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Abstract

Within only a few years after the launch of video sharing plat-
forms, viral videos have become a pervasive Internet phe-
nomenon. Yet, notwithstanding growing scholarly interest,
the suitability of the viral metaphor seems not to have been
studied so far. In this paper, we therefore investigate the at-
tention dynamics of viral videos from the point of view of
mathematical epidemiology. We introduce a novel probabilis-
tic model of the progression of infective diseases and use it
to analyze time series of YouTube view counts and Google
searches. Our results on a data set of almost 800 videos show
that their attention dynamics are indeed well accounted for
by our epidemic model. In particular, we find that the vast
majority of videos considered in this study show very high
infection rates.

Introduction
Viral videos have become a staple of the social Web. The
term refers to videos that are uploaded to video sharing sites
such as YouTube, Vimeo, or Blip.tv and more or less quickly
gain the attention of millions of people.

Viral videos mainly contain humorous content such as
bloopers in television shows (e.g. boom goes the dynamite)
or quirky Web productions (e.g. nyan cat). Others show ex-
traordinary events caught on video (e.g. battle at Kruger)
or contain political messages (e.g. kony 2012). The arguably
most prominent example, however, is the music video Gang-
nam style by PSY which, as of January 2015, has been
viewed over 2 billion times on YouTube. Yet, while the re-
cent surge in viral videos has been attributed to the avail-
ability of affordable digital cameras and video sharing sites
(Grossman 2006), viral Web videos predate modern social
media. An example is the dancing baby which appeared in
1996 and was mainly shared via email.

The fact that videos became Internet phenomena already
before the first video sharing sites appeared suggests that
collective attention to viral videos may spread in form of a
contact process. Put differently, it seems reasonable to sur-
mise that attention to viral videos spreads through the Web
very much as viruses spread through the world. Indeed, the
times series shown in Fig. 1 support this intuition. They
show exemplary developments of YouTube view counts and
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Figure 1: Outbreak data related to 4 different viral videos.

Google searches related to recent viral videos and closely
resemble the progress of infection counts often observed in
epidemic outbreaks. However, although viral videos attract
growing research efforts, the suitability of the viral metaphor
was apparently not studied systematically yet. In this paper,
we therefore ask to what extend the dynamics in Fig. 1 can
be explained in terms of the dynamics of epidemics?

This question extends existing viral video research which,
so far, can be distinguished into two broad categories: On
the one hand, researchers especially in the humanities and
in marketing, ask for what it is that draws attention to viral
videos (Burgess 2008; Southgate, Westoby, and Page 2010).
In a recent study, Shifman (2012) looked at attributes com-
mon to viral videos and, based on a corpus of 30 prominent
examples, identified six predominant features, namely: fo-
cus on ordinary people, flawed masculinity, humor, simplic-
ity, repetitiveness, and whimsical content. However, while
he argues that these attributes mark a video as incomplete
or flawed and therefore invoke further attention or creative
dialogue, the presence of these key signifiers does not im-
ply virality. After all, there are millions of videos that show
these attributes but never attract significant viewership

Another popular line of research, especially among data
scientists, therefore consists in analyzing viewing patterns of
viral videos. For instance, Figueiredo et al. (2011) found that
the temporal dynamics of view counts of YouTube videos

Proceedings of the Ninth International AAAI Conference on Web and Social Media

22



seem to depend on whether or not the material is copy-
righted. While copyrighted videos (typically music videos)
were observed to reach peak popularity early in their life-
time, other viral videos had been available for quite some
time before they experienced sudden significant bursts in
popularity. In addition, the authors observed that these bursts
depended on external factors such as being listed on the
YouTube front page. The importance of external effects for
the viral success of a video was also noted by Broxton et
al. (2013) who found that viewership patterns of YouTube
videos strongly depend on referrals from sites such as Face-
book or Twitter. In particular, they observed that ‘social’
videos with many outside referrals rise to and fall from peak
popularity much quicker than ‘less social’ ones.

