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Abstract

Geotagged tweets are an exciting and increasingly pop-
ular data source, but like all social media data, they
potentially have biases in who are represented. Moti-
vated by this, we investigate the question, ‘are users
of geotagged tweets randomly distributed over the US
population’? We link approximately 144 million geo-
tagged tweets within the US, representing 2.6m unique
users, to high-resolution Census population data and
carry out a statistical test by which we answer this ques-
tion strongly in the negative. We utilize spatial mod-
els and integrate further Census data to investigate the
factors associated with this nonrandom distribution. We
find that, controlling for other factors, population has
no effect on the number of geotag users, and instead it
is predicted by a number of factors including higher me-
dian income, being in an urban area, being further east
or on a coast, having more young people, and having
high Asian, Black or Hispanic/Latino populations.

‘Geotagged’ or ‘geocoded’ tweets, where users elect to au-
tomatically include their exact latitude/longitude geocoordi-
nates in tweet metadata, provide data that are:

e High-quality: geotagging is automated, so there are fewer
chances of data error such as from user specification (Gra-
ham, Hale, and Gaffney 2014; Hecht et al. 2011);

e Precise: geotags are down to a ten thousandth of a degree
in latitude and longitude;

e Richly contextual: geotags are connected to tweets with
all their temporal, semantic, and social content;

e FEasily available, through the Streaming API;

e Large: using the Streaming API, a researcher can build a
collection of tens of millions of tweets.

Unsurprisingly, this makes them an enormously attractive
source for studying a wide range of human phenomena
(Hong et al. 2012). Existing works have used geotagged
tweets to study

e mobility patterns (Yuan et al. 2013; Cho, Myers, and
Leskovec 2011),

e urban life (Doran, Gokhale, and Dagnino 2013; Frias-
Martinez et al. 2012),
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e transportation (Wang et al. 2014a),

e natural disasters, crises, and disaster response (Morstatter
et al. 2014; Lin and Margolin 2014; Shelton et al. 2014;
Sylvester et al. 2014; Kumar, Hu, and Liu 2014), and

e public health (Sylvester et al. 2014; Nagar et al. 2014;
Ghosh and Guha 2013)

as well as the interplay between geography and

e language (Hong et al. 2012; Eisenstein et al. 2010; Kin-
sella, Murdock, and O’Hare 2011),

e discourse (Leetaru et al. 2013),

e information diffusion and flows (Kamath et al. 2013; van
Liere 2010),

e emotion (Mitchell et al. 2013), and

e social ties (Stephens and Poorthuis 2014; Takhteyev,
Gruzd, and Wellman 2012; Cho, Myers, and Leskovec
2011).

Furthermore, maps of geotagged tweets tend to look remark-
ably similar to maps of population density (figs. 1 and 2; see
also Leetaru et al., 2013), even if there are differences at a
finer scale (figs. 3 and 4). This naturally leads to the ques-
tion: are Twitter users who send geotagged tweets (hence-
forth, ‘geotag users’) randomly distributed over the popula-
tion? This is a critical question because, if users who elect
to geotag are systematically different from people in gen-
eral, the results of studying geotagged tweets will not have
external validity.

We used the Twitter API to get a collection of
144,877,685 geotagged tweets from the contiguous US,
from which we extract 2,612,876 unique twitter handles. We
uniquely assign each handle to a block group, a geographic
designation of the US Census Bureau that is the smallest ge-
ographic unit for which Census data is publicly available.
We then link the counts of unique geotag users per block
group to the 2010 Decennial Census population counts per
block group, and create a statistical test for the null hypoth-
esis that geotag users are randomly distributed over the US
population. We find sufficient evidence to reject this null.
Using other Census data, we then use a Simultaneous Au-
toregressive (SAR) model to test some candidate explana-
tory factors and investigate what is nonrandom about this
distribution. This is, to our knowledge, the first paper to use
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Figure 1: Quintiles of population per square mile by ‘block
group’ (see below) in the 2010 Decennial Census.
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Figure 2: Quintiles of geotag users, uniquely assigned (see
‘mobile users’ below) per block group, divided by block
group area.

statistical testing to establish population bias along multi-
ple dimensions in geotagged tweets across the entire United
States.

