
 

 

Impact of Entity Disambiguation Errors on Social Network Properties  

Jana Diesner 
1,2

, Craig S. Evans 
2
, Jinseok Kim 

1
 

Graduate School of Library and Information Science1, Illinois Informatics Institute2, University of Illinois Urbana Champaign 

Email: jdiesner@illinois.edu, csevans2@illinois.edu, jkim362@illinois.edu 
 

 
 

Abstract 

Entities in social networks may be subject to consolidation 
when they are inconsistently indexed, and subject to split-
ting when multiple entities share the same name. How much 
do errors or shortfalls in entity disambiguation distort net-
work properties? We show empirically how network analy-
sis results and derived implications can tremendously 
change depending solely on entity resolution techniques. 
We present a series of controlled experiments where we 
vary disambiguation accuracy to study error propagation 
and the robustness of common network metrics, topologies 
and key players. Our results suggest that for email data, not 
conducting deduplication, e.g. when operating on the level 
of email addressed instead of individuals, can make organi-
zational communication networks appear to be less coherent 
and integrated as well as bigger than they truly are. For co-
publishing networks, improper merging as caused by the 
commonly used initial based disambiguation techniques can 
make a scientific sector seem more dense and cohesive than 
it really is, and individual authors appear to be more produc-
tive, collaborative and diversified than they actually are. 
Disambiguation errors can also lead to the false detection of 
power law distributions of node degree; suggesting prefer-
ential attachment processes that might not apply. 

1. Introduction 1 

Social network analysis has become a general utility meth-
od for modeling, understanding and explaining patterns 
and dynamics of social interaction and the mutual influ-
ence of (infra-)structure and behavior. One caveat with 
network analysis is that the validity of results obtained and 
conclusions drawn heavily depend on the quality and accu-
racy of the underlying data. When working with electronic 
records of social interactions, ambiguity of social entities is 
a challenging key factor in that respect. Errors in ambiguity 
resolution can be divided into two types:  

Firstly, a) the incomplete detection of alternative refer-
ences to unique individuals, e.g. in the case of spelling 
variations and synonyms, and b) the incorrect merging of 
truly distinct entities, e.g. when two or more nodes are rep-
resented by the same name string (Hobbs, 1979). The task 
of correctly identifying and merging all instances of refer-
ences to the same unique entity is referred to as consolida-
                                                           
1 Copyright © 2015, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved. 

tion. This problem has been studied in natural language 
processing under the label of co-reference resolution 
(Bhattacharya & Getoor, 2007; Deemter & Kibble, 2000) 
and in the context of databases, where it is called record 
linkage or deduplication (Culotta & McCallum, 2005). 
 Secondly, failure to correctly split up nodes that truly 
represent more than one individual (Christen & Goiser, 
2007; Sarawagi & Bhamidipaty, 2002). An instance of this 
effect is when distinct individuals share a common name. 
For example, according to http://howmanyofme.com/, 
there are 46,157 John Smith’s in the US, and 416 people 
who have the same name as the authors on this paper. This 
type of error can also result from erroneous merging, 
which shows the tight coupling of both types of disambig-
uation issues. The task of correctly separating nodes that 
represent multiple distinct entities is referred to as splitting.  
 While highly accurate algorithmic solutions to consoli-
dation and splitting exist, the impact of deduplication (and 
if applicable parametric choices) on the robustness of net-
work data, metrics and propagation of errors from data to 
knowledge are largely unknown. Who cares? We argue 
that understanding the magnitude and boundaries of varia-
tion in network properties that are solely due to disambigu-
ation errors - including not disambiguating data at all - and 
are thus independent of underlying social processes is es-
sential for the informed planning of data collection and 
cleaning steps, assessing the legitimacy of results and con-
clusions, and preventing unjustified further actions, e.g. 
policy decisions. Based on this lack of knowledge and its 
significance for network science, we herein address the 
following question: What impact do errors and improve-
ments in entity deduplication and splitting have on com-
monly considered node and network properties? 

The outcome from this research matters for two more 
reasons: first, if disambiguation errors had no meaningful 
impact on network properties, one could spare the costs for 
this step. Even though this sounds appealing when consid-
ering that disambiguation routines may involve some man-
ual inspection, we don’t know if this argument is justifia-
ble. Second, disambiguation techniques are less than 100% 
accurate, and current research in computing focuses on 
improving these rates. However, the payoff from these 
incremental improvements is also unknown. In summary, 
this means that we have a poor understanding of the rela-
tionship between minor changes in disambiguation accura-
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cy and related changes in networks. The findings presented 
herein shed some new light on these open questions.  
 What’s next? We review prior work on disambiguation, 
introduce our datasets (one subject to consolidation, the 
other to splitting) and experimental design for testing the 
impact of different types and levels of disambiguation on 
networks, present our findings, and discuss their meaning 
and implications.   

2. Background 

Prior work has shown how different levels of graph in-
completeness impact common network metrics, also de-
pending on different topologies (Borgatti, Carley, & 
Krackhardt, 2006; Frantz, Cataldo, & Carley, 2009). These 
studies agree in concluding that minor amounts of missing 
data both on the node and edge level can cause substantial 
biases in network properties. Understanding these biases is 
relevant for data collection as this knowledge inform us 
how much missing data is acceptable. What this line of 
work leaves unanswered is the question of how ambiguity 
of data impacts analysis results.   