Sudden bursts in view counts seem to be suitable predic-
tors of a video’s future popularity (Crane and Sornette 2008;
Pinto, Almeida, and Goncalves 2013; Jiang et al. 2014). In
fact, it appears that initial view count statistics combined
with additional information as to, say, video related sharing
activities in other social media, allow for predicting whether
or not a video will ’go viral’ soon (Shamma et al. 2011;
Jain, Manweiler, and Choudhury 2014). Yet, Broxton et
al. (2013) point out that not all ‘social’ videos go viral and
not all viral videos are indeed ‘social’.

Given this interest in video related time series analysis,
it is surprising that the viral metaphor has not been scruti-
nized from this angle. To the best of our knowledge, the most
closely related work is found in a recent report by Cintro-
Arias (2014) who attempted to match an intricate infectious
disease model to view count data for the video Gangnam
style. We, too, investigate the attention dynamics of viral
videos from the point of view of mathematical epidemiol-
ogy and present results based on a data set of more than 800
time series. Our contributions are of theoretical and empiri-
cal nature, namely:

1) we introduce a simple yet expressive probabilistic
model of the dynamics of epidemics; in contrast to tradi-
tional approaches, our model admits a closed form expres-
sion for the evolution of infected counts and we show that it
amounts to the convolution of two geometric distributions

2) we introduce a time continuous characterization of this
result; major advantages of this continuous model are that
it is analytically tractable and allows for the use of highly
robust maximum likelihood techniques in model fitting as
well as for easily interpretable results

3) we fit our model to YouTube view count data and
Google Trends time series which reflect collective attention
to prominent viral videos and find it to fit well.

Our work therefore constitutes a data scientific approach
towards viral video research. However, it is model- rather
than data driven. This way, we follow arguments brought
forth, for instance, by Bauckhage et al. (2013) or Lazer et
al. (2014) who criticized the lack of interpretability and the
‘big data hubris’ of purely data driven approaches for their
potential of over-fitting and misleading results.

Our presentation proceeds as follows: Next, we review
concepts from mathematical epidemiology, briefly discuss
approaches based on systems of differential equations, and
introduce the probabilistic model that forms the basis for our

study; mathematical details behind this model are deferred
to the Appendix. Then, we present the data we analyzed and
discuss our empirical results. We conclude by summarizing
our approach, results, and implications of our findings.

Modeling Viral Process
Mathematical models of epidemic processes play a crucial
role in many disciplines. In medicine, they help studying the
population dynamics of infectious diseases (Britton 2010;
Lloyd and May 2001); economists use them to trace and
predict the diffusion of innovations or marketing messages
(Dover, Goldberg, and Shapira 2012; Leskovec, Adamic,
and Huberman 2007); and, in the wake of social media,
increasing efforts are spent on modeling information cas-
cades in Web-based social networks (Adar and Adamic
2005; Bauckhage 2011; Budak, Agrawal, and Abbadi 2010;
Leskovec, Adamic, and Huberman 2007; Leskovec, Back-
strom, and Kleinberg 2009; Yang and Leskovec 2011).

Each of these instances addresses a surprisingly pervasive
phenomenon: An agent (a virus, a rumor, an urge to buy a
product, etc.) spreads in form of a contact process and thus
cascades through a network of interlinked entities (people,
computers, blogs, etc.). At the onset of the agent’s activity,
many, if not most, of the entities are susceptible to its effects
but only a few are actually infected. As time progresses, sus-
ceptible entities that are in contact with infected ones may
themselves become infected. Infected entities may either re-
main infected, recover, become susceptible again, or even
be removed from the population.

Crucial characteristics of such an epidemic are its infec-
tion rate, its recovery rate, or the number of newly infected
entities per unit of time. They help assessing the progression
or final outbreak size of the process and can inform con-
tagion or dissemination strategies (Barthelemy et al. 2004;
Newman 2002). Similarities in the spread of diseases and
rumors have been noted for long (Dietz 1967) and led to
several applications of epidemic modeling in the context
of Web technologies. Examples include attempts to pre-
dict the diffusion of messages in bulletin boards (Kubo et
al. 2007) or approaches towards forecasting collective in-
terest in Web-based services or content (Bauckhage 2011;
Cannarella and Spechler 2014; Ribeiro 2014).

