not any additional information is available.
Among others, this implies that we cannot ground in the so-
cial graph to explore the set of users (which therefore avoids
the use of techniques employed for related tasks of Crawl-
ing, see section 5). Traditional techniques for sampling, such
as those that would be applied in a stored database, are not
possible either.

Then, starting from a set of seed users, the aim is to de-
fine a process that, beyond exploiting relevant known users,
is able to explore new unknown ones, by incrementally feed-
ing the pool of possible sources as long as new users are met
in the collected content. For instance, unknown users can
be mentioned in messages posted by followed ones. Typ-
ically on Twitter, users can reply to others or can re-post
(retweet) messages from other users (see section 4), which
offers the opportunity to discover new data sources with-
out requiring any external resources. The general process of
WhichStreams?, depicted by figure 1, can be sketched as fol-
lows. At each period of the data capture, the process:

1. Selects users to follow among known ones according to
the current selection policy;

2. Collects their published content during the time interval;

3. Feeds the set of known users with unknown users refer-
enced in the collected messages;

4. Evaluates the collected data according to the reward func-
tion rendering their relevance for the task to solve;

5. Update the selection policy according to the obtained re-
wards.

Users  
Set 

Selection 
Policy 

Users to 
Follow 

Data 
Capture 

Reward 
Function 

Scores update 

Possibly: new users 

Figure 1: Overall process

3 Multi-armed bandit approach
In the this section, we formalize our problem as a bandit
problem, which corresponds to a family of algorithms for the
exploration of unknown environments with immediate re-
ward feedback. After introducing general background about
multi-armed bandits, we show that our problem can be ex-
pressed using the recently proposed combinatorial bandit
framework. We also show that because of the extreme vari-
ability of user behaviors, existing bandit algorithms devel-
oped for this setting are not well adapted to our problem. We
then propose an extension of the combinatorial UCB algo-
rithm which better suits our needs and analyze its theoretical
convergence.
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3.1 Background: Multi-Armed Bandit

The multi-armed bandit problem is aimed at tackling the
well-known trade off between exploration and exploitation
in decision processes where, at each round (or time step), an
agent has to choose an action among a finite set. According
to the playing outcome of this action, the agent then receives
a reward which quantifies the quality of the action. The goal
for the agent is to maximize its cumulative reward trough
time. The name “bandit” comes from the image of a gam-
bler in front of several slot machines who can pull one arm
every minute and then receives as a reward an amount of
money. Her goal is obviously to maximize the total amount
of earned money, or equivalently her cumulated reward. A
good introduction to multi-armed bandit is given in (Auer,
Cesa-Bianchi, and Fischer 2002). A general overview of the
multi-armed bandit problem can be found in (Bubeck and
Cesa-Bianchi 2012).

In the classical bandit setting, only one arm at a time is
pulled and then evaluated. Here, one will consider the case
where a unique gambler has to pull several arms simulta-
neously at each time step. This problem has been recently
formalized and studied (Chen, Wang, and Yuan 2013), and
is now known as the Combinatorial bandit problem. We pro-
vide a brief introduction to this problem below.

Notations Let us denote K the set of all K available ac-
tions and ωi,t ∈ Ω the playing outcome of action i at time
step t. We suppose available a reward function g, which pro-
vides a score g(ωi,t) for every outcome ωi,t. Then, at each
timestep t = 1, 2..., n the agent has to:

• Choose a subset Kt ⊆ K of k actions according to a se-
lection policy π;

• Observe the outcome ωi,t provided by each action i in Kt
and receive the corresponding reward g(ωi,t);

• Try to improve the action-selection strategy based on
these new observations in order to obtain a higher reward
in future action selection.

The objective is thus to find the optimal selection pol-
icy π∗ that provides the highest possible cumulative reward
value:

π∗ = arg max
π

n∑
t=1

∑
i∈Kt

g(ωi,t) (1)

where n is the total number of steps. Moreover, we sup-
pose that we are in the so-called stochastic case where each
reward distribution follows an unknown law νi with values
in [0, 1]: g(ωi,·) ∼ νi with mean µi to be estimated from the
observations. Every time the action i is chosen, the knowl-
edge about its empirical mean increases. In order to increase
the knowledge about the whole environment, a tradeoff be-
tween exploitation of good actions and exploration of new or
badly known actions has to be defined, which is the central
point the different bandit policies differ on.