 A specific domain where people pay strong attention 
to entity disambiguation is bibliometrics. There, author-
based analyses of publication records have been used to 
identify influential scholars (Yan & Ding, 2009) and map-
ping static and evolutionary network properties (Barabási 
et al., 2002; M. E. J. Newman, 2001). One common chal-
lenge for co-authorship and co-citation network studies is 
the identification of unique authors from digital records, 
which has been solved in three different ways: Algorithmic 
solutions to this problem are available (Tang, Zhang, & 
Yao, 2007) and leveraged by some data providers, e.g. 
DBLP (Franceschet, 2011). Alternatively, researchers have 
manually disambiguated author names for studies of a few 
hundred to thousand publication records (Yan & Ding, 
2009). This approach guarantees high-quality disambigua-
tion, but does not scale up. The third disambiguation ap-
proach in bibliometrics is the application of heuristic rules. 
One instance of this approach is to disambiguate people 
based on the first initial of the given names of authors; a 
technique also known as first-initial based disambiguation 
(Liben-Nowell & Kleinberg, 2007; M. E. J. Newman, 
2001). For example, if two name instances have the same 
surname and same first name initial, they are considered to 
refer to the same person. This technique bears the risk of 
erroneously merging distinct authors, e.g. in the case of 
‘Newman, Mark E.’ versus ‘Newman, Mark W.’ A more 
fine grained version of this approach is to use all available 
initials of first and middle names, i.e., all-initial based dis-
ambiguation (Barabási et al., 2002; M. E. J. Newman, 
2001; Radicchi, Fortunato, Markines, & Vespignani, 
2009). With this technique, entities are considered identical 
if they match in the surname and all initials of given 
name(s). In this case, ‘Newman, Mark E.’ and ‘Newman, 
Mark W.’ would be considered as different entities since 
they differ in the second initial. This technique can lead to 
erroneously splitting entities into multiple records when a 
single person’s name appears inconsistently across publica-
tions. For example, the one and same ‘Newman, Mark E.’ 

may be indexed as ‘Newman, M.,’ ‘Newman, Mark E.,’ 
and ‘Newman, M. E. J.’. Despite the potential errors with 
initial-based disambiguation, this approach has been a 
prevalent in bibliometrics (Milojević, 2013; Strotmann & 
Zhao, 2012). Scholars have argued that errors due to this 
approach are not detrimental to research findings (Barabási 
et al., 2002; Goyal, van der Leij, & Moraga-Gonzalez, 
2006; M. E. J. Newman, 2001), and assume first- and all-
initial based disambiguation to provide the lower and upper 
bound for the true number of authors, respectively.  

The issues described for author-based networks general-
ize within limits to other domains where they are less in-
tensely studied, e.g. people posting and commenting on 
social media, and participation in collaboration and com-
munication networks. Building upon our prior work (Kim 
& Diesner, accepted; Kim, Diesner, Kim, Aleyasen, & 
Kim, 2014), in this paper, we contrast findings for disam-
biguating co-authorship networks to a specific kind of 
communication networks, namely email networks.  

3. Data and Disambiguation 

We use two large-scale, longitudinal datasets that represent 
a partial view on interactions in real-world social systems. 
The first one is an email collection that was made available 
as part of the investigation into Enron. With people having 
multiple email addresses, this dataset is used to illustrate 
consolidation impacts. The second dataset is a co-
publication dataset of papers available from MEDLINE. 
Given the standardized name indexing on the latter – and 
many other - databases, the main issue here is splitting up 
names that were conflated as multiple people happened to 
have the same name. The datasets differ in writing style 
(casual or corporate (Enron) versus scientific (MED-
LINE)), intended audience (explicitly specified recipients 
versus wider scientific audience), mode and frequency of 
production and delivery (individually generated and dis-
tributed in real-time versus co-produced and released over 
long cycles) and length, but overlap in their coverage of 
multiple years and size of more than a hundred thousand 
documents produced by tens of thousands of people (Table 
1). We chose these specific datasets because they are sub-
ject to consolidation (Enron) versus splitting (MEDLINE). 
Beyond that, they vary along some dimensions while hold-
ing others constant, which helps to scope out the generali-
zability of our findings.  

Table 1: Comparison of Raw Datasets 

Characteristic Enron MEDLINE 
Time Range 10/1999-07/2002 01/2005-12/2009 
Number of 
documents 

520,458 101,162 

Domain Email Co-publishing 

Cultural 
context 

Corporate,  
internal communi-
cation 

Scientific,  
external/ public 
communication 
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3.1. Email Data Corpus 