Epidemic dynamics within large populations are often
modeled using compartment models. These assume the pop-
ulation to be divided into disjoint fractions of those who
are susceptible (S) to an epidemic, those who are infected
(I), and those who have recovered (R). Some models con-
sider additional compartments but, in any case, assume an
individual to belong to one group only. Transitions between
groups are constrained by the structure of the model; for in-
stance, SIR models are concerned with transitions of the
form S → I → R.

Differential Equations
Traditionally, the dynamics of an SIR epidemic are charac-
terized in terms of systems of coupled, non-linear differen-
tial equations (Britton 2010). While such approaches have
been used in social media analysis before (Bauckhage 2011;
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Figure 2: Markov chain model of an SIR epidemic.
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Figure 3: Examples of the temporal evolution of fractions of
susceptible, infected, and recovered individuals (Sn, In, and
Rn) according to the Markov chain in Fig. 2.

Cannarella and Spechler 2014; Ribeiro 2014; Cintron-Arias
2014), we note that they are known not to allow for closed
form solutions of the temporal behavior of any of their con-
stituent parts. In other words, they do not provide a simple
expression for the function I(t) which describes the tem-
poral progression of infected counts in an epidemic out-
break. This poses certain technical difficulties in fitting such
a model to observed data and may necessitate elaborate data
cleaning (Cannarella and Spechler 2014). In order to avoid
these kind of difficulties, our work in this paper is based on
a probabilistic model which we introduce below.

Markov Processes
The compartmentalized nature of SIR models also suggests
to describe their dynamics in terms of Markov processes.
Indeed, Markov processes are another popular approach in
mathematical epidemiology where they are usually applied
to represent the behavior of individuals (Britton 2010). Here,
however, we focus on the population level.

We consider the homogeneous, time discrete Markov
chain in Fig. 2 where the infection rate 0 < i < 1 and
the recovery rate 0 < r < 1 indicate transition probabil-
ities between the compartments or states of the model. As
for any discrete Markov chain, the temporal dynamics can
be expressed in terms of a recursive matrix-vector equation
which, in our case, amounts toSnIn

Rn

 =

1− i 0 0

i 1− r 0

0 r 1

Sn−1In−1
Rn−1

 (1)

where we define the initial state distribution vector asS0

I0
R0

 =

1− ε
ε

0

 (2)

for some 0 ≤ ε < 1.
Figure 3 shows examples for how this model behaves over

15 iterations if ε = 0. Apparently, this conceptually simple

Markov process is able to explain a wide range of infection
dynamics (from stretched to peaky). However, it is a time
discrete model and a time continuous model would be more
tractable analytically. Our empirical analysis in this paper is
therefore based on the following

Theorem 1. Given the time discrete homogenous Markov
model in (1), the temporal distribution of percentages of in-
fected individuals In can be characterized in terms of a con-
tinuous probability density function f(t) which is the convo-
lution of two exponential distributions, i.e.

f(t) =

∫ t

0

λ e−λτ α e−α(t−τ) dτ. (3)

The rate parameters of the two exponentials are given by

λ = − ln(1− i) (4)

and

α = − ln(1− r), (5)

respectively. The convolution in (3) has a closed form solu-
tion which amounts to

f(t) =


α

α−λ λ e
−λt + λ

λ−α α e
−αt if λ 6= α

λ2 t e−λt if λ = α.
(6)

To the best of our knowledge, the result in (6) provides a
novel characterization of the temporal dynamics of infection
counts in epidemic outbreaks and has not been studied in this
context before.

As the derivation of this result is rather technical, we defer
it to the Appendix. Here, we point out the following favor-
able properties of our model: since f(t) in (6) is a proba-
bility density function, the model lends itself to statistical
methods and Bayesian reasoning. Moreover, it immediately
allows for the use of maximum likelihood approaches for
parameter estimation based on empirical data. In contrast to
other probability density function such as the Weibull or the
LogNormal distribution which have previously been used to
characterize collective attention processes (Bauckhage, Ker-
sting, and Hadiji 2013), the abstract shape parameters λ and
α in (6) are in a one-to-one relation with the infection rate i
and the recovery rate r of an infectious process and therefore
admit an intuitive and physically plausible interpretation of
analysis results.