Background and Related Work

Our study relates to an increasing body of work about bi-
ases in who and what is represented in social media data.
The first work with Twitter data was by Mislove et al.
(2011), who found an overrepresentation of populous coun-
ties and an underrepresentation specifically of the Midwest,
an undersampling in counties in southwest with large His-
panic populations, an undersampling in counties in the south
and midwest with large Black populations, and an oversam-
pling of counties associated with major cities with large
White populations. However, these findings come from in-
terpretations of distributions and county-level cartograms,
rather than from statistical testing, and they rely on the
user-defined ‘location’ field, which has been shown to have
many inconsistencies (Graham, Hale, and Gaffney 2014;
Hecht et al. 2011). Our study is on the one hand deeper be-
cause we use the far higher resolution of block groups and
carry out statistical tests, but on the other hand not as general
because our findings apply only to characteristics of geotag
users within the US population rather than to geotag users
within the Twitter population, or to Twitter users within the
US population. Also worth noting is that Twitter has under-
gone large changes since the data used by Mislove et al.,
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Figure 4: Detail of fig. (2) for New York.

both in the governance and management of the platform it-
self (van Dijck 2013) and in patterns of user behavior (Liu,
Kliman-Silver, and Mislove 2014).

More recently, Hecht and Stephens (2014) investigated
urban biases across the US. Collecting 56.7m tweets from
1.6m users over a 25-day period in August and September
2013 and comparing it to Census data, they use a method of
calculating a reduced effective sample size in order to cor-
rect for spatial dependencies. From this they calculate ra-
tios of users per capita and find a bias towards urban areas,
with 5.3 times more geotagged tweets per capita in urban re-
gions as in rural ones, a magnitude even more pronounced
in Foursquare data. Longley, Adnan, and Lansley (2015)
investigate biases across a number of factors, focusing on
the Greater London area. Using work on forename-surname
pairs identifying gender, age and ethnicity, they parse user-
names and other profile information to get a collection of
estimated names, which they then compare to the 2011 UK
Census and find an overrepresentation of young males, an
underrepresentation of middle-aged and older females, an
overrepresentation of White British users, and underrepre-
sentation of South Asian, West Indian, and Chinese users,
although tests of significance are not applied.

Coming from another methodological direction, a na-
tionally representative survey study of smartphone owners
(n=1,178) by Pew (Zickuhr 2013) looks at the demograph-
ics of location service users. Overall, 12% of those sur-
veyed reported using what Pew terms ‘geosocial’ services



(which includes geotagged tweets, and excludes informa-
tional services like Google Maps). Interestingly, the sur-
vey finds the the most frequent users of geosocial services
are those of lowest income and middle income; those of
lower income use it less, and those of upper income use
it least. More 18-26 year olds use geosocial services than
older users, and almost double the proportion of hispanic
(English- and Spanish-speaking) smartphone owners user
geosocial services as compared to white and black (both
non-hispanic) smartphone owners. However, out of the re-
spondents who specified which geosocial services they use
(n=141), most reported using Facebook (39%), Foursquare
(18%) or Google Plus (14%); only 1%, or 1 respondent, used
Twitter’s geosocial services (i.e., geotagged tweets), such
that it is not possible to make inferences about geotag users
from the results of this study.

Our paper is answering the general call for stronger
methodological investigations about the nature of population
representation in social media data (Ruths and Pfeffer 2014;
Tufekci 2014), as well as the specific call for combining ge-
ographic data from user-generated sources with non-user-
generated sources, such as Twitter data with the Census
(Crampton et al. 2013).

Method
Data collection

Geo-Coded Twitter Data. From Twitter’'s Streaming
API, we collected 144,877,685 tweets from April 1
to July 1, 2013 using the geographic boundary box
[124.7625,66.9326]|W x [24.5210, 49.3845]N. This covers
the contiguous US (i.e., the 48 adjoining US states and
Washington DC but not Alaska, Hawaii, or offshore US ter-
ritories and possessions). Consequently, all our tweets are
geo-coded with lat/long GPS coordinates. As Morstatter et
al. (2013) report from the Twitter Firehose, about 1.4% of
tweets are geotagged; and elsewhere (Morstatter, Pfeffer,
and Liu 2014) they report the Streaming API is more likely
to be biased when the response to a query exceeds 1% of
the total volume of tweets. Given also that North America
accounted for only 22.32% of geotagged tweets in their col-
lection, a fraction consistent with what Liu, Kliman-Silver,
and Mislove report finding in a collection of decahose data
covering the time period we consider, it is reasonable to as-
sume that the use of the Twitter API to collect tweets geo-
tagged in the US covers all or nearly all of geotagged tweets
within the given time frame and geographic bounds.