As part of the investigation into Enron by the Federal En-
ergy Regulatory Commission (FERC), investigators seized 
computers from the operations in Houston, and the result-
ing emails were made available to the public. An instance 
of the raw email dataset was cleaned up and released by 
William Cohen (2009) and made available for academic 
research. The raw data is comprised of 150 distinct mail-
boxes (users), containing approximately 520,000 email 
messages over a core timespan from October 1999 through 
to July 2002.  
 The vast majority of prior network analyses that use the 
Enron data have created network data by considering email 
addresses as nodes and email exchange between them as 
edges. Since people can have more than one email address 
(we provide facts and statistics on this in the next section), 
this common procedure introduces duplication errors in the 
form of redundancies. It also creates ambiguity about the 
unit of analysis as some nodes represent truly unique indi-
viduals, while in other cases, the collective body of infor-
mation sent or received by a person is spread across multi-
ple nodes.  
 Each individual email is self-contained in a text file, and 
largely conforms to RFC822 and RFC2882 text messaging 
standards. While this sounds like a clean data format, in the 
early 2000s, there were competing corporate email sys-
tems, including Lotus Notes, cc:Mail and Microsoft Out-
look. Each implemented the RFC standards in their own 
way using a combination of the familiar 
<name>@<domain.com> format and the then common 
X.400 extended naming standards. During the time period 
of the emails, from examining the data it is clear that a 
migration from an X.400 based system (Lotus Notes) to 
Microsoft Outlook took place.  

We parsed each email into three sections: 1) People: a 
multi-stage effort (outlined below) to match email address-
es to actual individuals (deduplication, consolidation). 
These data are used for building social networks. 2) Body: 
the text of each message split into a per sentence represen-
tation. These data can be used for text mining. 3) Admin: a 
file containing metadata about the messages (timestamps, 
file locations, etc.). These sections were loaded into an 
Oracle database for further analysis. 

3.1.1. Ambiguity Resolution: Consolidation 

The mapping of email addresses to real people, which was 
facilitated by using lists of employees in Enron (Diesner, 
Frantz, & Carley, 2005) is complicated by many users hav-
ing multiple email addresses, and many people having the 
same name but different email addresses.  

The above mentioned email migration created another 
challenge where we not only had to deduplicate names and 
addresses from Outlook, but also deal with issues arising 
from the conversion from Lotus Notes in which not all 
email addresses were translated correctly. The impact of 
these translation inaccuracies are thousands of “orphaned” 
email addresses with poorly formatted header files.  

Consolidating email addresses is a daunting task. 
While it can be machine assisted with a computer giving 
a best guess estimate, e.g. based on semantic similarity 
and associated confidence values, it requires human in-

teraction with the data, including close readings of 
emails to verify identities. Our disambiguation work has 
resulted in three instances of the data:  

1. Raw: raw email addresses, no disambiguation. This 
includes Enron (@enron.com) and non-Enron (e.g. 
@anderson.com) addresses. This baseline represents 
the network data and findings one would obtain if no 
disambiguation was done. 

2. Disambiguated: leverages a manually vetted mapping 
of email addresses to people, including full names, job 
histories and physical locations (Diesner et al., 2005). 
Mappings were verified by looking back into the 
source emails to ensure correctness where needed. 
This forms the bulk of unique email addresses. Further 
manual disambiguation of remaining addresses was 
performed by students as part of a graduate class in da-
ta analytics. Non-Enron email addresses are not con-
sidered. This represents a “personalized” network 
where all nodes represent the same unit of analysis, i.e. 
social entities within an organization.  

3. Scrubbed: using the disambiguated version plus fur-
ther manual consolidation and automated scrubbing 
(explained below). A guided heuristic approach was 
used where a best guess on the names was created and 
manually verified to ensure they weren’t unbelievable. 
Over time, we manually verified matches via the orig-
inal messages. We also removed “garbage” email ad-
dresses and mailing lists. This represents an even 
cleaner dataset and more precisely defined unit of 
analysis, i.e. actual individuals within an organization.  

  Stages 2. and 3. comprised a few months of work. The 
results from this paper give an idea of the return of invest-
ment for these efforts. Table 2 shows the number of email 
addresses per person in the “scrubbed” version. We have 
identified more than 1 email address for 1,523 people. For 
those people, the average number of emails per person is 
2.4, and the median is 2. Note that without this effort, 
Kenneth Lay, who served as Chairman, CEO, and Presi-

Table 2: Number of Email Addresses Per Person 

No. of email 
addresses  

per person 

No. of people 
with that no. 
of addresses 

Person (* indicted) 

26 1 Kenneth Lay, Chairman* 

11 3 
Jeffrey Skilling, CEO* 
David Delainey, Energy Trader* 
Vince Kaminski, MD Research 

10 3 
Susan Scott 
Steven Kean, EVP, Chief of Staff 
Mark Haedicke, General Counsel 

9 4 

Mark Taylor, Asst Gen Counsel 
Grant Masson, VP Research 
Patrice Mims 
Jeff Dasovich, Exec - Gov Affairs 

8 5  
 
 
 

Too many to name 

7 13 

6 17 

5 36 

4 63 

3 160 

2 1,218 

1 21,753 
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dent of Enron, for example, would appear as 26 distinct 
nodes in the network. His email addresses range from well-
formed variations of his name such as (kenneth_lay, ken-
neth.l.lay, kenneth.lay)@enron.com, to contractions of his 
name {ken_lay, ken.lay)@enron.com, to shortened ver-
sions (klay, kllay, layk, ken, lay)@enron.com, to function-
al, role-based addresses (ken.lay-.chairman.of.the.board, 
office.chairman)@enron.com. Arguably, he might have 
used some of his accounts for different types of communi-
cation, while others that merely differ in spelling could be 
considered equivalent in terms of purpose and use. For this 
paper, we decided not to differentiate between these ad-
dresses in order to focus on the effect of proper consolida-
tion.   