Below, we fit the model in (6) to YouTube view count
data and Google Trends time series which reflect attention
dynamics to viral videos. First, however, we introduce the
data sets considered.

Data Sets
The empirical basis for our study of the viral dynamics of
viral videos consists of two data sets which we describe in
the following.

24



0 5 10 15 20
0.0

0.5

1.0 In
f (t)

(a) i = 0.3, r = 0.2

0 5 10 15 20
0.0

0.5

1.0 In
f (t)

(b) i = 0.3, r = 0.8

0 5 10 15 20
0.0

0.5

1.0 In
f (t)

(c) i = 0.7, r = 0.2

0 5 10 15 20
0.0

0.5

1.0 In
f (t)

(d) i = 0.7, r = 0.8

0 5 10 15 20
0.0

0.5

1.0 In
f (t)

(e) i = 0.9, r = 0.2

0 5 10 15 20
0.0

0.5

1.0 In
f (t)

(f) i = 0.9, r = 0.8

Figure 4: Examples of how the continuous density f(t) in
(6) fits discrete time series In of fractions of infected indi-
viduals generated by the Markov chain in Fig. 2.

Table 1: Statistics for the 10 most viewed videos in the CMU
data set; ∆t indicates the delay (in days) between onset and
peak of the corresponding view count time series.

video # views onset ∆t

J. Bieber – baby 717189290 2010-05-03 12
J. Lopez – on the floor 638903361 2011-03-09 1
Eminem – love the way 529923543 2010-08-13 1
Lady Gaga – bad romance 501031279 2009-12-05 1
Shakira – waka waka 495809532 2010-06-23 10
LMFAO – party rock 420312033 2011-07-01 8
Eminem – not afraid 380252443 2010-06-14 1
Pitbull – rain over me 378923711 2011-07-25 6
J. Bieber – never say never 347277927 2010-06-15 10
B. Mars – lazy song 333510376 2011-05-16 8

CMU Viral Video Data
Recently, Jian et al. (2014) applied Hidden Markov Models
to forecast future interest in a video based on view counts
and meta information such as user comments. Their data was
gathered from YouTube and constitutes the largest publicly
available such data set to date. It currently consists of 2,526
records of time series of view counts, comments, and ratings.
In our analysis, we restrict ourselves to the view counts.

The most popular item in this data set is Justin Bieber’s
music video baby which had amassed more than 700 million
views by the time the data was gathered in early 2013. At the
same time, the least viewed videos in the collection set had
been viewed less than 100 times. As it seems unreasonable
to consider videos of such low view counts to be viral, we
decided to ignore videos of less than 500,000 views. This
left us with with time series of view counts for 726 different
YouTube videos.

Table 1 lists basic statistics as to the top ten most viewed
videos in this subset and we note that each of these videos is
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Figure 5: Basic statistics for the videos in the CMU data set.

a copyrighted music video. In order to verify whether or not
there are other biases in the data, we therefore performed a
series of elementary tests.

Figure 5(a) shows that while the majority of videos at-
tracted moderately many views, a few videos have indeed
been watched more 100 million times. Overall, the distribu-
tion apparent from the figure resembles a power law distri-
bution and thus hints at a preferential attachment or rich-get-
richer effect with respect to the popularity of already popu-
lar videos. Upon closer examination, however, we found a
LogNormal distribution to give a more accurate fit which, in
turn, is not unusual in the context of social media and Web
content and may indicate preferential attachment dynamics
(Mitzenmacher 2004; Szabo and Huberman 2010).

Figure 5(b) shows a histogram of onset times. For every
month in the observation period (from July 2007 to March
2013), it counts the number of videos first viewed in this
month. Apparently, most of the videos in this set were up-
loaded between 2010 and 2012 which may be due to the
fact that Jian et al. (2014) selected many videos based on
the fact that they had been mentioned on Ray William John-
son’s YouTube channel which back then regularly reviewed
currently popular videos.

