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Abstract

We propose a novel mathematical model for the activity of
microbloggers during an external, event-driven spike. The
model leads to a testable prediction of who would become
most active if a spike were to take place. This type of insight
into human behaviour has many applications, as it identifies
key players who can be targeted with information in real time
when the network is most receptive. The model takes account
of the fact that dynamic interactions evolve over an underly-
ing, static network that records “who listens to whom.” Our
fundamental assumption is that, in the case where the entire
community has become aware of an external news event, a
key driver of activity is the motivation to participate by re-
sponding to incoming messages. We validate the resulting
algorithm on a large scale Twitter conversation concerning
the appointment of a UK Premier League football club man-
ager. We also find that the half-life of a spike in activity can
be quantified in terms of the network size and the typical re-
sponse rate.

Introduction

Digital footprints left by our online interactions provide a
wealth of information for social scientists and present many
new challenges in modelling and computation (Lazer et al.
2009). In addition to aiding our understanding of how hu-
mans interact and make decisions (Arak and Walker 2012),
microblogging data offers the prospect of predicting future
behaviour (Ciulla et al. 2012) and engaging in targeted in-
tervention (Aral 2012). Commercial organisations, govern-
ments and charities are now able to interact with the general
public during the course of an online, global conversation,
and exploit opportunities to leverage current sentiment. We
focus on the specific case where a rapid spike of activity can
be attributed to an unpredictable external occurrence; ex-
amples considered here and in the Appendix include pivotal
moments in a sporting event, breaking news, and climactic
scenes in a TV programme. These dramatic, but short-lived,
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bursts of interest, with a typical half-life of between ten and
twenty minutes, represent marketing opportunities for suit-
ably agile players, as demonstrated by the cookie company
Oreo, who produced an effective, and, subsequently award
winning, tweet in response to a power failure during Super
Bowl XLVII.

A number of authors have considered how information
is passed in the setting of online social media. In (Cha et
al. 2010) the number of followers, Retweets and mentions
were used to quantify the influence of Twitter users, with
the three measures yielding very different results. Similarly,
(Kwak et al. 2010) ranked users by the number of followers
and also by Google’s PageRank algorithm. Related work in
(Lerman, Ghosh, and Surachawala 2012) looked at how net-
work structure affects dynamics of large scale information
flow around news stories in Digg and Twitter. In (Centola
2010) the spread of behaviour was examined through arti-
ficially constructed, static, social interaction networks, with
clustered-lattice structure found to be the most effective in
terms of speed and reach. Dynamic analogues of the stan-
dard Katz centrality measures were tested on a large scale
Twitter data set in (Laflin et al. 2013), and found to be com-
patible with the rankings produced by social media experts
whose job is to identify key targets.

Our interdisciplinary work differs from previous studies
in three main respects. First, rather than looking at the de-
velopment of cascades within a community (for example the
rise of a viral video) we focus on the setting where the rel-
evant community has been roused by an external develop-
ment. In this type of spike phase, because interest levels
are high, there is a clear opportunity for targeted interven-
tions to make an impact. Second, we develop a model that
addresses both the dynamic nature of message-passing and
the essentially static structure of the underlying “who listens
to whom” network. Third, by making our key modelling
assumption explicit and developing a simple algorithm that
applies to large scale data sets, we produce a tool that can be
employed in real time, predicting who will be the most ac-
tive players as soon as a spike in volume has been detected.
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Method and Results

In setting up a general modelling framework, we assume that
no new associations are created during the short time scale
of the spike; that is, we have a static underlying connectivity
structure. To be concrete, we will discuss Twitter activity,
but we note that the same principles apply to other time-
dependent digital messaging systems. For the relevant set
of N users, we let A ∈ R