Since the distribution of geotagged tweets over geotag
users is characteristically long-tailed (fig. 5), with a minority
of users sending out the majority of tweets, we decided that
the relevant quantity was the number of geotag users rather
than the number of tweets. We identified 2,612,876 unique
user accounts in our data, which is the basis of our analysis.

Geospatial Data. The contiguous US plus Washington
DC include 215,798' block groups (2010 specification)

"Probably due to a rounding error in geographic calculations,
we lost three small island block groups (2 in Florida, 1 in New
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Figure 5: The usual long-tailed distribution of the number of
users who have tweeted a certain number of tweets. Because
of this skew, we focus on unique users alone, and ignore the
volume of tweets.

which range in size from .002 square miles to 7503.21
square miles. Block groups are designed by the Census Bu-
reau to have roughly comparable population sizes. We veri-
fied this by noting that, in log scale, the distribution of popu-
lations per block group has a symmetric distribution and sta-
ble variance. Each block group has a unique identifier, the 12
digit FIPS Code, consisting of identifiers for state (first two
digits), county (next three digits), tract (next six digits), and
block group (last digit). For every state, the US Census Bu-
reau provides geographic boundary files (‘shapefiles’) that
includes the GPS coordinates of the borders of every block
group within the state. We combined the shapefiles of the
48 contiguous states and the District of Columbia, deleting
364 block groups representing bodies of water (identifiable
by being coded as having zero area, and having a FIPS code
ending in zero?). With Python code (utilizing the shapely
package) we identified the Census block group into which
each tweet fell.

Socioeconomic Data. While the ideal would be to have
rich and timely demographic data about the users who sent
the tweets in our data, this is not realistic to collect for
2.6m users. But by aggregating data at the level of block
groups, we can link Twitter data to the enormously rich de-
mographic data the Census Bureau makes available at this
level. We primarily use data from the 2010 Decennial Cen-
sus, which we supplement with median income (not avail-
able in the Decennial Census) estimates from the 2009-2013
American Community Survey. For this ACS data, there were
1,224 block groups with missing values for median income,
few enough that we filled these out as zeros rather than us-
ing imputation or smoothing. We also set 21 block groups
with the value “2,500-" to 2,500, and 2,651 block groups

York), such that our n = 215,795.
“https://www.census.gov/geo/reference/gtc/gtc_bg.html



with the value 250,000+ to 250,000. The 2009-2013 ACS
had 54 block groups in the contiguous US whose boundaries
(and FIPS) codes were from the 2000 Census, for which we
found equivalent block groups in the 2010 Decennial Cen-
sus to which to map. While the ACS 1-year estimates are
more timely, they are more sparse and only at the county
level (American Community Survey Office 2014), and we
decided to prioritize the accuracy and completeness of val-
ues in the Decennial Census for this analysis. We similarly
decided to not use the ACS 2009-2013 estimates for popu-
lation quantities as there was more missing data, and there
was high correlation between the 5-year estimates and 2010
Decennial Census figures across variables (generally around
.95). Still, prioritizing timeliness over completeness, and
looking at the county level with 2013 ACS 1-year estimates,
may be the focus in future analysis.

Mobile users. Our construct of interest is the number of
potential geotag users, for which population is the available
proxy; there are cases where there are more geotag users
than population, which points to tourists or, more generally,
mobile users, as a complicating factor (Hecht and Stephens
2014).

Hecht and Stephens (2014) provide a useful review of
techniques to uniquely assign users to a single geographic
region. They identify two candidate techniques: temporal,
where a user must send at least two tweets a set number of
days apart in a region for the user to be located uniquely in
that region, and ‘plurality rules,” where the most frequently
tweeted-from region is taken as the unique location of the
user. Checking the ‘location’ field fails because of the low
quality of the information there (Hecht et al. 2011). As one
other option, Wang et al. 2014b use the location of the first
geotagged tweet sent by a user as the location of the user.
This is the simplest, but also has no motivation beyond con-
venience.

