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Abstract
Information links among users or websites drive the develop-
ment of countless innovative applications. However, in real-
ity, it is easier for us to observe the timestamps when different
nodes in the network react on a message, while the connec-
tions empowering the information diffusion remain hidden.
This motivates recent extensive studies on the network infer-
ence problem: how to uncover the edges from the records
of messages disseminated through them. Many existing so-
lutions are computationally expensive, which motivates us
to develop an efficient two-step framework, Clustering Em-
bedded Network Inference (CENI). CENI integrates cluster-
ing strategies to improve the efficiency of network inference.
By clustering nodes on the timelines of messages, we pro-
pose two naive implementations of CENI: Infection-centric
CENI and Cascade-centric CENI. We further point out the
critical dimension problem of CENI: in order to preserve the
node structure hidden in the cascades, we need to first project
the nodes into an Euclidean space of certain dimension be-
fore clustering. By addressing this problem, we propose the
third implementation of the CENI framework: Projection-
based CENI. Experiments on two real datasets show that the
three CENI models only need around 20%∼ 50% of the run-
ning time of some state-of-the-art methods, while the inferred
edges have similar or slightly better F-measure.

Introduction
With the assistance of online social media and networks, a
piece of information has the potential to be widely spread
within a short period of time. In real-life, industrial com-
panies utilize such fact to develop innovative applications,
such as promoting new products through online social net-
works. One of the most fundamental problems behind such
applications is to infer the possibility to transmit information
between two users by analyzing their online activities.

Network Inference Problem
In general, we name a message that diffuses through net-
works as a cascade and those users who react to the message
as infected users. Ideally, cascades are able to reveal the in-
formation links of network users, if we can fully observe the
information flow. In other words, if every infected user ex-
plicitly mentions from whom s/he receives the cascade, we
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are aware of the connection between him/her and his/her in-
formation source. However, this is far from the truth. In
reality, the information flow is usually partially observable
or completely unobservable. For example, the user connec-
tions in an online social network may not be entirely visible
because of the privacy settings. In a more challenging sce-
nario, a blog user may never mention the information source
when s/he posts a blog. Fortunately, the time when each user
receives a cascade is usually easy to be observed. As a result,
how to uncover the connections among users from their in-
fection time to different cascades, a.k.a. network inference
problem, has lately received extensive studies.

Recently, survival analysis based solutions to the network
inference problem have burgeoned (Gomez-Rodriguez, Bal-
duzzi, and Schölkopf 2011; Wang et al. 2014). The idea
behind them is that regarding to a specific cascade, an in-
fected user has a higher probability to be infected by an-
other who has a closer infection time with respect to his/hers.
Moreover, they assume such probability follows a distribu-
tion governed by a parameter associated with each pair of
users, which can be estimated through Maximum Likelihood
Estimation (MLE). The value of the parameter indicates the
strength of the directed connection between two users. Since
information might be passed between each pair of users in
both directions, we need to estimate N2 parameters, where
N is the number of users. Such large number of parameters
causes efficiency problems for survival analysis models. For
instance, if two users stay far away in the infection timelines
of most cascades, the models might end up with assigning a
weak link between them. Inferring such links brings us ex-
tra computational burdens and is usually unnecessary, since
they are normally viewed as noise and being discarded later.

In order to improve the efficiency of survival analysis
based approaches, we may utilize the nodes’ cluster struc-
tures. If we are aware of the clusters in the network, we
may omit the weak inter-cluster connections when inferring
the network from cascades. This reduces the size of our
problem: clusters produce the division of cascades, since
we only need to consider the potential influencers within
a cluster for each node. Although it might lose some true
inter-cluster edges, we may be able to control such lost to an
acceptable level with a carefully designed clustering strat-
egy. Besides the benefit of improving the efficiency, the pre-
cision of inferred edges may increase as well, since the clus-
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ters might cut off incorrectly inferred edges of traditional
approaches. However, in the setting of network inference
problem, even the edges are not observed, not to mention
the clusters in the network. In fact, this causes the clustering
methods based on user connections not applicable. More-
over, the extracted clusters in this article aim to provide the
best efficiency-effectiveness trade-off for the network infer-
ence, rather than finding communities with real-life mean-
ing in the dataset. To extract the clustering structure from
the cascades, we adopt a simple intuition: if two users’ in-
fection time is relatively close in observed cascades, the two
users might have a strong connection and should be consid-
ered in the same cluster. This also indicates we might want
the network inference method to spend time on estimating
such strong intra-cluster connection. This idea leads to the
proposed two-step hybrid framework: Clustering Embed-
ded Network Inference (CENI). CENI first attempts to ob-
tain the cluster structures from the cascades and then incor-
porate them with a network inference model to infer edges.