N×N denote a corresponding ad-
jacency matrix where aij = 1 if user i is known to receive
and take notice of messages from user j. Loosely, this might
mean that i is known to be a Twitter follower of j, although
in practice we have in mind the use of more concrete ev-
idence that i cares about the tweets of j; for example via
Retweets. For simplicity, we take a standard unit of time
(one minute in the tests below) during which a user is as-
sumed to send out at most one message. We let s[k] ∈ R

N

denote an indicator vector for the send activity at time k, so
that s[k]i = 1 if user i tweeted in time interval k and s

[k]
i = 0

otherwise. Then simple bookkeeping tells us that

r[k] = As[k], (1)

where r[k] ∈ R
N is such that r[k]i counts how many mes-

sages were received by user i in this time interval.
We can now formalize our main modelling assumption.

In words, the probability of a user tweeting at time k + 1
is proportional to the number of significant tweets they have
just received, with proportionality constant denoted α, plus
a basal rate. We therefore model s[k] as a discrete time
Markov chain according to

P

(
s
[k+1]
i = 1 | s[k]

)
= bi + α r

[k]
i . (2)

Here bi denotes the basal tweet rate for user i and the sec-
ond term on the right-hand side quantifies our assumption
that, in the full attention span phase, activity is driven by a
desire to join in with the current conversation and engage
in topical “banter.” Formally, a normalization factor should
be included in the right-hand side of equation (2), to guar-
antee that probabilities lie between zero and one. However,
we will see that for our purpose of ranking nodes, this is not
necessary.

As general support for this key modelling assumption, we
note that (Bakshy et al. 2012) found social influence to play
a crucial role in the propagation of information on Facebook:
“Those who are exposed [to friends’ information] are signif-
icantly more likely to spread information and do so sooner
than those who are not exposed.” Similarly, (Wu et al. 2011)
based on a Twitter study concluded that “although audience
attention is highly concentrated on a minority of elite users,
much of the information they produce reaches the masses in-
directly via large population of intermediaries”. Further em-
pirical work appeared in (Lin et al. 2014), which looked at
Twitter interactions under shared activity around eight ma-
jor events during the 2012 U.S. presidential election. The
study found that human behaviour changes during a “media
activity,” when information consumption is characterized by
the availability of dual screening technology (television and
hand held device) and real-time interaction. The authors

proposed the term media event-driven behavioural change
for this general effect, and showed that, for the data they
collected, differences in behaviour were driven by the in-
creasing attention given to a small cohort of elite users. Our
work also focuses on this shared-attention, event-based set-
ting, and the leadership role of central users, but considers
behaviour when the whole network rapidly becomes aware
of an item of breaking news.

From equations (1) and (2), the expected value E[s[k+1]]
evolves according to

E[s[k+1]] = b+ αAE[s[k]]; (3)

see the Appendix. This type of iteration is familiar in
many modelling and computation scenarios, and it is read-
ily shown that as k increases E[s[k+1]] generically lines up
along a preferred direction that is independent of s[0]; see
the Appendix. If the spectral radius of A is below 1/α then
as k →∞ the resulting steady state value for E[s[k]], which
we denote by s�, satisfies

(I − αA)s� = b. (4)

If the time-scale for equation (3) to equilibrate is fast, rel-
ative to the time-scale of the activity spike, then s� in equa-
tion (4) will summarize the state of the system. So, having
constructed the matrix A and the right-hand side b from the
current data, the vector s� can be used to predict the rel-
ative activity level of each node in the event of a spike, a
larger value of s�i suggesting that user i will be more active.
In particular, the current top r components in the vector s�
give a prediction for who would be the r most active users if
a spike were to erupt.

We also note that our new model can be used to explain
the characteristic geometric decay in tweet volume observed
in these examples following a peak of activity. In particular,
the half-life of a spike can be predicted in terms of the typical
community size; see the Appendix.