Despite the drawbacks of plurality not accounting for peo-
ple local to two regions, our comparison is with the US Cen-
sus which also does not account for this possibility. How-
ever, another problem is that foreign tourists are not counted
in the US Census (unlike domestic tourists, who reside in
some US block group), and of which there were 70m in
the US in 20133. This is substantial when compared to the
total 2013 US population of 316m* (of which 307m are
counted in the block groups we use). If many foreign tourists
send geotagged tweets, it would introduce unaddressed bias;
since our data collection only had geotagged tweets in the
US, short of massive additional data collection we are un-
able to identify foreign tourists (such as by looking at the
proportion of geotagged tweets outside of the US). This is
a potential problem in our analysis that may be a topic for
clarification in future work.

Additionally, we filter users by the number of tweets, con-
sidering only those with a certain number of tweets.> As the
distribution of tweets per user (fig. 5) is smooth and has no

*http://travel.trade.gov/view/m-2013-1-001/table 1 .html
*http://data.worldbank.org/indicator/SP.POP.TOTL
>We thank an anonymous reviewer for this fruitful suggestion.
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natural break point, we arbitrarily pick 5 and 10 as cutoffs to
use alongside all users.

Statistical Models

Random distribution over population. The basic rela-
tionship in which we are interested is between population
and geotag users. In order to make a concrete test for ran-
dom distribution, we suggest a model where there is a linear
relationship between the population count and the number of
users, i.e. users are drawn from the population at a constant
rate subject to some noise. We can imagine the noise is het-
eroskedastic, which suggests the following data-generating
process over population P, users U, and mean-zero noise
term &:

U=aP+¢P (D

We transform both users and population to stabilize their
variances, so this then becomes

logU = log o + log P + log (1—&—5) 2)
o
Then, consider the linear model
logU = By + B1log P + ¢’ 3)

If eqn. (1) described the true data-generating process, from

eqn. (3) we should get that B, = 1, and then exp(@o) would
estimate the value of the proportion . That is, the log «
term is the intercept of the regression of log P onto log U,
and log (1 + %) is a mean zero error term now independent
of P, and we have a null hypothesis Hy : 51 = 0. While
this may seem unrealistic as a null model, other quantities
that we would believe are randomly distributed proportional
to population indeed match this. For example, we regressed
log population onto log males and found it to be meaning-
ful (presented below under results). With this validation, we
argue that the model of eqn. (1) is a reasonable way of repre-
senting a quantity being randomly distributed over the pop-
ulation. Note that our interest is not in fitting this specific
model and interpreting the parameters, but just having a way
to test the null hypothesis of random distribution. Note also
that we originally sought to compare log population density
to log geotag user density as a way of treating measures on
different block groups as equivalent (given that block groups
are already designed to somewhat control for the variance in
population density), but found that it produced excellent fits
that did not disappear when the data was shuffled, suggest-
ing that the dividing by area created artifactual relationships.

Model specification For comparison with analyses of
race and Hispanic populations (Mislove et al. 2011; Zick-
uhr 2013), we use Census variables® P0030001 through
P0030008 and P0040001 through P0040003. For compar-
ison with analyses by age (Longley, Adnan, and Lansley
2015; Zickuhr 2013), we use P0120003 through P0120049
and aggregate across gender into the same age bins as in
Zickuhr. Existing analyses by sex (Longley, Adnan, and
Lansley 2015; Zickuhr 2013; Mislove et al. 2011) is based

Shttp://api.census.gov/data/2010/sf1/variables.html



on name-based inference or survey data; we decided that,
while the Census does have sex data, the even distribution
of sex across the US means that the sex ratio of a block
group is not a meaningful proxy for geotag users who live
there. For comparison with analyses of urban and rural pop-
ulations (Hecht and Stephens 2014; Zickuhr 2013), we use
P0020002 through P0020005.”

Thus, in total, we include terms for populations, the black
population, the Asian population, the Hispanic/Latino pop-
ulation, the rural population, and respective populations of
people ages 10-17, 18-29, 30-49, 50-64, and 65+. For all
of these, we stabilize variance with a log transformation
with add-one smoothing. We include median income (Zick-
uhr 2013), and test for a northern/eastern effect by including
the (demeaned) latitudes and longitudes of block group cen-
troids, and for a coastal effect by including terms for latitude
and longitude squared.