3.1.2. Network Construction  

From our database, we generated three instances of the 
email network that differ solely in their level of consolida-
tion: raw (worst data quality), disambiguated (better) and 
scrubbed (best we have). These networks are directed, 
weighted graphs representing the sender, receiver and 
number of connections (emails sent) per directed tie.  

Table 3 summarizes the impact of the considered consol-
idation stages on the size of the constructed networks. The 
deduplication of addresses causes an increase in the num-
ber of email addresses per node as we move from a one to 
one relationship (raw) to many to one in the disambiguated 
versions. Going from raw to disambiguated, the number of 
nodes drops sharply (up to 75%, which is also strongly 
impacted by disregarding non-Enron email addresses). The 
decreases are more moderate for going from disambiguated 
to scrubbed (12% to 24% less nodes) as well as on the edge 
level (36% and 12 %, respectively). In the results section 
we show how these changes translate into impacts on net-
work properties.  

3.2. Co-Publishing Data 

MEDLINE is the bibliographic database of the National 
Library of Medicine. It covers journals in biology and 
medicine published from 1950 up to now. A baseline ver-
sion of the MEDLINE data is publicly distributed in XML 
format every year. The 2012 version contains more than 20 
million publication records. Each article is indexed with a 
unique key identifier (PMID), title, journal name, authors 

name(s), author affiliation (if available) and medical sub-
ject headings (MeSH) assigned by human experts.  

To create a dataset of similar size and scope as the En-
ron corpus, we retrieved a subset of MEDLINE records by 
querying articles containing the MeSH term ‘brain’ occur-
ring in publications between 2005 and 2009. This resulted 
in 109,578 publication records from 3,701 journals. By 
limiting the search to ‘brain’ (the most frequent MeSH 
term from the last 10 years (D. Newman, Karimi, & 
Cavedon, 2009)), we obtain a topically connected sub-
community – similar to a large international corporation 
(Enron) with a certain focus. As we are concerned with 
network properties, single-authored articles were excluded. 

3.2.1. Ambiguity Resolution: Splitting  

Although each MEDLINE article has a unique identifier, 
authors are not disambiguated beyond name strings, i.e. a 
surname is followed by a given name or given name ini-
tial(s). Therefore, author names can feature merging or 
splitting errors. To tackle this problem, we used an Author-
ity database (Torvik & Smalheiser, 2009), where MED-
LINE author names were algorithmically disambiguated 
with high accuracy (up to 98~99%). In that database, each 
pair of name instances with the same surname as well as 
first initial of given name in two different articles was 
compared for similarity using eight features: middle name 
initial, suffix (e.g., Jr.), journal name, language of article, 
coauthor name, title word, affiliation word and MeSH 
term. If the combination of match values from these eight 
features passed a certain threshold value, the target name 
pairs were merged via a maximum likelihood based ag-
glomerative algorithm (Torvik & Smalheiser, 2009; 
Torvik, Weeber, Swanson, & Smalheiser, 2005). To obtain 
disambiguated author names, each article in our dataset 
was matched with its corresponding article in the Authority 
database through the unique PMID. We found 101,162 
matches from 3,660 journals. The difference to our original 
sample (109,578 papers, 3,701 journals) is due to the fact 
that the Authority database uses the 2010 MEDLINE data.   

3.2.2. Network Construction  

In order the generate the initial based disambiguated net-
works, each name instance (e.g., Newman, Mark E.) was 
processed into two versions: (1) surname + first initial of 
given name (e.g., Newman, M.) and (2) surname + all ini-
tials of first and middle names (e.g., Newman, M. E.). 
Thus, in the resulting networks, an author is represented by 
a name string in the format of surname plus initial(s). This 
labeling schema is in sync with the representation of indi-
viduals in the disambiguated and scrubbed Enron graphs. 

We generated three instances of the co-publishing net-
works that differ solely in their disambiguation approach: 
algorithmic (best we have), all initials based (worse yet 
common) and first initial based (worst we have, also com-
mon). A unique author or node is denoted by a unique id 
based on the Authority database. If two authors appear in 
the byline of the same paper(s), they get linked. Following 
prior research (Barabási et al., 2002; Franceschet, 2011; M. 
E. J. Newman, 2001), only the existence of ties is consid-
ered, while their frequency is disregarded. This results in 
undirected, binary graphs. The algorithmically disambigu-

Table 3: Number of Entities and Ties in Email Networks 

Number 
of 

Raw 
Disambiguated 
(Diff to Raw) 

Scrubbed 
(Diff to Raw) 

(Diff to Disamb.) 

Senders 19,466 
6,205 

(-68%) 

5,441 
(-72%) 
(-12%) 

Receivers 72,713 
19,700 
(-73%) 

15,297 
(-79%) 
(-22%) 

Addresses 81,811 
20,332 
(-75%) 

15,526 
(-81%) 
(-24%) 

Edges 332,683 
212,768 
(-36%) 

188,045 
(-43%) 
(-12%) 
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ated graph can be considered as a proxy for ground-truth 
data or the approximately true number of distinct authors.  