We may regard s� as a network centrality measure; indeed
it is related to the widely-used Katz centrality (Katz 1953),
and can be interpreted independently from a combinatoric,
graph-theoretic standpoint, as explained in the Appendix. In
the special case where α = 0, we do not make use of any
underlying network information, and predict purely on the
basal rate of each user. This provides a natural basis for test-
ing the algorithm, and therefore validating our underlying
hypothesis: does the use of α > 0 add value to the pre-
diction of who will be active during a spike? (We empha-
size that, for simplicity, the single parameter α serves both
to downweight long walks in the Katz centrality sense, and
also to quantify the tendency of users to respond to incoming
tweets.)

We address this question using a Twitter data set, with
three further sets tested in the Appendix. In each case,
we define a business-as-usual period where users operate at
their basal rate and a spike period, where network activity
has been dramatically increased by an external event. The
basal tweet rate bi for user i is taken to be their total number
of business-as-usual period tweets. We also build the matrix
A from business-as-usual data, setting aij = 1 if i received
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Figure 1: Upper: volume of tweets each minute for a conver-
sation around Manchester United Football Club, May 9th,
2013. Lower: average responsiveness of the network, de-
fined in equation (5).

at least one relevant tweet from j in this period, and setting
aij = 0 otherwise.

Our experiment uses data collected on May 9th 2013 sur-
rounding the appointment of David Moyes as manager of
Manchester United Football Club, where a tweet is deemed
to take part in the conversation if it contains one or more
specified keywords. This consisted of 298,335 time-stamped
directed message-passing events involving 148,918 distinct
Twitter accounts. The upper picture in Figure 1 shows the
volume of tweets each minute. The largest spike in volume,
at 486 minutes, corresponds to the official announcement of
Moyes’ appointment. For the purposes of our test, we regard
zero to 300 minutes as forming the business-as-usual period
where users operate at their basal rate. We define the spike
period as lasting from the peak time of 486 minutes to the
time of 541 minutes at which the activity level has decayed
by a factor of four.

As support for our modelling hypothesis that, in a spike
phase, activity is driven by a desire to engage with incoming
messages, we show in the lower picture of Figure 1 the re-
sponsiveness of the network, which we define as the number
of tweets that a typical sender has seen in the previous one
minute of their timeline. More precisely, we compute the
average responsiveness over the kth one minute period as

1

Nk

Nk∑
p=1

rec
[p]
k , (5)

where Nk denotes the number of tweets sent out in this
minute and, for each such tweet, indexed by p, rec[p]k de-
notes the number of tweets that the sender received in the
previous 60 seconds.

Now, we test the predictive power of the new measure s�

in equation (4) as a function of the response rate parameter,
α. Figure 2 shows the change in total spike period activity of

Figure 2: Solid line: change in activity of predicted top 100
tweeters during the spike phase in Figure 1, as a function of
the response parameter, α. Dashed line: corresponding level
for α = 0.

the top 100 ranked users, as a function of α. In other words,
for each choice of α we use the business-as-usual informa-
tion to compute s�, find the users with the 100 top-ranked
values of s� and then record the total number of tweets sent
by this top 100 during the spike period. The figure shows
the difference between the total activity of these users and
those from the baseline value of α = 0, corresponding to
560 tweets. As soon as α increases beyond machine preci-
sion level (around 10−16), the top 100 list changes and the
prediction improves, and this holds for a range of α values,
relative to the α = 0 case where no underlying connectiv-
ity is exploited. Comparing the fine details of α = 0 with
α = 0.01, we find that both choices overlap strongly with
the best possible top 100 (71 and 70 indices in common,
respectively). However, the α = 0.01 list benefits from in-
cluding the 7th most active tweeter, who is missing from the
α = 0 list. We also remark that for this data set the ratio of
the subdominant to the dominant eigenvalue of A has mod-
ulus of 0.9540, and hence over the time units of the spike
period, since 0.954054 ≈ 0.08, it is reasonable to assume
that (3) has equilibrated. In the Appendix, the new algorithm
is validated on data from three further Twitter conversations
around high profile events.