Spatial autocorrelation. Discretization into uneven geo-
graphic units (as block groups certainly are) can cause sta-
tistical artifacts. Specifically, if the divisions do not corre-
spond to the contours of the underlying spatial process (and
there is little reason to believe they would), there will be
dependencies between proximate geographic areas, and not
accounting for this can inflate the R? statistic, shrink stan-
dard errors, and give misleadingly significant results. We use
the standard statistic for measuring spatial autocorrelation,
Moran’s I,

_ n > wij (X = X)(X; - X)
D25 25 Wi (X — X)?

This is the empirical covariance, appropriately normalized,
of the values of variable X between geographic units ¢ and
j. W = [w;;] is an n x n matrix of weights, discussed be-
low. Rather than exploring autocorrelation in individual vari-
ables, we look for spatial autocorrelation in the residuals of
a linear model (Anselin and Rey 1991). For management of
spatial data and implementation of computation and estima-
tion for spatial models, we used the R package spdep (Bi-
vand and Piras 2015; Bivand, Hauke, and Kossowski 2013).

I “

Weights matrix. Measuring spatial autocorrelation re-
quires a ‘weights matrix’ of adjacencies between geographic
units. There are multiple ways to generate this, and the
choice of how to do so represents a substantive decision
based on the problem at hand (Gaetan and Guyon 2012).
However, given that we do not know in advance the form of
the spatial autocorrelation, in practice we can test for auto-
correlation over different choices of weights matrices to see
which is most appropriate (Anselin, Sridharan, and Gholston
2007). Thus, we consider the following weights matrices:

e Queen contiguity (regions sharing a corner or edge are ad-
jacent, equivalent to 8-connectivity in image processing);

"The Census API returned zero values for these, so we manually
downloaded the variables of “P2. URBAN AND RURAL” for each
state individually from factfinder.census.gov.
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e Rook contiguity (regions sharing an edge are adjacent,
equivalent to 4-connectivity in image processing)

e k-nearest-neighbors for £k = {2,3,4,5,6,7,8}, calcu-
lated from the midpoints of block groups.

For the contiguity cases, we consider both row-normalized
(which normalizes the ‘effect’ of each neighboring unit such
that they sum to one) and binary (which gives greater pos-
sibility for autocorrelation between a unit and its neighbors
for units with more neighbors).

Spatial errors model. We model the relationship between
population and geotag users using a Simultaneous Autore-
gressive (SAR) model, which is where one or more terms
in the regression are correlated with itself. The main au-
toregressive model assumes that the residuals of unit ¢ are
correlated with the residuals of those units j adjacent to 1,
which is known in econometrics literature as a spatial errors
model. The adjacencies are indexed exactly by the terms of
the weights matrix. This gives the following two equations,

Y =X3+u ®)
u=\Wu+¢ (6)

where u are the correlated residuals, e ~ N(0, o21) are the
uncorrelated error terms, and the coefficient A is the ‘spatial
multiplier’ that captures the strength of the spatial autocor-
relation (Anselin 2002). While there are other SAR models,
we use spatial errors as the simplest to interpret and the most
appropriate for our purpose.

Results and Discussion

Observational results. The block groups with the highest
number of distinct users (before users are assigned uniquely)
are major international airports and major tourist attractions
(table 1).2 The inclusion of several international airports on
the list suggests that geotagging tweets during the process
of travel is a common user behavior. There were some ar-
eas with zero population but nonzero users; out of these, the
ones with the highest counts of distinct users are mostly the
same: major airports and parks.’

Conversely, there were only 67 block groups from which
nobody sent geotagged tweets; only 30 of these also had no
population (these were national forests, minor airports, areas
off highways, etc.). Of those that did have a population, the
most populous was a block group with a population of 4,854
within San Quentin State Prison in California. The second-
most populous block group is also a Corrections Department
building in Texas, and third is a state prison in California
(although not all prisons lack geotag tweet users; the block
group of Rikers Island in New York has geotagged tweets
from 22 users).

Out of the 2,612,876 unique users we identified,
2,216,219 (84.82%) had a single block group from which

8Block groups may be looked up by their FIPS code at
http://www.policymap.com/maps

“Interestingly, Central Park has a nonzero population (of 25),
as do some airports. Some other tourist attractions (e.g., Universal
Studios) also appear.



Table 1: Block groups from which the most users have sent
geotagged tweets.