Combinatorial UCB The Combinatorial UCB algorithm
recently proposed in (Chen, Wang, and Yuan 2013) is an
extension of the original UCB (Auer, Cesa-Bianchi, and Fis-
cher 2002) for cases where several actions can be performed
simultaneously by a unique player. We consider the case
where the reward obtained for a set of actions corresponds to
the sum of its individual rewards. Outcomes of actions can
then be considered individually.

As the classical UCB does, the combinatorial UCB algo-
rithm uses a ranking score vi,t computed for each action i. At
each time-step t of the process, it selects the k best actions
according to this score rather than the best one for the clas-
sical UCB. Theoretical convergence guarantees have been
given in (Chen, Wang, and Yuan 2013) for this algorithm.

Let us denote, τi(t) the number of times a given action i
has been chosen during the first t time steps of the process
and gi,s the s-th reward provided by playing i. The rank-
ing score vi,t given to action i at timestep t is based on the
empirical mean µ̂i,τi(t−1)

of the rewards received for each
action i in the t− 1 first time steps, where µ̂i,x is defined for
any i in {1..K} and x ≥ 1 as:

µ̂i,x =
1

x

x∑
s=1

gi,s (2)

The score vi,t used in (Chen, Wang, and Yuan 2013) to
rank the arms at each round t is defined as:

vi,t = µ̂i,τi(t−1)
+Bi,t (3)

where Bi,t =
√

3 ln(t)
2τi(t−1)

. This value defines a tradeoff be-
tween exploitation (the µ̂i,τi(t−1)

term) and exploration (the
Bi,t term), as it sums a first term estimating the utility of
arm i with a second term that decreases with the number of
times this arm has been played before time t.

3.2 Collecting Data with Bandits
In this section, we formalize the task - dynamically collect-
ing data on media sites - as a combinatorial bandit problem
and propose an extension of the Combinatorial UCB algo-
rithm better suited to this specific problem. Assuming that
we are able to assess the collected data w.r.t. a given reward,
our goal is to orient the users selection process towards users
that produce the most useful content during the capture pe-
riod. The bandit framework fits well our data capture prob-
lem: an action (or arm) corresponds to the selection of a user
from the social network and playing outcomes correspond to
the textual content produced by these selected users during
a given period.

Data Capture as a Combinatorial Bandit Problem Let
us denote U the set of users of the social network we are in-
terested in. Let us also consider that the data capture period
is divided into n time steps. The content produced by user i
during the t-th time interval of capture is denoted ωi,t ∈ Ω.
On Twitter for instance, ωi,t corresponds to the set of tweets
published by user i during time interval t. We consider a re-
ward function g which provides a score indicating the utility
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of the collected data:

g :

{
Ω→ [0; 1]

g(ω) = quality of ω for the given task
(4)

This reward function depends on the task to solve and can for
example correspond to a thematic quality or a popularity of
the collected content. Different reward functions are defined
in Section 4.

As mentioned before, we consider throughout the paper
the frequent case of streaming APIs that give the opportunity
to collect content produced by a given number k of users si-
multaneously. Our problem comes down to a combinatorial
bandit problem as stated above, where multiple actions have
to be selected at each time step. Given a time period of n
time steps, a set of available usersK ⊆ U and an operational
constraint k corresponding to the number of users that can
be simultaneously captured, a selection policy is a function
π : {1, ..., n} → Kk, where π(t) defines, for a given time
step t a subset of k users to follow. Our goal is then to find
the best policy π∗, as defined in equation 1, that allows us
to collect the best cumulative reward over captured content
from followed users.

With all users from U known at the beginning of the
process, and assuming hidden utility distributions for these
users, the Combinatorial UCB (CUCB) algorithm presented
above could be used to orient our data capture process to-
wards the most useful users w.r.t. the task in concern. How-
ever, in our case, the full set of actions is unknown: assum-
ing the frequent case where no exhaustive list is provided by
the streaming API, only some seed users are known at the
beginning of the process. Users are then added to the pool
K iteratively, according to new users discovered in the data
collected at each step.