 Table 4 summaries the impact of disambiguation on the 
size of the constructed co-publishing networks. Merging 
due to initial based disambiguation (the reverse and actual-
ly desired effect is splitting, which can be traced by going 
from right to left in the table) results in a decrease in the 
number of nodes by 20% to 30% for all- versus first-
initials based disambiguation, respectively. Similar to what 
was observed for the email graph, the changes are less 
drastic for going from version two (all-initials) to three 
(first-initials) and on the edge level.  

4. Metrics 

Once extracted, the networks were analyzed with R (3.1.1) 
using the igraph library (0.7.1) and Pajek. The following 
versions of standard metrics were calculated: 

Numbers of Vertices and Edges: cumulative total counts 
of the number of unique vertices (N) and number of links 
(binary) connecting them. This indicates communication 
volume (Enron) and productivity (MEDLINE).  

Density: the number of existing edges over the number 
of possible edges (=N*(N-1)/2).  
Clustering Coefficient (CC): the probability of forming an 
edge between two vertices that have a common neighbor  
(M. E. J. Newman, 2001), defined as: 
 

CC = 3 × number of triangles on the network
number of connected triples of vertices     (1) 

 
Shortest Path Length: the lowest possible number of 

edges connecting a pair of vertices. As nodes in discon-
nected graphs cannot reach each other, only reachable pairs 
are considered (Brandes, 2001). Diameter refers to the 
longest shortest path in a network.  

Component: a subset of vertices that all can reach each 
other. The total number of components and the ratio of the 
size of the largest component over the total number of ver-
tices are reported.  

Centralization (��): measures variability or heterogenei-
ty of centrality metrics (A) in networks (Wasserman & 
Faust, 1994), defined as:  
 

C = ∑ (max(A) −  A%)&%'(
max ∑ (max(A) −  A%)&%'(

                             (2) 

 
The denominator is the theoretically maximal sum of 

differences (taken pairwise between vertices) in a centrality 
A. We calculate centralization scores for six centrality (A) 
measures (L. C. Freeman, 1977; Linton C. Freeman, 1979): 
Degree centrality (*+): x%, represents the presence of an 

edge between vertex i and j without considering direction-
ality. This is calculated for MEDLINE. 

A-(i) = . x%,(i ≠ j)                         (3) 
&

,'(
 

In-degree (*1+) and Out-degree (*2+) centrality: consider 
edge directionality and thus are only calculated for Enron. 

A3-(i) = . x,%(i ≠ j)                         (4) 
&

,'(
 

A5-(i) = . x%,(i ≠ j)                        (5) 
&

,'(
 

 
Betweenness centrality (*7): n,8 is the number of shortest 

paths between vertex i and j, and n,8(i) is the number of 

shortest paths between j and k that includes i 
 

A9(i) = . n,8(i)
n,8,:8

                                   (6) 

 
Closeness centrality (*<): d(i, j) is the shortest path be-
tween actor i and other N-1 number of vertices. As this is 
incalculable for disconnected network, only the largest 
component of each network is considered. 
 

A>(i) = . 1
d(i, j)

&

,'(
                                      (7) 

 
Eigenvector centrality (*@): λ is a constant and x%, = 1if 

vertex i is connected to vertex t and x%, = 0 if otherwise 

(Bonacich, 1972). This is a recursive function of degree.  
 

AC(i) =  λ . x%,AC(j)
&

,'(
                             (8) 

Table 4: Number of Entities and Ties in Co-Publishing Net-

works 

 Algorithmic 
All-initials 

(Diff to  
algorith.) 

First-initials 
(Diff to algorith.) 
(Diff to all-init.) 

Name  
Instances 

557,662 557,662 557,662 

Unique 
Entities 

258,971 
207,256 
(-20.0%) 

182,421 
(-29.6%) 
(-12.0%) 

Edges 1,335,366 
1,317,894 
(-1.3%) 

1,303,957 
(-2.4%) 
(-1.0%) 
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5. Results 

We find that failing to properly merge (Enron) or split 
(MEDLINE) nodes strongly biases most common network 
metrics; with distortions on the order of tens to over one 
hundred percent (all node and network property results are 
summarized in Table 5). This is true even when changes in 
the number of links are small (1.3% to 2.4% in MED-
LINE). For about half of the network metrics, the changes 
in values exceed the change in the number of nodes, which 
is already 20% to 81%. Incremental efforts to mitigate dis-
ambiguation issues pay off in terms of moving results clos-
er to true values. The changes in metrics depending on the 
dataset and disambiguation approach are shown in Table 5.  

For Enron, the rawer or less deduplicated the data, the 
larger and more fragmented the networks appear to be; 
suggesting less cohesion and more distance among mem-
bers in an organizational communication network than 

there truly is. This can lead to false – as in overly negative 
- conclusions about organizational culture and needs for 
collaboration tools.   

For co-publishing, both commonly applied initial based 
disambiguation techniques lead to the impression of more 
dense, connected, cohesive and centralized networks with 
shorter paths and less components than there really are. 
Individual authors seem more productive, collaborative 
and diversely connected. First-initials based disambigua-
tion leads to even stronger biases than the all-initials meth-
od. This suggests a more vibrant and integrated science 
sector and better performing scientists than reality has it.  