FIPS code Users Description
320030067001 28,280  Las Vegas Strip

06 037980028 1 23,100  Los Angeles Int’l Airport
32 003 006800 4 16,748 McCarran Int’l Airport
13 063 980000 1 15,481  Atlanta Int’l Airport
120950171032 15,392  Walt Disney World

36 081 071600 1 15,067  JFK Int’l Airport

11 001 006202 1 14,906  National Mall

36 061 014300 1 14,605  Central Park

06 059 980000 1 14,576  Disneyland

17 031 980000 1 13,610  Chicago Int’l Airport

they tweeted most frequently. The others had ties for which
block group was the highest; for these users, we uniquely as-
signed them to one of their block groups by randomization.
We tried analyses on just the 84.82% as well, but found it
made little substantive difference in the results.

In the terminology of Guo and Chen (2014), the most ac-
tive accounts belong to ‘non-personal users.’!” In this case,
the most active tweeter (44,624 tweets) seems to be a com-
mercial service for travel, the second-most active (35,025)
is an automatic news updater in Florida, etc. Starting from
the 13th most active tweeter, with 12,922 tweets, there were
accounts that appeared on inspection to be personal ones.
As for number of block groups traversed, the top ‘traveler’
(23,547 block groups) is the same as the top tweeter, and oth-
ers are similarly non-personal users. Across block groups, it
is not until the 18th most mobile user, traversing 1,209 block
groups, that there is a personal user.

How much mobility is there between units? Figures 6 and
7 show respectively that while there is minimal mobility be-
tween states, with only 22.39% of users sending geotagged
tweets from more than one state and only 7.83% send from
more than 2. However, there is a great deal of mobility be-
tween (possibly neighboring) block groups, with 65.24% of
users sending geotagged tweets from more than one block
group.

How well does unique assignment do? As one check, we
consider the ratio of geotag users to population; there are
509 block groups where this ratio is greater than 1 (for users
with 5 or more tweets only, there are 353, and for users with
10 or more tweets only, there are 290), indicating either the
failure of population as proxy for potential geotag users or
of the method of assigning mobile users. As we found the
block groups with the largest ratios to be airports, it seems
to be a case of the latter.

Bivariate regression model. We first test our null hypoth-
esis of a linear regression yielding a coefficient of 1 to the
logarithm of the population. Looking at the plot of the rela-

0They find that only 2.6% of geotag users are non-personal.
This should be small enough to have no effect on results, so we did
not employ filtering. However, this may be considered in a future
work.
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Cumulative states tweeted from, across geotag users
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Figure 6: A full 77.61% of geotag users in our set tweeted
only from one state, and having tweeted from 5 or fewer
states accounts for 99.21% of users.

tionship of the logarithm of the two (fig. 8), there is a faint
linear relationship, although the slope does not appear to be
1. An OLS regression fits slope B1 = 4916 (.002996) and
intercept By = -1.219 (.02143),!! although we should recall
that the standard errors are not reliable under spatial auto-
correlation.

Compare this plot to the plot of our test case mentioned
earlier, the distribution of males over the population, pic-
tured in fig. (9). The true ratio of males to total popula-
tion across the block groups we consider is .4915; accord-
ing to our model, the exponential of the intercept should be
this, and the coefficient of the log population term should be
1. Indeed, log(.4915) is within the 95% confidence interval
(log(.4914), 10g(.4962)), and 1 is just outside the 95% confi-
dence interval (.9980, .9994), but this is without accounting
for how spatial autocorrelation shrinks estimated standard
errors. The R? value of this model is also impressive at .975,
although under spatial autocorrelation R? is inflated thereby
not interpretable. Overall, our model fits the relationship of
males to population exactly as we would expect it to fit to
something randomly distributed over the population.

Using this as a validation of our statistical test, we can

strongly reject the null hypothesis that 51 = 1 even with-
out correcting for spatial autocorrelation. And the R? value
for this regression is a paltry .109, too small to worry about
being inflated. Thus, we can conclude that geotag users are
not randomly distributed over the US population, and indeed
that the population count is not very informative about the
number of geotag users.

Weights matrix and spatial autocorrelation. Testing the
residuals in our basic model for spatial autocorrelation using
Moran’s I against all weights matrices considered above, we

' Filtering for only those users who have 5 or more tweets and
for those users with 10 or more tweets, the respective fitted slopes
are .5192 (.002932) and .5136 (.2786).