Finally, in a slight look-ahead to our main analysis be-
low, Fig. 5(c) plots average infection rates over time. The
two most prominent features apparent from this plot are that

25



Table 2: Statistics for the videos in the Google Trends data
set; ∆t indicates the delay (in weeks) between onset and
peak of the corresponding search frequency time series.

video # views onset ∆t

PSY – gangnam style 2192408766 2012-08-26 5
charlie bit me 807708021 2007-12-23 16
C.R. Jepsen – call me 626950559 2012-03-11 13
evolution of dance 288994817 2006-05-14 4
ultimate dog tease 164867115 2011-05-01 2
mysterious ticking noise 157572495 2007-04-15 15
david after dentist 127449363 2009-02-01 2
nyan cat 116009795 2011-04-17 7
talking twin babies 111482944 2011-03-27 1
how animals eat food 110705037 2013-04-07 2
kony 2012 100075009 2012-03-04 1
chocolate rain 99805423 2007-07-15 4
ghost elevator prank 93687638 2012-11-25 1
jk wedding 87908181 2009-07-19 2
lonelygirl15 77665196 2006-09-03 2
harlem shake 76396739 2013-02-10 2
surprised kitty 74766489 2009-11-29 1
laughing baby 74557681 2011-02-27 1
numa numa 55736078 2005-02-13 8
leave britney alone 48917728 2007-09-09 1
i like turtles 46888725 2010-08-22 4
ninja cat 45224785 2008-09-14 3
dramatic chipmunk 42626245 2007-06-17 3
leeroy jenkins 41808467 2005-05-15 28
cinamon challenge 41718813 2012-01-15 3
double rainbow 40801688 2010-07-04 2
keyboard cat 38161315 2009-05-03 3
scarlet takes tumble 28848978 2008-10-19 7
chuck norris split 23455740 2013-12-15 1
charlie the unicorn 23312150 2006-09-03 16
omg cat 22854405 2010-03-21 2
otters holding hands 20204375 2007-03-25 2
kittens inspired by kittens 18689110 2009-02-08 2
share it maybe 18569317 2012-07-08 1
diet coke mentos 17388675 2006-06-04 2
will it blend 17388604 2007-07-08 1
the last lecture 17124865 2008-04-06 1
united breaks guitars 14455669 2009-07-05 1
christian the lion 11948840 2008-07-20 2
boom goes the dynamite 9013576 2005-06-05 2
autotune the news 8629101 2010-08-01 1
standing cat 6887942 2010-04-04 2
overly attached girlfriend 2916780 2012-06-03 3
here it goes again n/a 2006-08-06 4
lazy sunday n/a 2005-12-18 2
pale kid raps fast n/a 2011-01-16 2
XXX n/a 2007-10-21 7

average infection rates are rather high and hardly change
over time; the slope of the fitted linear trend is only ever so
slightly positive (0.00016). All in all, even though the most
viewed videos in this data set exclusively consist of profes-
sionally produced and copyrighted music videos, it therefore
appears that this data set provides a representative sample of
viral videos that may be used for further analysis.

Google Trends Data
In addition to the direct engagement data (view counts) in
the CMU data set, we also consider search logs related to
50 different viral videos which we obtained from Google
Trends in late 2014. This service provides statistics about
queries submitted to Google’s search engine and is increas-
ingly used as a proxy in research on attention dynamics
(see, e.g. Bauckhage et al. (2013) or Cannarella and Spech-
ler (2014) and the discussions therein). Among others, it
supplies weekly summaries of how frequently a query has
been used in a specific country. This allowed us to gather
search data for the nine largest English speaking countries
in order to be able to spot possible regional differences in
the adaption of viral videos. The countries we considered
are: Australia, Canada, Great Britain, Ireland, Nigeria, New
Zealand, Singapore, the USA, and South Africa.

We note that, in contrast to the time series in the CMU
data set, time series obtained from Google Trends are nor-
malized such that the peak search activity for a query corre-
sponds to a value of 100. Data obtained from Google Trends
therefore only indicates relative search frequencies rather
than absolute interest in a viral video. In the time series plots
shown throughout this paper we normalized the CMU data
correspondingly for better comparability.