Critical Dimension
Obtaining clusters directly from the timelines of infection
is straightforward. For example, we can assign a win-
dow for each infected node to identify its possible cluster
members. Therefore, we first propose two implementations
of the CENI framework, namely Infection-centric CENI
(I-CENI) and Cascade-centric CENI (C-CENI), which at-
tempt to naively find clusters based on the timelines. Prac-
tically, we find that although I-CENI and C-CENI are very
efficient, they are not stable for all datasets: in some cases,
compared to some state-of-the-art algorithms, I-CENI and
C-CENI may lose much accuracy of inferred edges. We
propose a possible explanation to this phenomena: the clus-
ter structure hidden in the diffusion time gaps are too com-
plicated to be captured by the one-dimensional approaches.
Therefore, we may want to look for better clustering strate-
gies on higher dimensional space. How to efficiently find a
particular dimension of node representation so that the ob-
tained clusters lead to high-quality inferred edges? We refer
this specific dimension to the critical dimension of CENI.

To solve this problem, we propose another CENI model:
Projection-based CENI (P-CENI). P-CENI first adopts a
heuristic method by using a hinge loss estimator to identify
the critical dimension. Afterwards, P-CENI obtain the em-
bedded node representations in a space of the critical dimen-
sion and then apply a clustering algorithm to find the clusters
for network inference. Through substantial experiments on
two real datasets, we show that P-CENI runs in a similar
time as I-CENI and C-CENI, while still preserves or even
improves the effectiveness of state-of-the-art network infer-
ence methods, in terms of the F-measure of inferred edges.

Clustering Embedded Network Inference
Preliminaries
First, we introduce some important concepts and notations
related to this article. We denote a network by G = (V, E),
where V is the set of nodes and E is the set of edges. A
cascade, say c, can be represented by a vector of length N :

tc = (tc1, t
c
2, ...t

c
N ), where tci is the ith user’s infection time

to cascade c, and N is the number of nodes in the network,
a.k.a. |V| = N . Additionally, we have tci ∈ [0, T ] ∪ {∞},
where T is a fixed length of the observation time window for
all cascades, and ∞ denotes the user is not infected within
the time window. Each cascade has a separate clock, and it
is set to 0 at the time point when the first node is infected.
The network inference problem can be stated as how to un-
cover hidden E from known V and tc, c = {1, 2, ...,M},
where M is the number of cascades. Next, we also assume
there is a node subset associated with each node, which con-
tains the members in the same cluster. We denote the sub-
sets by C = {C1, C2, ..., CN}, where Ci contains the cluster
members of the ith node. Moreover, in some implementa-
tions of CENI, C might change with respect to cascades. In
such cases, we replace C with Cc = {Cc1, Cc2, ..., CcN} for
the ease and rigorousness of statement, where Cci denotes
the cluster members of the ith node in cascade c. As we
stated previously, CENI is a two-step framework: the first
phase derives C from observed cascades based on network
nodes, and the second phase integrates the obtained C to a
traditional network inference model to infer E , which also
requires the observed cascades as input. In this article, we
emphasize the discussion of the implementation of the first
phase, which essentially leads to three distinct CENI mod-
els. Meanwhile, we fix the approach in the inference phase
as the same one for different CENI models to illustrate a bet-
ter clustering strategy. More particularly, we slightly modify
the NetRate (Gomez-Rodriguez, Balduzzi, and Schölkopf
2011) to fit in the second phase. A version that contains
more details of this paper is also available online1.