Cumulative block groups tweeted from, across geotag users
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Figure 7: 34.76% of geotag users tweeted only from one
block group. 27 or fewer block groups were 95%, 50 or
fewer block groups were 99%. One outlier at 23,547 ex-
cluded.

find the results reported in table (2).

Table 2: Selected Values of Moran’s I in residuals

Population vs Users ~ Population vs Male

2nn .3699 2336
4nn 3550 2142
6nn 3398 1996
8nn .3270 1883
4166 (b) 2125 (b)
Rook 1 "3992 () 2201 ()
4151 (b) 2097 (b)
Queen | 3919 (m) 2154 ()

For the Rook contiguity case and the Queen contiguity case,
binary (b) and row-normalized (rw) weights gave different
values.

We found identical results of Moran’s I for binary weights
matrices and row-normalized weights matrices in the k-
nearest neighbor case. For the two contiguity cases, row
normalization made a difference, and we list both values.
In all cases, an asymptotic test against the expected value
of 0 was significant at p < .0001. The autocorrelation
in the population-user model is stronger than in the ‘null’
population-male model. It appears, then, that the spatial au-
tocorrelation is strong enough that the choice of weights ma-
trix is not critical. For the population to user model fit on
counts of users with 5 or more tweets, or 10 or more tweets,
the spatial autocorrelation was similar (generally lower, but
still higher than the autocorrelation of population vs. male).

Spatial errors model. The maximum likelihood method
of fitting a SAR model involves computing the log deter-
minant of the n X n matrix | — AW/, which is infeasible
at our n of over 200,000. An alternative method finds the
log determinant of a Cholesky decomposition of (I — AW),
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Relationship between population and geotag users
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Figure 8: Eliminating zero-count observations reduces the
artifacts visible at x = 0 and y = 0 but does not substan-
tially change the fit.

although this then requires W to be a symmetric matrix (Bi-
vand, Pebesma, and Gémez-Rubio 2013). Since all of the
candidate weights matrices picked up spatial autocorrelation
at a significant level, we use a binary contiguity weights ma-
trix. We tried both Rook and Queen, and they gave compa-
rable fits, so we report only for Rook (3).

Table 3: Spatial errors basic model, binary Rook contiguity

Dependent variable:

log(user + 1)
440177 (.002655)

log(population + 1)

Intercept —1.138"** (.01890)
A 1107+

LR test value: 73,375
Numerical Hessian S€(\): 8.4241e—06
Log likelihood: —222,020.8
ML residual variance (2): 4206
Observations: 215,795
Parameters: 4

AIC: 444,050
Note: *p<.0001

The spatial multiplier term is significant, although nei-
ther the coefficients nor the standard errors are substan-
tively different than the previous model. However, calculat-
ing Moran’s I on the residuals of this model gives a value of
-.02367, with a p-value of 1, meaning we have successfully
controlled for spatial autocorrelation.

We then investigate the full model specified above. We in-
terpret this model in the standard way: for a log transformed
explanatory variables X, a 1 percent change will predict a
B percent change in Y. We present the results of the regres-
sion on counts of only those users with 5 or more tweets.



Relationship between male population and total population
(null case)

‘/
— — Fitted values s
g

10
|

log (males)

0 2 4 6 8 10
log (population)

Figure 9: The relationship between males and total popula-
tion behaves exactly as we expected of a quantity randomly
distributed over the population, making it an effective null
model against which to compare the observed distribution
of geotag users.

This is shown in table (4).