Table 2 shows basic statistics for the videos contained in
this set. The view counts were determined from the corre-
sponding YouTube pages and reflect the situation as of Jan-
uary 2015; we note that four videos for which we retrieved
Google Trends data had been removed from YouTube and
that we garbled the name of one of these (XXX) because of
its controversial content. The onset dates and times to peak
popularity in the table were determined from the Google
Trends time series (averaged over all countries). In agree-
ment with previous analyses of YouTube view count data
(Crane and Sornette 2008; Pinto, Almeida, and Goncalves
2013; Jiang et al. 2014) we observe that for Google search
data, too, most videos listed in the table reach peak popu-
larity early in their lifetimes; that is, 25% peaked in the first
week and 54% peaked within two weeks.

Empirical Analysis
In our empirical analysis, we applied maximum likelihood
methods to fit the Markov SIR distribution introduced in (6)
to the time series described above. For baseline comparison,
we also fitted LogNormal and Weibull distributions which
have been found to represent the dynamics of collective at-
tention processes (Bauckhage, Kersting, and Hadiji 2013;
Bauckhage, Kersting, and Rastegarpanah 2014; Szabo and
Huberman 2010).

Model fitting was done with respect to the raw data with-
out any pre-processing such as temporal smoothing. For
each time series, we applied CUSUM statistics (Page 1954)
to determine onset times and fitted to the data from the onset
onward. If there were several onsets, such as in the case of
the ultimate dog tease video (see Fig. 1), we fitted models to
each of the corresponding sub-sequences.

Figures 6 and 7 present qualitative examples of fits to
YouTube view count and Google search data, respectively.
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Figure 6: Examples of YouTube view count time series and fitted models (for the ultimate dog tease video, we only show fits
to the first onset to avoid visual clutter). Each of the three models accounts reasonably well for the general trends of growing
and declining attention apparent from the time series. Yet, only the Markov SIR model introduced in this paper allows for an
interpretation of these dynamics in terms of an epidemic process.
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Figure 7: Examples of Google search frequency time series and fitted models. Each of the three models accounts reasonably
well for the general trends apparent in the time series.

We note that for both data sets the time series fluctuate about
a notable general trend of growth and decline. In accordance
with the theoretical considerations in this paper as well with
results reported in the previous literature (Bauckhage, Ker-
sting, and Hadiji 2013), we observe that each of the three
models provides reasonably accurate descriptions of global
trends. While the Weibull and the LogNormal model explain
these trends in terms of rather abstract concepts, the Markov
SIR model introduced in this paper allows for an intuitive
interpretation in terms of an epidemic process.

To quantify goodness-of-fit of the three models, we com-
puted Effron’s measure 0 ≤ R2 ≤ 1 where R2 = 1 would
indicate a perfect fit. In case of the YouTube view count
data, we found average values of 0.57, 0.45, and 0.48 for the
Markov SIR, the Weibull, and the LogNormal model, re-
spectively. For the Google search frequency data, we found
averages of 0.65, 0.62, and 0.60.

These quantitative results confirm the qualitative results
in Figs. 6 and 7 in that they indicate that all three models
are well capable of characterizing general trends in the data.
Interestingly, the epidemic model introduced in this paper
provides the overall best fits. This suggests that attention dy-
namics to viral videos may in indeed be explained in terms
of a viral process.

Having fitted the Markov SIR model to the data, i.e. hav-
ing determined the most likely shape parameters λ and α of
the density in (6), allowed us to use equations (4) and (5)
to solve for the infection and recovery rates of the assumed
infection processes. Figure 8 plots infection rates versus re-
covery rates determined from the YouTube view count data
in the CMU data set. It is noticeable that attention to most
videos in this data set evolves with high infection rates and
low recovery rates (see the histograms on top and to the right
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Figure 8: Scatter plot of infection rates i versus recovery
rates r determined form YouTube view count time series.
For the majority of the 726 videos, we observe high infec-
tion rates and low recovery rates (42% have an infection rate
higher than 0.9).

of the main panel). Since high infection rates translate to
rapid initial growth of viral cascades, our findings provide an
explanation for previous reports by Figueiredo et al. (2011)
and Jiang et al. (2014) who observed that viral videos tend
to reach peak popularity early in their lifetime.