In summary, our main aim was to put forward a novel
mechanistic model for on-line human social interaction in
the important setting where a community has been roused by
an unpredictable, external influence. We couched our mod-
eling assumptions in a very simple tractable model that al-
lowed a concrete test to be performed on real Twitter data. It
would be highy beneficial to develop rules of thumb, or the-
oretical arguments, to guide the choice of α, and of course
there are many ways in which these ideas could be extended
to more sophisticated models and subjected to further tests,
notably at the micro-scale level, especially if larger relevant
data sets become available. Finally, we emphasize that the
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testable hypothesis and resulting algorithm studied here are
applicable in any digital social media setting where we pass
information in real time to a pre-specified group of social
neighbours.
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Appendix

Evolution of the Expected Value

Combining equations (1) and (2), we see that

P

(
s
[k+1]
i = 1 | s[k]

)
= bi + α

(
As[k]

)
i
. (6)

We note that because s
[k+1]
i takes only the value 0 or 1, its

conditional expectation is simply the probability of taking
the value 1, given s[k]. So, taking conditional expectation in
equation (6), we have

E[s
[k+1]
i |s[k]] = bi + α

(
As[k]

)
i
.

Upon taking expected values, we then obtain

E[s
[k+1]
i ] = bi + α

(
AE[s[k]]

)
i
,

giving equation (3).

Stationary Iteration

For the iteration in equation (3), we have

E[s[1]] = b+ αAE[s[0]]

E[s[2]] = b+ αA
(
b+ αAE[s[0]]

)
= b+ αAb+ (αA)2E[s[0]],

and the general pattern, which may be proved formally by
induction, is

E[s[n]] = b+ αAb+ · · ·+ (αA)n−1b+ (αA)nE[s[0]].

Under our assumption that α < 1/ρ(A), it follows that
‖(αA)n‖ → 0 as n → ∞, for any matrix norm ‖ · ‖.
Hence, the influence of s[0] becomes negligible, and E[s[n]]
approaches

∞∑
i=0

(αA)ib,

which may be written (I − αA)−1b.

1See the Strathclyde MUFC Twitter Dataset at http://www.
mathstat.strath.ac.uk/outreach/twitter/mufc/index.php

Katz-like parameter

In our notation, where A denotes an adjacency matrix, the
kth power, Ak, has an (i, j) element that counts the number
of directed walks from node i to node j. It follows that the
infinite series

I + αA+ α2A2 + · · ·+ αkAk + · · ·
has (i, j) element that counts the total number of walks from
from node i to node j of all lengths, where a walk of length
k is scaled by αk. Here “length” refers to the number of
edges traversed during the walk. This series converges for
0 < α < 1/ρ(A), whence it may be written (I − αA)−1.

The vector c ∈ R
N defined by c = (I − αA)−11, or,

equivalently,
(I − αA)c = 1,

where 1 ∈ R
N denotes the vector with all values equal to

unity, therefore has ith element that counts the number of di-
rected walks from node i to every node in the network, with
a walk of length k scaled by αk. This is one way to measure
the “centrality” of node i, as first proposed by Katz (Katz
1953). In this way, α becomes the traditional attenuation pa-
rameter in the Katz setting, representing the probability that
a message successfully traverses an edge. The measure s�

in equation (5) replaces the uniform vector 1 with b. Hence,
the component s�i can be interpreted as a count of the total
number of walks from node i to every node in the network,
with walks to node j weighted by bjα

k. The introduction of
b has therefore allowed us to weight the walk count accord-
ing to basal dynamic activity.