Inference Phase
If we have the cluster members for each node, we can
integrate them into the transmission likelihood of Ne-
tRate model. The transmission likelihood, denoted by
f(tci |tcj ;αj,i), refers to the conditional probability that an in-
fected node i of cascade c, is infected by another node j,
given the fact j is also a infected node of c. f(tci |tcj ;αj,i) is
a function of the infection time of node i and j to cascade c,
and αj,i is a non-negative model parameter associated with
edge j → i. If the directed edge j → i exists, αj,i has
a positive value, otherwise αj,i = 0. Practically, we em-
ploy two types of transmission likelihood functions that are
widely used in NetRate, i.e. an exponential distribution:

f(t
c
i |t
c
j ;αj,i) =

{
αj,i · e

−αj,i∆
c
j,i tcj < tci , j ∈ Ci or Cci

0 otherwise
(1)

and a Rayleigh distribution:

f(t
c
i |t
c
j ;αj,i) =

{
αj,i∆

c
j,i · e

− 1
2
αj,i(∆

c
j,i)

2
tcj < tci , j ∈ Ci or Cci

0 otherwise
(2)

where ∆c
j,i = tci−tcj . The above two transmission likelihood

functions assume that an infected node will not have further
influence on any node who is already infected. Moreover,
Eq. (1) and Eq. (2) have an additional assumption related

1http://arxiv.org/abs/1503.04927
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to the cluster members: a node can only infect its cluster
members, while the inter-cluster connections are neglected.

Survival function, denoted by S(ti|tj ;αj,i), refers to
the probability that a node j does not infect i by time ti,
given that the node j gets infected at time tj . Thus, we
have S(ti|tj ;αj,i) = 1 −

∫ ti
tj
f(t|tj ;αj,i)dt. Hazard func-

tion, denoted by H(ti|tj ;αj,i), on the other hand, refers to
the instantaneous infection rate, which is: H(ti|tj ;αj,i) =
f(ti|tj ;αj,i)
S(ti|tj ;αj,i) . With the notations of survival and hazard
functions, the log-likelihood of a cascade c, denoted by
`c(t

c;A, C) can be readily computed (Gomez-Rodriguez,
Balduzzi, and Schölkopf 2011), where A is the matrix nota-
tion of model parameters (Ai,j = αi,j):

`c(t
c
;A, C) =

∑
{ti≤T}

∑
{m:tcm>T}

logS(T |tci ;αi,m)+

∑
{j:tc

j
<tc
i
,j∈Ci orCc

i
}

logS(t
c
i |t
c
j ;αj,i)+

log

 ∑
{k:tc

k
<tc
i
,k∈Ci orCc

i
}

H(t
c
i |t
c
k;αk,i)


(3)

Similar to the original NetRate, we view each cascade as
independent from each other. Finally, CENI adopts gradient
descent to solve the following convex optimization problem:

minimize
A

−
∑

c `c(t
c;A, C)

subject to αi,j ≥ 0, i, j = 1, 2, ..., N
(4)

Clustering Phase
Infection-centric CENI (I-CENI) Infection-centric
CENI (I-CENI) imposes a time window to identify the
cluster members for each node in each cascade. Assuming
that all nodes are sorted in the ascending order of their
infection time to cascade c, let τ(i, c) be the position of
node i in the sorted list. Moreover, we define τ(i, c) = ∞,
if tci =∞. For a specific cascade c, node i ∈ Ccj , if and only
if |τ(i, c)−τ(j, c)| <= θ, where θ is a predefined threshold.
One should notice that the “clusters” in I-CENI are not
conventional clusters as in many clustering problems: they
are essentially the “neighborhoods” of nodes in the time-
lines of cascades. Moreover, such neighborhoods naturally
change with respect to cascades, since each cascade is an
independent timeline. For a clearer demonstration, we use
the example of node u (marked by red color) in Fig. 1(a) to
illustrate the clustering result of I-CENI, when θ = 2.