Our dynamic data capture algorithm, WhichStreams?, is
described in algorithm 1. At each time step t of the process,
the algorithm computes a ranking score for every known
user, then selects the k top-ranked users according to these
scores, collects the content produced by these k users dur-
ing the t-th streaming period, records their rewards to update
the selection policy and finally feeds new users potentially
met in the collected data to the pool of available users K.
The ranking score vi,t considered for each available user i at
each time step t is defined as:

vi,t =

{
µ̂i,τi(t−1)

+Bi,t if τi(t−1) > 0

+∞ if τi(t−1) = 0
(5)

where Bi,t stands for the exploration term of our policy.
Since the full set of users U is unknown, it is not possible to
initialize the empirical reward mean of each user by choos-
ing it once at the beginning of the process, as it is done with
the classical CUCB policy. At each time step t, we there-
fore define vi,t =∞ for every user i for which τi(t−1) = 0.
This forces the algorithm to consider it in the set of followed
users during the current period, in order to compute its mean
reward value.

The Combinatorial UCBV policy For our sources selec-
tion problem, the reward for each user is computed based

Algorithm 1: The WhichStreams? algorithm
Input: K, k, n
for t← 1 to n do1

for i← 1 to K do2
Compute vi,t with formula 5;3

end4
Order all users in decreasing order w.r.t. vi,t;5
Select the k first to set Kt;6
for i ∈ Kt do7

Follow i and observe ωi,t;8
Receive the reward g(ωi,t);9
Feed K with newly encountered users j, j 6∈ K;10

end11

end12

on the relevance of his content production during finite pe-
riods of streaming. Since users do not produce content at a
fixed, continuous rate, high reward variations are likely to be
observed during the capture process. Typically, most of the
time, the users do not produce any content. Under the CUCB

policy (i.e., withBi,t =
√

3 ln(t)
2τi(t−1)

), the ranking score vi,t in
equation 3 would penalize users that produced few content
during the first periods they have been followed. Moreover,
no difference would be done between a user who produces a
large amount of poorly relevant content and a user who pro-
duces fewer but highly valuable data. In order to take into
consideration this high variability in the user behaviors, we
propose in this section a new combinatorial bandit algorithm
called Combinatorial UCBV (CUCBV), where ”V” holds
for variance, which considers the variance of the collected
rewards.

The CUCBV algorithm extends the UCBV algorithm,
proposed in (Audibert, Munos, and Szepesvári 2007), for
the combinatorial case where several actions are performed
simultaneously. UCBV, which considers the empirical re-
ward variance of actions in its exploration term, indeed ap-
pears better fitted for our data capture task since it allows
us to favor users with high reward variations. To the best of
our knowledge, variance dependent bandit algorithms have
never been proposed in a combinatorial setting.

Following UCBV, we therefore consider an exploration
term Bi,t based on the reward variance of users:

Bi,t =

√
2 ln(t)σ̂2

i,τi(t−1)

τi(t−1)
+

3 ln(t)

τi(t−1)
(6)

where σ̂2
i,x stands for the empirical reward variance of user

i after its x-th selection:

σ̂2
i,x =

1

x

x∑
s=1

(gi,s − µ̂i,x)2 (7)

With such an exploration term, the policy tends to explore
more frequently users that have a high empirical variance,
since more information is required for these users to get a
good estimation of their utility. In the following, we analyze
the theoretical convergence for this extension of UCBV in a
combinatorial context.

133



CUCBV Theoretical Convergence In bandit problem, al-
gorithm performance is usually measured through the notion
of regret, which corresponds to the reward loss an agent is
expected to regret by choosing a given action i rather than
the optimal one i∗. In our context, if we denote by K∗ the
subset of k actions that provides the highest value of cumu-
lative reward over a time period of n time steps, the cumula-
tive regret Rn computed at time step n is defined by:

Rn =
n∑
t=1

∑
j∈K∗

g(ωj,t)−
∑
i∈Kt

g(ωi,t) (8)

Hence we are interested in finding strategies that lead to a
small value of the expected cumulative regret.
Proposition 1. The expected cumulative regret Eπ[Rn] for
a given policy π and after a time period of n timesteps, can
be defined as:

Eπ[Rn] =
K∑
i=1

Eπ[τi(n)]∆i (9)

where ∆i is defined as the difference between µ∗, the aver-
age of the means of the reward distributions of the actions in
K∗, and µi, the mean of the reward distribution of action i:
∆i = µ∗ − µi 1.
Proposition 2. If we consider that the full set of actions K
is known, we get, with our Combinatorial UCBV policy with
n ∈ N+, the following bound:

E[Rn] ≤ ln(n)
∑
i/∈K∗

(
C + 8(

σ2
i

δ2i
+

2

δi
)

)
∆i +D

(10)
where C and D are constants, δi corresponds to the dif-

ference between µ∗, the mean of the reward distribution of
the worst action in K∗ and µi, σ2

i is the variance of action i.