In summary, each disambiguation step affects network 
properties to a non-negligible extent. We next explain the 
causes for these impacts for the example of co-publishing; 
with the same reasoning - just in the opposite direction - 
being applicable to the email networks.  

The decrease in unique entities from algorithmic (best) 

Table 5: Network properties for email and co-publishing networks per disambiguation method  

(ratio of change to raw/ algorithmic in parentheses) 

 Email Networks (directed) Co-Publishing Networks (undirected) 

Network version Raw Emails 
Manual Disam-

biguation 
Scrubbed 

Algorithmic 
Method 

All-initials 
Method 

First-initial 
Method 

Data quality Worst Better Best Best Worse Worst 

Main effect 
Consolidation of nodes increasing (left to right), 

Elimination of issues (left to right) 
Splitting up of nodes increasing (right to left),  

Introduction of issues (left to right) 

Size Number of nodes and edges decreasing (left to right) Number of nodes and edges decreasing (left to right) 

No. of Nodes 81,811 20,332 
(-75.15%) 

15,526 
(-81.02%) 258,971 207,256 

(-19.97%) 
182,421 

(-29.56%) 

No. of Edges 332,683 212,768 
(-36.04%) 

188,045 
(-43.48%) 1,335,366 1,317,894 

(-1.31%) 
1,303,957 
(-2.35%) 

Density 4.97E-05 5.14E-04 
(+9.34%) 

7.80E-04 
(+14.69%) 3.98E-05 6.14E-05 

(+54.27%) 
7.84E-05 

(+96.98%) 
Clustering  
Coefficient 

0.07637 0.09421 
(+18.94%) 

0.10698 
(+28.61%) 0.39 0.20 

(-48.72%) 
0.19 

(-51.28%) 

Diameter 
18 (Directed) 

15 (Undirected) 
10 (Directed) 

10 (Undirected) 
10 (Directed) 

7 (Undirected) 22 19 
(-13.64%) 

18 
(-18.18%) 

Avg. Shortest 
Path Length 

4.33 3.56 
(-17.78%) 

3.56 
(-17.78%) 6.70 5.21 

(-22.24%) 
4.78 

(-28.66%) 
No. of Compo-
nents 

978 10 
(-98.98%) 

5 
(-99.49%) 10,182 5,028 

(-50.62%) 
3,100 

(-69.55%) 
Ratio of Largest 
Component 

96.82% 99.91% 
(+3.09%p) 

99.95% 
(+3.13%p) 80.91% 90.47% 

(+9.56%p) 
93.63% 

(+12.72%p) 
Degree  
Centralization 

N/A N/A N/A 1.83E-03 6.98E-03 
(+281.42%) 

8.40E-03 
(+359.02%) 

In Degree  
Centralization 

0.01635 0.03052 
(+86.67%) 

0.03561 
(+117.80%) N/A N/A N/A 

Out Degree  
Centralization 

0.01909 0.07858 
(+311.63%) 

0.07858 
(+311.63%) N/A N/A N/A 

Eigenvector  
Centralization 

0.99588 0.98552 
(-1.04%) 

0.98213 
(-1.38%) 0.212 0.195 

(-8.02%) 
0.187 

(-11.79%) 
Betweenness 
Centralization 

0.01041 0.02014 
(+93.47%) 

0.02728 
(+164.65%) 9.85E-03 2.26E-02 

(+129.44%) 
2.09E-02 

(+112.18%) 
Closeness  
Centralization 

N/A N/A N/A 0.159 0.228 
(+43.40%) 

0.238 
(+49.69%) 

Closeness (In) 
Centralization 

1.14E-05 1.04E-06 
(-90.88%) 

8.40E-07 
(-92.63%) N/A N/A N/A 

Closeness (Out) 
Centralization 

1.98E-05 8.19E-04 
(+40.36%) 

1.98E-03 
(+99%) N/A N/A N/A 
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to all (worse) and first (worst) initial based disambiguation 
means that many author identities get merged, although 
splitting also exists (the same happens for Enron as we go 
from raw (worst) to refined (better and best) data). Edges 
decrease at a much lower rate because this only happens if 
not only two authors with identical names are merged, but 
their coauthors also get consolidated. A rather unlikely 
scenario, yet it happens.  

For density, relatively small changes in the number of 
edges (numerator) coupled with the strong decrease in 
nodes (denominator) lead to drastic increases in density 
due to disambiguation.  

The merging of authors also impacts distance-based 
metrics: as identities get consolidated, merged vertices act 
as bridges or shortcuts between local networks of merged 
authors. This results in an overall shrinkage of networks, 
which reduces nodal distances. This shrinkage explains the 
decreases in diameter, average shortest path length and 
number of component. Components that are truly discon-
nected from the largest one become attached to the domi-
nating component due to the merging effect; leading to an 
increase in the largest component ratio and overall cohe-
sion. 