Cascade-centric CENI (C-CENI) Cascade-centric CENI
(C-CENI) adopts a K-means based strategy for clustering.
We first view each tci as a data point in a one-dimensional
space and assume that we have a predefined cluster number,
K, which can be determined by cross validations. Initially,
we randomly select K centroids for each cluster. Next, at
each iteration, we assign each data point to the cluster of
which centroid is the closest, then we recalculate the new
centroids by using the means of data points within the clus-
ters. We continue to do this until it converges. Similar
to I-CENI, a node’s cluster members in C-CENI may also
change with respect to cascades, since the infection time of

Timeline:

cascade 1:

cascade 2:

cascade 3:

……

[ ]

[ ]
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(a) I-CENI (θ = 2)
Timeline:
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cascade 3:
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(b) C-CENI (K = 3)

Figure 1: Clustering results of I-CENI and C-CENI. In (a),
red nodes are the centers of three time windows of size 2.
The boundaries of windows are marked by square brackets,
and the blue nodes are considered in the same cluster with
u for each cascade. In (b), the boundaries of clusters are
marked by dashed lines, and nodes in the same cluster share
the same color. Different µs are the centroids of each cluster.

this node may vary in different cascades. In Fig. 1(b), we
illustrate the clustering result of C-CENI, when K = 3.

Projection-based CENI (P-CENI) Unlike I-CENI and C-
CENI directly perform clustering on the timelines, P-CENI
first projects each node into a space of certain dimension,
say D. In other words, each node in the network will be en-
dowed with uniqueD-dimensional coordinates. In fact, how
to obtain the coordinates to explain the observed cascades is
a relatively new problem and has several solutions very re-
cently. The intuition of these solutions is that if the infection
time of two nodes are relatively close in observed cascades,
their positions in the projected space should be near enough
to reflect such closeness. In the proposed P-CENI, we adopt
the method in (Bourigault et al. 2014) to map nodes. If we
denote the coordinates of node i by zi, and let sc be the first
infected user of cascade c, the projection procedure of P-
CENI is to find {zi|i = 1...N} that minimizes the following
hinge loss function, where max(x, y) is a function returning
the larger one between x and y:∑

c

∑
{i|tc

i
<∞}

∑
{j|tc

j
>tc
i
}

max
(

0, 1− (‖zsc − zi‖2 − ‖zsc − zj‖2)
)
(5)

As introduced in (Bourigault et al. 2014), we adopt Monte
Carlo approximation to get the solution that minimizes Eq.
(5). In practice, we also find that Eq. (5) is a good heuristic
estimator to find the critical dimension for P-CENI by iterat-
ing through different choices of D. After obtaining each zi,
a K-means clustering algorithm is applied on the coordinates
of nodes to obtain the cluster members for each node. Since
each node i corresponds to a unique zi, its cluster members,
Ci, does not change with respect to cascades in P-CENI ,
which is different from the cases in I-CENI and C-CENI.

Experiments
Description of Datasets
MemeTracker MemeTracker (Leskovec, Backstrom, and
Kleinberg 2009) is a project to track the most frequently ap-
peared quotes and phrases in numerous news and blog web-
sites. In this dataset, each website is viewed as a node in the
network. Websites can actively publish articles containing
different memes, where each meme is deemed as a cascade.
Moreover, articles may contain hyperlinks referring to the
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information sources, which can be viewed as E . Based on
the raw data of Jan. 2009, we first extract 1,000 websites
that post most memes, as well as all their published memes
in Jan. 2009. T is set to 1 week, and the memes that do
not have enough observation time are discarded. In total, we
obtain 2,762 different cascades and 4,323 directed edges.

Sina Weibo Sina Weibo is a Twitter-like microblogging
website that widely used in China. The second network is
extracted from the raw data of a Sina Weibo dataset pub-
lished by (Zhang et al. 2013). Based on the raw data in
Aug. 2012, we extract 1,000 users who have most tweets
and all their posts. The set of users are deemed as V , and the
users are connected through “follow” relationship. If a user
follows another user, s/he can see the posted tweets of the
followee and reacts to it by retweet or repost. Therefore, the
“follow” relationship among users can empower the diffu-
sion of tweets, which are viewed as cascades in this dataset.
Among the 1,000 nodes, we obtain 1,671 “follow” edges to
be used as E . We set T to 2 weeks for each cascade, and any
tweets do not have enough time to be observed are removed.
In total, we get 2,907 different cascades.