Proof. The general scheme of the proof can be sketched in
three main steps1: 1) We separate the contribution of optimal
and non optimal actions; 2) We cancel the optimal actions
part using

∑
i∈K∗ ∆i = 0 and τi(n) ≤ n ∀i; 3) Following a

method similar to (Audibert, Munos, and Szepesvári 2007),
we upper-bound the non optimal actions contribution using
Bernstein’s inequality.

Up to some constants, this result allows us to guarantee a
logarithmic convergence for our Combinatorial UCBV algo-
rithm. Note that, while this guarantee is defined for the case
where the full set of users is known, it ensures that, from
the moment when an optimal user (one with an expected
reward in the k best ones) enters the pool, the process loga-
rithmically converges towards a policy that recognizes it as
so. Note also that the convergence analysis consider the sta-
tionary case where the reward distributions do not change
over time. This usual assumption does not always hold in
our context. However, our convergence results indicate that,

1Details of the proof are available as supplementary content at
http://webia.lip6.fr/~lampriers/CUCBVproof.pdf

if some users are useful sources during a sufficient period of
time, our algorithm tends to select them.

In the next part, we describe a set of experiments allowing
to evaluate our algorithm in different contexts.

4 Experiments
This section presents the results obtained on two sets of ex-
periments. A preliminary set has been performed offline, by
using already collected data with known properties, in or-
der to compare our algorithm to some baselines. A second
set of experiments has been performed online, in real-world
capture settings, by using the Twitter streaming API during
three weeks, and aims at demonstrating the ability of the
proposed method to efficiently capture a specific relevant in-
formation under operational constraints.

4.1 Rewards definition
The rewards considered in our experiments correspond to
three different examples of realistic problems of data cap-
ture. First, we propose a topical model which focuses on the
content of published messages. This reward corresponds to a
problem in which one wants to collect information on a pre-
defined topic and orient the capture toward users that are the
most likely to produce data on this topic. Then, we consider
a task where one wants to capture content from influential
users without any reference to a specific topical information
need. Finally we propose an hybrid model, taking into ac-
count both the content of the posts and the influence of their
authors to capture data from the best “thematic influencers”
in the network. Note that many other rewards could be con-
sidered depending on the information need.

Topical model This reward model corresponds to a task
where one wants to gather information concerning a topic,
specified by a query defined as a weighted vector of terms2.
Let us suppose that we have a dictionary of d terms, a query
is defined as a vector Q of size d denoted: Q = (wQj , j =

1..d), where wQj is the weight of term j in the query Q.
We also represent the content in ωi,t obtained by captur-

ing data from a given user i at time step t using a vector
Di,t = (wi,tj , j = 1..d), wherewi,tj is the weight of term j in
the messages posted during the corresponding time period3.
A document vector is built by applying a Porter Stemmer on
the collected messages, filtering terms not present in the dic-
tionary and then assigning tf weights to the remaining ones
(wi,tj equals the number of occurrences of the term j in the
messages posted by user i at time step t).

The reward function g1(ωi,t) is then defined for data ωi,t
captured from a given user i at time step t as the cosine be-
tween the content Di,t of ωi,t and the query Q:

2Note that, we consider here a simple bag of words model, but
more complex text models could be used as well.

3A user can post several messages at each time step. For this
study, we consider that a set of messages arriving at the same time
step are grouped into a single one by simply adding the weights of
all the corresponding vectors.
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g1(ωi,t) =
Di,t.Q
‖Di,t‖ ‖Q‖

=

d∑
j=1

wi,tj w
Q
j√

d∑
j=1

(wi,tj )2

√
d∑
j=1

(wQj )2

Influence Model Via the Twitter streaming API, messages
from non-followed users that correspond to Retweet (i.e., a
re-post) or Reply (i.e., an answer) to messages posted by a
given user i are obtained when i is followed. In (Cha et al.
2010), the authors show that the influence of a user on Twit-
ter can be measured through its number of Retweet and Men-
tion. This allows us to consider an example of reward func-
tion using those indicators of the influence of a particular
user, regardless of the published content.