Centralization measures aim to capture how strongly a 
network centers around relatively small groups of relative-
ly central nodes; i.e. it expresses the inequality in the dis-
tribution of centrality scores across nodes. Incorrectly 

merged nodes have a higher chance to get unduly more 
often linked to others, sit more often on shortest paths 
among others and can access others more quickly than the 
remaining nodes. Consequently, unjustified merging leads 
to inflated degree, betweenness and closeness centrality 
scores for the impacted vertices, which causes increased 
centralization values on the graph level. Interestingly, ei-
genvector centralization shows a decrease for both datasets 
due to disambiguation. This might be explained by the fact 
that eigenvector scores are high for immediate neighbors of 
well-connected vertices. The merging of entities produces 
artifact entities with high centralities; an effect that can 
then impact their neighbors. Such an overall increase of 
eigenvector scores of individual vertices seem to contribute 
to the decrease of the centralization of eigenvector scores 
across the network.  
 The only exception to the observed common trends for 
email and co-publishing graphs is the Clustering Coeffi-
cient  (CC): as the number of vertices per network decreas-
es due to merging and splitting, network densities increase, 
but surprisingly, the CC only went up for the email graphs. 
In co-publishing, erroneous merging distorts the CC; un-
derestimating the tendency of coauthors to collaborate. 
This is because the co-authors of incorrectly merged au-
thors are unlikely to have co-published with the same peo-
ple. In contrast, in email data, as vertices are merged, the 
likelihood of one person having sent/received an email 

Table 6: Changing Rank based on Centrality Measures and Corpus Versions  

(entries redundant for all three networks per dataset with gray background, entries redundant for two networks in italics ) 

Degree Centrality 
Rank Enron MEDLINE 

 
Raw Disambiguated Scrubbed Algorithmic All Initials First Initial 

1 sally.beck@enron.com Beck, Sally Beck, Sally Krause, W Wang, Y Wang, J 

2 kenneth.lay@enron.com OUTLOOK TEAM Lay, Kenneth Fulop, L Wang, J Wang, Y 
3 jeff.dasovich@enron.com Forster, David Forster, David Nawa, H Wang, X Lee, J 
4 david.forster@enron.com Lay, Kenneth Jones, Tana Su, Y Chen, Y Kim, J 
5 outlook.team@enron.com TECHNOLOGY Kaminski, Vince Medarova, Z Li, X Wang, X 

Closeness Centrality 
Rank Enron MEDLINE 

 
Raw Disambiguated Scrubbed Algorithmic All Initials First Initial 

1 outlook.team@enron.com Lay, Kenneth Beck, Sally Trojanowski, JQ Wang, J Wang, J 
2 john.lavorato@enron.com Beck, Sally Lay, Kenneth Kretzschmar, HA Wang, Y Wang, Y 

3 david.forster@enron.com OUTLOOK TEAM Kitchen, Louise Toga, AW Wang, X Wang, X 
4 sally.beck@enron.com Kitchen, Louise Kean, Steven Thompson, PM Li, X Lee, J 
5 kenneth.lay@enron.com Lavorato, John Lavorato, John Barkhof, F Zhang, J Zhang, J 

Betweenness Centrality 

Rank Enron MEDLINE 

 
Raw Disambiguated Scrubbed Algorithmic All Initials First Initial 

1 jeff.dasovich@enron.com Beck, Sally Beck, Sally Toga, AW Wang, J Wang, J 
2 kenneth.lay@enron.com Kaminski, Vince Lay, Kenneth Kretzschmar, HA Wang, Y Lee, J 
3 sally.beck@enron.com Lay, Kenneth Kaminski, Vince Thompson, PM Wang, X Wang, Y 
4 gerald.nemec@enron.com Skilling, Jeffrey Jones, Tana Trojanowski, JQ Li, J Wang, X 

5 jeff.skilling@enron.com OUTLOOK TEAM Hayslett, Rod Barkhof, F Lee, J Zhang, J 

Eigenvector Centrality 
Rank Enron MEDLINE 

 
Raw Disambiguated Scrubbed Algorithmic All Initials First Initial 

1 louise.kitchen@enron.com Kitchen, Louise Kitchen, Louise Futreal, PA Wang, Y Wang, Y 

2 sally.beck@enron.com Beck, Sally Beck, Sally Stratton, MR Liu, Y Wang, J 
3 john.lavorato@enron.com Haedicke, Mark Haedicke, Mark Edkins, S Wang, J Liu, Y 
4 david.forster@enron.com Lavorato, John Lavorato, John Omeara, S Wang, X Wang, X 
5 tana.jones@enron.com Forster, David Forster, David Stevens, C Li, X Zhang, J 
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message from the same person as another one increases 

due to the nature of corporate organizations. Also, this dif-
ferences in trends for the CC can be explained by the na-
ture of the datasets: in Enron, the data exhibit homophilic 
tendencies across multiple dimensions (location, business 
units, organizational role), while ties of this nature are 
fewer in MEDLINE (different locations and organizations, 
fewer people sharing these characteristics).  

The next logical question here is whether the impact of 
disambiguation errors on network data is so strong that it 
can distort our understanding of applicable network topol-
ogies. Both communication and coauthorship networks 
have shown to be following a power-law distribution of 
node degree; implying that these networks evolve based on 
preferential attachment of new members to well estab-
lished or highly popular ones (Barabási et al., 2002; 
Milojević, 2010; M. E. J. Newman, 2001). Figures 1 to 3 
show the degree distributions per disambiguation approach 
and dataset as cumulative log-log plots. For indegree in the 
email graph (Figure 2), increasing data accuracy correlates 
with an increasing tendency to feature a power law distri-
bution, even if such a distribution is valid for a limited 
number of vertices.  We do not observe this effect for out-
degree (Figure 3), which seems logical as one person (ver-
sus multiple people or a mailing list) can only send so 
many emails, while communication coming in to a person 
allows for preferential attachment effects more naturally. 
In the co-publishing graphs, the algorithmically disambig-
uated data (Figure 1) show the most curved line, while the 
lines for all-initial-based disambiguation and even more so 
first-initial-based disambiguation are straighter. This might 
lead to falsely assuming that these networks begin to be 
driven by preferential attachment.  