Experimental Results
Based on the two extracted datasets, we compare the pro-
posed three CENI models with two state-of-the-art network
inference methods: NetRate (Gomez-Rodriguez, Balduzzi,
and Schölkopf 2011) and MMRate (Wang et al. 2014). Since
F-measure is a metric considering both precision and recall
of the inferred edges, the reported overall performance of
different algorithms are under the condition that every model
is tuned to generate the optimal F-measure. The results
on the MemeTracker dataset when the transmission likeli-
hood function takes the exponential and Rayleigh forms are
listed in Table 1. Accordingly, the results of the Sina Weibo
dataset are listed in Table 2. In general, CENI models are
much more efficient than MMRate and NetRate: they only
need around 20% ∼ 50% of the running time of MMRate
and NetRate on the two datasets. Among the three CE-
NIs, C-CENI is usually the fastest one except in the Meme-
Tracker dataset when transmission likelihood is a Rayleigh
distribution. Although both I-CENI and C-CENI work gen-
erally well on the Sina Weibo dataset, they are relatively
worse on the MemeTracker. P-CENI, on the other hand, is
more stable and can produce edges of the highest F-measure
in most cases. We set the number of iterations of the Monte
Carlo simulation in the node projection step of P-CENI to
100,000, which produces robust results to be used to find
the critical dimension and generate clusters. We iterates
through 1 to 8 for D to find the critical dimension accord-
ing to the value of Eq. (5). Comparing to the thousands of
seconds spent on the network inference, finding the critical
dimension only cost us less than 5 minutes for each dataset.
Through more detailed analysis, we found out that although
CENI models may have lower recalls than MMRate and Ne-
tRate, they normally have higher precisions. This leads to
the F-measure of CENI models are similar to or even slightly
better than the baselines. Considering both the computa-
tional time and the F-measure of inferred edges, we think

f P-CENI C-CENI I-CENI MMRate NetRate

Time (sec.)
Exp. 8182 7729 8559 37328 16461

Rayleigh 9860 10121 10446 46078 18378

F-measure
Exp. 0.082 0.059 0.073 0.070 0.071

Rayleigh 0.064 0.032 0.039 0.012 0.049

Table 1: Results on the MemeTracker Dataset

f P-CENI C-CENI I-CENI MMRate NetRate

Time (sec.)
Exp. 5877 5415 7358 21677 14404

Rayleigh 7724 7408 9247 33965 16219

F-measure
Exp. 0.145 0.142 0.137 0.148 0.142

Rayleigh 0.130 0.126 0.108 0.128 0.117

Table 2: Results on the Sina Weibo Dataset

the proposed CENI framework is more cost-effective than
the compared state-of-the-art network inference methods.

Conclusion
This article addresses the network inference problem, i.e.
how to unveil the hidden network from the observed infor-
mation cascades. We propose an innovative two-step frame-
work, Clustering Embedded Network Inference (CENI),
which aims to improve the efficiency of the network in-
ference process, while still preserving the effectiveness.
By adopting different clustering strategies, we develop
three distinct CENI models: Infection-centric CENI (I-
CENI), Cascade-centric CENI (C-CENI) and Projection-
based CENI (P-CENI). Furthermore, we point out the criti-
cal dimension problem: in order to ensure the obtained clus-
ters can eventually produce high-quality inferred edges, we
may need to first estimate the dimensionality of the cascades
and map the nodes into the space of that dimensionality. To
solve this problem, we adopt a hinge loss estimator to find
the critical dimension before actually performing clustering
and the network inference. Through substantial experiments
based on two datasets, the results demonstrate that the pro-
posed three CENIs only need around 20%∼ 50% of the run-
ning time of some state-of-the-art approaches, while the in-
ferred edges have similar or even slightly better F-measure.
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