More formally, by denoting nRti,t and nRpi,t respectively the
number of Retweet and Reply of messages from user i be-
tween t and t + 1, our second reward function g2(ωi,t) is
defined as:

g2(ωi,t) = tanh(nRti,t + nRpi,t )

where tanh is the hyperbolic tangent function.

Thematic Influence Model This hybrid model combines
the two previous ones. The reward function characterizes
both the content of the collected messages and the influence
of the considered users. What we want here is to orient the
process toward thematic influencers on a particular topic. We
propose the following reward function:

g3(ωi,t) = tanh(g1(ωi,t)× nRti,t )

4.2 Preliminary experiments
Offline preliminary experiments were performed on two
datasets. They allow us to easily compare different algo-
rithms. On these datasets, the algorithms can be compared
to a ground truth providing which sources are the most use-
ful for the task. In particular, we consider in the following
a policy that selects the subset of users that finally provide
the best cumulative reward. Of course, such policy cannot
be used for online data capture since, by nature, best users
are unknown in real-world settings.

The first dataset is user-centered, while the second is fo-
cused on a particular keyword.
• The first dataset, called usElections, corresponds to the

set of all messages obtained via the Twitter streaming
API plugged on 5000 user accounts during the 10 days
preceding the 2012 US presidential elections. The cho-
sen accounts were the 5000 first ones to use one of the
keywords “Obama”, “Romney” or “#USElections” . It fi-
nally contains 2148651 messages from the 5000 streamed
users, plus 1686797 messages that correspond to Retweet
or Reply to messages of these users. On this dataset, we
consider time steps of 100 seconds.

• The second dataset, called Libya, is the result of 3 months
of static capture using the keyword ”Libya” from the
Twitter streaming API. It contains 1211475 messages

from 17341 users. By its nature, this dataset does not al-
low to experiment influence based reward models, since
data collected via a given keyword do not provide Retweet
or Reply information about a specific set of users. Only the
topical model is then considered on this dataset. For this
dataset we considered time intervals of 500 seconds.

Note that, with both datasets, in order to simulate realis-
tic experimental settings, we started the capture processes
with a set of available users K that only contained the k first
users of the corpus (those that posted the earliest messages).
At each time step t, new users are then added to K, accord-
ing to those that are either referenced in messages collected
during time interval t or have posted replies (or retweets) to
messages from followed users in Kt.

For the topical model described in section 4.1, we use
a specific dictionary for each dataset, which has been built
by using a Porter stemmer algorithm on every message and
then choosing the 2000 most frequent terms in the dataset in
concern. Each message is then transformed into a frequency
vector using this dictionary. For the queries, we generated
500 queries for each dataset by randomly sampling weight
vectors from a uniform distribution in [0, 1]2000 and then se-
lecting 50 terms at random. This strategy generates very dif-
ferent queries. Note that considering a large set (500 here)
of queries allows to get more reliable results than when con-
sidering a unique topical search. All offline reported results
concerning the topical reward model thus correspond to an
average over these 500 randomly generated queries.

Results Besides our CUCBV policy which makes use of
ranking scores defined by equation 5, we also consider a
classical combinatorial CUCB version that uses scores given
by equation 3 to analyze the benefits resulting from using
the empirical variance in our selection strategy. We compare
these two algorithms with two baseline policies:

• A BestSubset policy, that captures rewards from the opti-
mal subset of users K∗ (as defined above);

• A Random policy, which uniformly selects k users to fol-
low at each time step.

Every tested policy consider subsets of k = 100 simultane-
ously followed users.

Figures 2, 3 and 4 present the evolution of the cumulative
reward w.r.t time for these four policies tested on the usElec-
tions dataset and for the three reward models (there are thus
4 × 3 curves in total). Figure 5 presents cumulative reward
results for the topical reward model for the Libya dataset.

First, it may be noticed that, as expected, the BestSubset
curve is the highest, on the whole process, in every experi-
mental setting. The fact that this BestSubset policy exhibits
a greater slope than the Random one in every situation and at
every time step shows that some users have a better reward
distribution than others during the whole streaming period.