Half-Life of a Spike

At the start of a spike, it is reasonable to suppose that E[s[0]]
in equation (3) is very large. We then have

E[s[1]] = b+ αAE[s[0]] ≈ αAE[s[0]],

and generally, in this spike phase,

E[s[k]] ≈ (αA)kE[s[0]]. (7)

In the regime where αρ(A) < 1 it follows that the expected
level of activity decays over time. More precisely, if we as-
sume that the nonnegative matrix A is irreducible (that is,
every node in the network has a path to every other) then the
Perron–Frobenius Theorem (Higham 2008) says that there
is a unique, real, positive, largest eigenvalue, λ1 with cor-
responding nonnegative eigenvector v1. We will expand
E[s[0]] as

∑N
i=1 βivi, where {vi}Ni=1 are the eigenvectors of

A, which we assume to span R
N , with corresponding eigen-

values {vi}Ni=1 and with β1 > 0. Then in equation (8),

E[s[k]] ≈
N∑
i=1

βi(αλi)
kvi.

Since λ1 is dominant, we have

E[s[k]] ≈ β1(αλ1)
kv1,

so
1T

E[s[k]] ≈ β1(αλ1)
k1T v1.
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Figure 3: Upper: volume of tweets each minute for a conver-
sation around a football match. Lower: change in activity of
predicted top 10 tweeters during the spike phase, as a func-
tion of the response parameter, α. Dashed line: corresponds
to α = 0.

We conclude that 1T
E[s[k]], the overall expected network

activity at time k, satisfies

1T
E[s[k]] ≈ C(αλ1)

k,

where C is a constant independent of k. The half-life then
corresponds to k̂ time units, where

(αλ1)
̂k =

1

2
,

leading to

k̂ =

∣∣∣∣ log 2

log(γ)

∣∣∣∣ , (8)

where γ is the product of the response rate α and the Perron–
Frobenius eigenvalue of A, λ1, which is bounded above by
any subordinate matrix norm. Taking the standard ‖ · ‖1 or
‖ · ‖∞ corresponds to forming the maximum in-degree or
out-degree, respectively. So λ1 may be regarded as roughly
the maximum number of followers over all relevant users,
and is hence a measure of community size.

Further Twitter Case Studies

Figure 3 presents results for a European football match: a
Bundesliga encounter between Bayern Munich and Borussia
Dortmund on May 4th, 2013. This involves 37,479 Twitter
users. The upper picture shows Twitter volume per minute.
We regard time zero to 130 minutes as the business-as-usual
period, and define the spike period as starting at the peak of
165 minutes and finishing at 175 minutes, after which ac-
tivity starts to increase again. This data is an order of mag-
nitude smaller that the Manchester United data in Figure 1
of the main article. So we focused on the predicted top 10
users. The lower picture in Figure 3 shows the change in
total spike period activity of this top ten as a function of α.

Figure 4: Upper: volume of tweets each minute for a con-
versation around a marketing event. Lower: change in ac-
tivity of predicted top 10 tweeters during the spike phase, as
a function of the response parameter, α. Dashed line corre-
sponds to α = 0.

For Figure 4, we used data from a marketing event for
the Yorkshire Tea Company on April 24th, 2013, where a
range of tea lovers and celebrities, including Louis Tomlin-
son from pop band One Direction, took part in an Orient-
Express style train journey around Yorkshire, UK, and were
encouraged to publicize the event. In this case we have 9,163
Twitter users. The large spike at 66 minutes corresponds to
awareness being raised about the presence of a One Direc-
tion member. We defined the business-as-usual period to
last from zero to 65 minutes. The lower picture shows the
change in spike activity of the predicted top ten as a function
of the response parameter α.

Figure 5 shows results for a dual–screening conversation
around an episode of the Channel Four UK television pro-
gramme Utopia, involving 4,154 Twitter users. The spike
at time 130 minutes corresponds to a particularly dramatic
scene. We defined the spike to finish at 145 minutes, and
took the business-as-usual period to last from time zero to
120 minutes. As before, the change in spike activity as a
function of α is shown in the lower picture.

In each of these three further tests, we see that extra value
is added by increasing α above zero; that is, by appropri-
ately incorporating information about the underlying fol-
lower network that was built up in advance of the spike.
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