Figure 9 shows similar results determined from the data
set of video related Google searches. Again, we observe that
attention to most videos in this data set evolves with high in-
fection rates and low recovery rates. However, on average,
infection rates are slightly smaller and recovery rates are
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Figure 9: Scatter plot of infection rates i versus recov-
ery rates r determined from country specific time series
of Google searches for viral videos. For most of the cor-
responding attention processes, we observe high infection
rates and low recovery rates (35% have an infection rate
higher than 0.9) yet there seem to be no country specific
viral dynamics.

Table 3: Most viral videos in the CMU data set.
video Shifman (2012) category

united breaks guitars ordinary people, humor, music
Eminem - love the way professional music video
splendiferous barfing cup whimsical
dramatic chipmunk whimsical
Ken Block’s Gymkhana 3 repetitiveness, cars
Japan earthquake news event
Jerrod Niemann - lover, lover professional music video
Usher - there goes my baby professional music video
pacman frog whimsical
Nicki Minaj - super bass professional music video

Table 4: Most viral videos in the Google Trends data set.
video Shifman (2012) category

pale kid raps fast ordinary people, music
kony 2012 political
laughing baby whimsical , humor
leave britney alone ordinary people, whimsical
ghost elevator prank humor
chuck norris split whimsical, humor
united breaks guitars ordinary people, humor, music
share it maybe music
surprised kitty whimsical, cats
the last lecture ordinary people

higher than in the case of the CMU data. This agrees with the
qualitative examples in Fig. 7 which indicate that attention
to viral videos expressed in Google search data peaks later
than attention apparent from YouTube view counts. This is
an interesting effect that merits further studies which, for
now, we leave to future work. We also note that the figure

does not reveal any country specific viral dynamics. This is
to say that the data points shown in the figure do not form
any obvious, statistical significant clusters that would indi-
cate specific video related search behaviors for any of the
countries considered here.

Finally, after estimating infection rates for each of the
videos considered here, we determined the top ten videos
of highest viral pressure, i.e. with the highest infection
rates, and attempted to categorize their content according
to Shifman’s typology (Shifman 2012). Tables 3 and 4 list
our results for the YouTube view count and Google search
data, respectively. Apparently, only one video (united breaks
guitars) appears in both lists. We also observe that music
videos, either by amateurs or professionals, feature promi-
nently. Finally, it appears as if whimsical content, too, is well
represented among particularly viral viral videos.

Conclusion
In this paper, we were concerned with the question “How
viral are viral videos?”. We approached this problem from
the point of view of time series analysis and considered a
Markov model of the population dynamics of an SIR epi-
demic. In a theoretical contribution, we showed that the
temporal behavior of infection counts due to this model
can be characterized using a continuous probability density
that results from convolving two exponential distributions.
In contrast to traditional epidemic models, our approach
therefore allows for a closed form solution, is thus analyt-
ically tractable, and lends itself to maximum likelihood ap-
proaches in model fitting.

We applied this model to analyze almost 800 time series
which reflect pattern of growing and declining collective at-
tention to individual viral videos and found it to account
well for the general dynamics present in this data. In fact,
our approach gave better fits than baseline models from the
previous literature. Our empirical findings therefore suggest
that it is indeed reasonable to assume that attention to viral
videos spreads in form of a viral process.

We also showed that, in contrast to previous baseline mod-
els, the shape parameters of the probability density we de-
rived are directly related to the infection and recovery rates
of the underlying epidemic process. This allowed us to deter-
mine infection and recovery rates from YouTube view count
and Google search data and we found that most videos in our
data sets were highly infectious. Among the top ten most
infectious videos, musical content abounds but whimsical
content, too, seems to be well represented.

Given the methods and results presented in this paper,
there are several directions for future work. First and fore-
most, we foresee applications in trend prediction. Mathemat-
ical epidemiology is a mature field and concepts such as the
basic reproduction number allow for estimating if, say, a vi-
ral outbreak is imminent or what the final outbreak size will
be. Corresponding techniques can be used to predict the fu-
ture attention a video will receive and could thus inform the
planning of marketing campaigns. Of course, infection and
recovery rates would to be estimated reliably from only a
few initial observations as to view counts or search engine
queries. But here, too, our approach offers new possibilities.
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As our model is probabilistic, it lends itself to Bayesian tech-
niques and reasoning under uncertainty.