Although not at the same level as the BestSubset pol-
icy, both dynamic capture policies CUCBV and CUCB
get significantly greater performance results than the Ran-
dom strategy, which confirms that using bandit algorithms
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for data capture from flows of social activity is relevant, at
least with the ratios k/K used in the experiments ( 0.02 for
the usElections dataset and 0.005 for the Libya one). The
influence of the ratio over the performance will be explored
later. Our general dynamic data capture framework Wich-
Streams? thus appears valid for collecting useful data from
targeted users.

For every reward type and on the usElections dataset, we
observe that our CUCBV policy outperforms the CUCB pol-
icy. Considering the empirical variance in the exploration
term leads to more reliable estimates for users with high re-
ward variability, by allowing more frequent explorations of
these users. In our data capture setting, this is particularly
relevant since obtained rewards greatly depend on the mes-
sage posting frequencies of the users. During several time
steps for instance, null rewards may be obtained for some
users uniquely because of bad luck, for example the pro-
cess did not follow them when they posted useful material.
Increasing the exploration probability of users with high re-
ward variance allows the process to reconsider these users
when some good rewards are obtained. Moreover, some
users may be slightly less active than others while owning
a greater utility for the reward in concern: because more fo-
cused on a given topic for example, they post less messages
but with greater impact on the cumulative reward. Consider-
ing the variance in the exploration term of the policy allows
one to give more chances to such users.
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Figure 2: Cumulative reward versus timestep for the usElec-
tions dataset using the topical model.

On the Libya dataset, we also observe that our algorithms
collect more valuable data than the random baseline. In this
case, we also notice a particular shape of the curves around
the 8000th time step. This period corresponds to a large peak
of activity regarding political events in Libya. Even if our
data capture algorithms can follow this trend, both CUCB
and CUCBV policies are quite far from the BestSubset one.
Such sudden activity peaks are difficult to handle for these
algorithms which have not enough time to stabilize them-
selves on useful users. However, in real-world settings or
with data collected by following user accounts rather than a
specific keyword as it has been done for this dataset, such
activity peaks are less likely observed.
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Figure 3: Cumulative reward versus timestep for the usElec-
tions dataset using the influence model.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Step

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

C
um

ul
at

iv
e

R
ew

ar
d

Random
CUCB

CUCBV
BestSubset

Figure 4: Cumulative reward versus timestep for the usElec-
tions dataset using the thematic influence model.

Figure 6 plots the evolution of the capture rate on the usE-
lections dataset with thematic influence reward. This capture
rate is defined for a timestep t and a policy π as the average
of rewards obtained by the policy π during a time window
[t−500, t+ 500], normalized by the average of rewards that
would have been obtained by following the best subset of
users K∗ on the same period:

C(π, t) =

t+500∑
s=t−500

∑
i∈Kπs

g(ωi,s)

t+500∑
s=t−500

∑
i∈K∗

g(ωi,s)

(11)

This quantity represents the relative velocity of the capture
w.r.t. the BestSubset strategy. These results allow to high-
light the fact that when this relative capture rate remains
constant for the Random strategy, it increases for all of our
bandit policies during the data capture process. At the end of
the process, CUCBV even reaches a capture rate very close
to the BestSubset strategy (C(CUCBV, 8000) > 0.9).

Finally, figure 7 plots the cumulative reward for Random,
CUCB and CUCBV algorithms w.r.t to both time and the
number of users k used for the capture, on the usElections
dataset with the topical reward model. We notice that the
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Figure 5: Cumulative reward versus timestep for the Libya
dataset using the topical model.

0 1000 2000 3000 4000 5000 6000 7000 8000
Step

0.0

0.2

0.4

0.6

0.8

1.0

C
ap

tu
re

sp
ee

d
ra

te

Random
CUCB

CUCBV
BestSubset

Figure 6: Capture rate evolution for the thematic influence
model on the usElections dataset.

surfaces never cross each other and that CUCBV is always
above CUCB, which itself is above random. This means that
no matter the number of selected users, CUCBV appears to
be the best option for this dataset. We also observe that, as
expected, performances of our method increase fast with the
number of users k simultaneously followed.

4.3 Real-World Experiments
Offline experiments allowed us to analyze the behavior and
performances of our model in a controlled setting. Now, we
propose to consider their application on a real-world capture
task, in order to assess their effectiveness when dealing with
the entire social activity of a social media, under the opera-
tional constraints that are set by the streaming API.