Besides the so far presented quantitative bird-eye view 
on network properties, we also tested for the impact of 
entity resolution on the identification of key players based 
on centrality metrics. The top five authors per dataset and 
disambiguation techniques in terms of degree, eigenvector, 
betweenness and closeness centrality are shown in ranked 
decreasing order in Table 6. We get different pictures de-
pending on the cultural contexts: for Enron, we see a mod-
erate overlap in individuals across versions of the network 
and also across metrics (mailing lists shown in upper case 
letters). For example, Sally Beck occurs among the top 5 
for all email networks and metrics, and Kenneth Lay in 2/3 
of all cases. This suggests that key player analysis is more 
robust to disambiguation flaws than network metrics. In 
other words, highly central individuals will still feature 
prominent in highly incorrect data. In contrast to that, in 
the co-publishing graphs, there is no overlap between the 
algorithmically versus initial-based disambiguated graphs, 
but a strong intersection among the two initial-based meth-
ods. This means that the set of top key players in the 
ground-truth proxy are completely different from those in 
the initial based disambiguated networks. This effect is 
mainly due to the strong presence of scholars with com-
mon Asian names (mainly Chinese and Korean), such as 
Wang, Lee and Zhang; leading to strong improper merging 
effects. This finding implies that accurate disambiguation 
is essential for data that entail a considerable ratio of Asian 
names, and that research on name disambiguation needs to 
take such cultural aspects into consideration.   

 

Figure 1: MEDLINE - Cumulative log-log plot of degree distri-

bution per disambiguation method 

 

Figure 2: Enron - Cumulative log-log plot of in-degree distribu-

tion per disambiguation method 

 

Figure 3: Enron - Cumulative log-log plot of out-degree distri-

bution per disambiguation method 

 

algorithmic 
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6. Discussion and Conclusions 

We have shown how network analysis results can tremen-
dously differ depending on entity disambiguation tech-
niques and respective errors; possibly leading to erroneous 
conclusions about network properties, topologies and key 
players. Similar trends were found for two longitudinal, 
large-scale datasets from different domains. Our findings 
separate domain-specific effects from more general im-
pacts of error propagation.    
 For email data, not conducting deduplication can make 
organizational communication networks appear to be big-
ger as well as less coherent and integrated than they truly 
are. This might lead to false conclusions for managing or-
ganizational communication, e.g. stimulating integration 
through additional meetings or collaboration tools, and 
overestimating the need for more interaction. For co-
publishing networks, improper merging as caused by the 
commonly applied initial-based disambiguation techniques 
can make a scientific sector seem more dense and cohesive 
than it really is, and individual authors appear to be more 
productive and collaborative than they truly are. This 
might overestimate the impact of collaboration and fund-
ing, and underestimate the need for collaboration.  

Key player analysis is more robust to disambiguation er-
rors than the other tested network properties – but only for 
cultural context where people have somewhat unique com-
binations of first, middle and last names. In other words, a 
large ratio of network participants with common Asian 
names – as typical in a wide range of scientific domains - 
can also severely distort key player analysis results calcu-
lated based on improperly disambiguated data.  

In summary, the presented results suggest that entity 
resolution affects our understanding of macroscopic, 
graph-level features as well as microscopic investigations 
of influential network members. We argue that highly ac-
curate disambiguation is a precondition for testing hypoth-
eses, answering graph-theoretical and substantive questions 
about networks, and advancing network theories.  

Who cares about these findings? Even though disambig-
uation techniques have been developed for specific do-
mains or applications, e.g. (relational) databases of biblio-
metric records, many of these methods share a large por-
tion of assumptions and data pre-processing approaches. 
We argue that a better understanding of the impact of enti-
ty resolution errors and the robustness of network proper-
ties towards these errors contribute to a greater comparabil-
ity and generalizability of findings. Our findings help to 
improve the understanding of scalable, robust and reliable 
methods for constructing social networks from digital rec-
ords. The gained knowledge can assist researchers and 
practitioners in drawing valid conclusions from their work 
and the work of others, and should encourage us to pay 
closer attention to proper entity resolution. These data 
provenance issues are particularly relevant when archiving 
or reusing existing data where it might not be clear what 
pre-processing techniques have been employed in what 
way.  

One counterargument to our problem definition could be 
that big data will wash out entity resolution issues, e.g. 
because consolidation and deduplication errors balance 

each other out. There are no prior empirical findings for 
judging the validity of this lame proposition, but the results 
from this study provide solid arguments against it.  

We are currently expanding this work to develop rou-
tines for identifying sets of nodes and edges for which con-
solidation or splitting seems most applicable and impactful 
for the overall data. This will help users to focus in on a 
smaller set of nodes with a high return of investment for 
disambiguation efforts.  
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