Using Bayesian techniques for model fitting and trend
prediction, one may, for instance, impose a Beta-prior on
the parameters i and r of the epidemic model and update
the current best estimate accordingly once new information
arrives. Corresponding work is underway and we hope to
report results soon.

Appendix: Proof of Theorem 1
In this appendix, we discuss the mathematical derivation of
the results in equations (4), (5), and (6) that were presented
above.

In addition to the recursive relation πn = P πn−1 in
(1), the behavior of the Markov chain in Fig. 2 can also be
expressed in closed form πn = P n π0. Accordingly, the
Markovian SIR model allows for closed form expressions
for the dynamics of each of its compartments. For instance,
unrolling the recursion in (1), we find that the percentage of
susceptible individuals after n steps of the process is given
by

Sn = (1− i)n S0. (7)

Likewise, after more tedious but straightforward algebra, we
find the percentage of infected individuals after n steps to
amount to

In =
n−1∑
k=0

(1− r)k i (1− i)n−1−k S0 + (1− r)n I0. (8)

As this expression is slightly more involved than the one
in (7), we will further simplify it. To this end, we first of all
assume that the initial percentage I0 of infected individual is
zero which, according to (2) implies that the initial percent-
age S0 of susceptible individuals is one. Equation (8) then
simplifies to

In =
n−1∑
k=0

(1− r)k i (1− i)n−1−k. (9)

Second of all, we recast the result in (9). To this end, we
multiply the right hand side by a factor of 1 which we ex-
press as

1 =
r (1− r)
r (1− r)

(10)

and obtain

In =
1

r (1− r)

n−1∑
k=0

r (1− r)k+1 i (1− i)n−(k+1) (11)

=
1

r (1− r)

n∑
j=1

r (1− r)j i (1− i)n−j (12)

=
1

r (1− r)

n∑
j=1

gr[j] gi[n− j]. (13)

This expression is equivalent to the one in (9) but we can
now recognize it as a scaled convolution of two geometric
distributions gr[n] and gi[n].

Third of all, we provide a continuous characterization of
the discrete convolution in (13). To this end, we note that
discrete geometric distributions can be expressed in terms
of continuous exponential distributions. For example, gi[n]
in (13) can be written as
gi[n] = i (1− i)n−1 = (1− e−λ)(e−λ)n−1 (14)

= (eλ − 1) e−λn (15)

=
eλ − 1

λ
λ e−λn (16)

where λ = − ln(1− i). Similarly, we have

gr[n] = r (1− r)n−1 =
eα − 1

α
α e−αn (17)

where α = − ln(1− r).
These results then allow for characterizing the temporal

dynamics of the percentage of infected individuals in terms
of a time continuous function. That is, instead of In, we may
consider

I(t) = C ·
∫ t

0

λ e−λτ α e−α(t−τ) dτ (18)

where C is a time independent scaling factor given by

C =
1

r (1− r)
· e

λ − 1

λ
· e

α − 1

α
. (19)

In other words, up to scaling, the temporal evolution of
the percentage of infected individuals in a Markovian SIR
model is governed by the convolution of two exponential
distributions for which we have

f(t) =

∫ t

0

λ e−λτ α e−α(t−τ) dτ (20)

=
α

α− λ
λ e−λt +

λ

λ− α
α e−αt. (21)

Finally, we note that (21) is undefined if λ = α. Yet, for
this case, too, there exists a solution. To show this, we recall
that the Laplace transform of the convolution of two func-
tions is given by the product of the Laplace transforms of
the individual functions. Since the Laplace transform of an
exponential density is

L(s) =

∫ ∞
0

e−st λ e−λt dt =
λ

λ+ s
(22)

the Laplace transform of the convolution of two identical
exponentials amounts to λ2/(λ + s)2. This, however, is the
Laplace transform of the probability density function of a
gamma distribution with a shape parameter of k = 2. This
establishes that, for λ = α, the convolution in (20) produces

f(t) =
λk

Γ(k)
tk−1 e−λt = λ2 t e−λt. (23)
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