Experimental Settings The social network considered for
our online experiments is again Twitter. It limits the num-
ber of simultaneously followed users and the frequency of
streaming settings modifications. We have set k = 4000
and consider a time step corresponding to intervals of 300
seconds, which fits with these constraints while providing a
good visibility of the current social activity and a sufficient
re-orientation frequency for our capture process. Because
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Figure 7: Reward as a function of time and number of
streamed users for usElections dataset and topical model:
above surface corresponds to CUCBV, middle to CUCB and
below to Random.

the number of connections with the same account is lim-
ited by the Twitter API, we only considered CUCBV, which
appeared as the best policy in our offline experiments, and a
random baseline policy, which uniformly selects the users to
follow at each time step. Note that for this real-world online
capture setting the best set of users K∗ is unknown, so that
the BestSubset policy cannot be considered.

With two Twitter accounts, one for CUCBV and one for
the random policy, we simultaneously captured data from
the streaming API of Twitter during three weeks, starting
from a set of three initial users: BBC, CNN and FoxNews,
which correspond to very active accounts allowing one to
quickly obtain useful data. The set of potentially followed
accounts K is fed at each iteration t with users that either
replied to (or retweeted) already followed users in Kt or are
referenced in the collected messages during this time period.
Obviously, it may take some time to reach a value of 4000
users. So, at the very beginning of the process, every user
is followed at each time step whatever the considered strat-
egy (before reaching k users, no selection decision can be
taken as every user from the pool will be followed). For these
live experiments, we consider the thematic influence model,
which uses a thematic query created by considering the 300
most employed stems on the Wikipedia Libya page (we used
binary weights). Every post is stemmed on the fly as we col-
lected in real time. Note lastly that, as a large amount of new
users can be encountered during some capture periods, we
limited the number of new users added to the pool to 1000
at each iteration, in order to prevent cases where the number
of new encountered users reaches k, which would avoid any
exploitation by CUCBV.

Results Figure 8 plots the cumulative reward obtained by
the random and the CUCBV capture policies as a function
of time. It highlights the good performances of our proposal
in this real-world settings, as the curve of CUCBV increases
significantly faster than the one of the random strategy. At
the end of the process, the cumulative reward obtained with
CUCBV is 7.5 times bigger than the one obtained with the
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random policy. It can be reasonably assumed that this dif-
ference would even increase when considering a streaming
period longer than three weeks.

Note that the number of 500 000 users was reached much
faster with the CUCBV than with the random policy (three
days against one week). This is coherent with the fact that
CUCBV orients better toward influential users. Indeed, the
former being frequently re-tweeted, this allows the process
to discover significantly more data sources than a random
capture process.
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Figure 8: Cumulative reward versus timestep for the live
stream experiment.

Finally, figure 9 represents the empirical mean of 50 000
randomly chosen users with respect to the number of times
they have been followed with the CUCBV at the end of the
process. Considering an arbitrary threshold mean of 0.6 to
distinguish “good” and “bad” users, we note that the good
ones represent 1.73% of the whole set of profiles. Besides,
the bad ones, which represent the majority of the users, were
followed just a few time, which again shows the ability of
the policy to focus on good users. Moreover our algorithm
succeeded in following 75% of the good users at least 500
times. The 25% of (uncertainly) good users which have been
streamed less than 500 times are users will be likely consid-
ered during the next iterations of the process.

5 Related Work
5.1 Data Capture
Works on emerging topics detection naturally follow on
from those on Topic Detection and Tracking (TDT). Given a
flow of text messages, TDT aims at identifying trending top-
ics in a streamed source. For instance, (Cataldi, Di Caro, and
Schifanella 2010) proposed an approach that continuously
deals with new messages posted on Twitter for discovering
keyword vectors that correspond to current hot topics on the
network. However, the question of data collection, and of
capture orientation, is left aside by this work, that simply
uses the random stream proposed by Twitter. More recently,
(Colbaugh and Glass 2011) proposed a model that considers
the blogosphere as a network, where each node corresponds
to a blog that can be followed. With the aim of identifying
emerging topics, they search for blogs that tend to report
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Figure 9: Users mean reward versus number of observations
for the live experiments and CUCBV policy. Every symbol
represents a user.

tracked contents early in their life-cycles. In that sense, they
perform an orientation toward useful data sources, but this is
done statically, on training data collected from every node,
which is only possible thanks to the small size of the net-
work. The work reported in (Li, Wang, and Chang 2013)
is probably one of the closest to ours, since it includes an
automatic re-orientation of the data capture process via the
streaming API of Twitter. However, it is only fitted for the
task of emerging topics detection and for the specific Twit-
ter APIs. It also differs from our work by the fact that, rather
than incrementally moving toward useful areas of the net-
work, it makes use of a random sampling strategy to deter-
mine the keywords to follow at each time step.

Web page crawling is another research area that can be
considered as related to our work, since it defines strategies
to select which nodes of the web to visit at each step of its
process. Focused crawling, first introduced in (Chakrabarti,
van den Berg, and Dom 1999), defines whether a web page
should be crawled or not according to the relevance of its
context and of its link structure for a predefined topic. Vari-
ants of this concept have been proposed, to focus data col-
lection on useful web pages, such as those presented in (Mi-
carelli and Gasparetti 2007) which define strategies that at-
tempt to adapt themselves according to the neighborhood
of the current crawling environment. However, all these ap-
proaches require a prior knowledge of the link structure of
the data sources. This is usually not the case in our context
and the extraction of the underlying structure may reveal as
a very difficult task. (Boanjak et al. 2012) proposed a dis-
tributed architecture to apply focused crawling on Twitter,
by intensively querying the Twitter API from many clients
to get the social graph (i.e., the followers graph) of the net-
work. However, while it was already limited by the Twitter
API (in term of crawling frequency) at the time of this work,
this approach would not be viable today given the current
access restriction of the API.

5.2 Multi-armed Bandit
There is a wide number of publications concerning ban-
dit algorithms and their applications to a variety of prob-
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lems. Bandits are particularly fitted in online contexts, such
as dynamic data capture problems, for continuous learn-
ing from data flows when no prior information is available.
In the context of social networks, bandit algorithms have
for example been successfully applied for recommendation
(Kohli, Salek, and Stoddard 2013), network crawling (Bnaya
et al. 2013), online advertising (Buccapatnam, Eryilmaz, and
Shroff 2014) or audience maximization (Lage et al. 2013).
Nevertheless, none of these works had to deal with simul-
taneous decisions, as it is the case in the multi-sources data
capture problem we address in this paper.

The combinatorial bandit problem has been studied in
(Chen, Wang, and Yuan 2013) and the authors propose the
CUCB algorithm. Recently in (Gopalan, Mannor, and Man-
sour 2014), the authors generalized Thompson sampling, an-
other bandit algorithm, to select a subset of size k among a
larger set of K arms at each time step. This approach could
appear well fitted for our task of dynamic data capture. It
however cannot be efficiently deployed in contexts with a
large number of arms, since each iterations in this method
requires a complex sampling process on every available arm.

6 Conclusion
In this paper, we have considered the problem of data cap-
ture from large social media under restrictive operational
constraints based on multi-arm bandit approaches, which de-
fine a framework for the learning of exploration strategies in
unknown environments with immediate rewards. We have
extended the recent Combinatorial UCB approach, which
allows us to solve problems where simultaneous decisions
have to be taken, for our problem of data capture from simul-
taneous sources. Faced to the high variability of the rewards
obtained in our context of data capture, we have proposed
the Combinatorial UCBV approach, which aims at better
handling such problems by including the variance of the re-
wards in its exploration strategy. After giving convergence
guarantees for this general algorithm, we have experimented
it in our context of data capture from social media. Experi-
ments on both offline data sets and real-world settings have
shown the ability of our algorithm to automatically discover
relevant information sources given a goal specified as a re-
ward function.

The work proposed in this paper constitutes a new way
of managing online social data. Various perspectives can
thus be considered. First, while the developed approaches
are based on the assumption that the reward distribution is
stationary over time (i.e, users keep a same behavior during
the whole process), we are now experiencing new methods
for non-stationary distributions, that are expected to better
fit for long term capture in complex environments. Another
perspective is also to extend the present work to combinato-
rial rewards, where the usefulness of a subset of users does
not simply correspond to a sum of individual rewards, but
can for example consider the diversity of the selected users.
It can also serve as a basis for many concrete online tasks
that have to deal with big social data, such as content track-
ing through social networks or online modeling of informa-
tion diffusion.
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