As before, testing for spatial autocorrelation finds no sig-
nificant amount, with a p-value of 1. Here we see that, af-
ter controlling for other factors, population loses its sig-
nificance (this also points to the benefits of using a SAR
model, as under OLS the population term is significant).
The term for area included as a control is significant, with
a one percent rise in block group area predicting a 15.56%
rise in geotag users. It seems here that size overcomes the
effects of population density (as mentioned above, block
group population has stable variance only in log scale even
though block groups are designed to enclose populations
of roughly comparable size). Consistent with survey find-
ings (Zickuhr 2013), a 1% larger Hispanic/Latino popula-
tion predicts 1.533% more geotag users. However, the ef-
fect size is smaller than either that of the Asian population
(a 1% rise predicting an 11.12% rise in geotag users) and,
in contrast to survey findings, that of the Black population
(a 1% rise predicting a 4.29% rise in geotag users). This
might point to the Pew sample not including enough Twit-
ter users, as there is an active Black community on Twitter
that is gaining scholarly attention (Clark 2014; Florini 2014;
Sharma 2013). The latitude, both in linear and quadratic ef-
fects, is not significant; however, the longitude is significant,
pointing first to block groups further east having more geo-
tag users, and second (from the positive sign of longitude
squared) to a coastal effect where block groups on both the
east and west coasts have more geotag users than in the cen-
ter of the US. While we tried to test for nonlinearity in in-
come, inclusion of a squared term for median income made
the matrix computationally singular; however, inspecting the
bivariate relationship did not yield any evidence for a non-
linear effect, and the linear effect is weak (a $10,000 rise
in the median income predicts a 1.66% rise in the number
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Table 4: Spatial errors full model, binary Rook contiguity,
users with >5 tweets only.

Dependent variable:
log(user + 1) s.e.
log(population + 1) -.01218 (.008081)
log(area) 15567+ (.001760)
log(asian + 1) d112%* (.001576)
log(black + 1) .04292%*** (.001576)
log(hispanic + 1) .01533*** (.002066)
latitude (demeaned) -.006992 (.0007052)
longitude (demeaned) .02306*** (.0002739)
latitude? -.0001641 (.00009505)
longitude? .00008777***  (.00001411)
median income ($10K) .01661*** (0006857)
log(rural + 1) -.05722%** (.001096)
log(ages 10-17 + 1) -.09831*** (.003712)
log(ages 18-29 + 1) .3916%** (.004423)
log(ages 30-49 + 1) .06362*** (.006731)
log(ages 50-64 + 1) -.1793*** (.006953)
log(ages 65 andup + 1) .09675*** (.003940)
Intercept 1.3382%*** (.1916)
A: .1009***
LR test value: 36,577
Num. Hessian Se(\): 0.0003456
Log likelihood: —-207,923.5
ML resid. var. (52): 3755
Observations: 215,795
Parameters: 19
AIC: 415,890
Note: *p<.0001

of geotag users). Consistent with findings about urban bi-
ases (Hecht and Stephens 2014), we find that a 1% higher
rural population predicts a 5.72% decrease in the number
of geotag users. Lastly, also consistent with survey findings,
18-29 year olds are the most active geotag users, with a 1%
higher population of this age group predicting 39.16% more
geotag users. There is also a strong negative effect for the
population of ages 50-64, with a one percent change predict-
ing 17.93% fewer geotag users, but the teenage population
surprisingly predicts fewer geotag users. Also surprisingly,
there was a significant and positive effect from the popula-
tion people 65 and older. These might be due to more com-
plex interactions such as mixed populations. As is usual with
logarithmic dependent variables, the intercept is not partic-
ularly interpretable as it would be a prediction for a block
group at the center of the US with a population of 1.

Running the SAR model using all users, instead of just
those with 5 or more tweets, produces similar results, except
that log population is significant with coefficient -.04196
(.007858); this suggests a nonlinear effect, and indeed, an
added squared term for the log population came out as sig-
nificant and positive at .06329 (.0008394). This points to
some noise for those people who only ‘try out’ geotagged



tweets but do not adopt their use that disappears if we main-
tain a minimum tweet threshold. When running the model
on only those users with 10 or more tweets, results are again
similar except the longitude squared term is no longer signif-
icant (p = 0.1870), and the latitude term becomes significant
(p = 0.02017). This might be from the coasts having more
users who try out geotagged tweets for a longer period of
time before choosing not to continue. These subtle differ-
ences point to opportunities for modeling the demographics
of different types of users (as determined by number of geo-
tagged tweets or other factors), although we do not explore
them more here.

Conclusion

Geotag users are not representative of the US population.
Despite the volume of geotagged tweets and their impressive
coverage (there were only 67 block groups out of 215,795
with no geotagged tweets), the users who send geotagged
tweets are nonrandomly distributed over the population in
subtle ways. These include predicable and already estab-
lished biases towards younger users, users of higher income,
and users in urbanized areas, as well as surprising biases to-
wards Hispanic/Latino users and Black users that, in the lat-
ter case, have not seen in large-scale survey research. We
also demonstrate an unsurprising but previously unreported
coastal effect, where being located on the east or west coast
of the US predicts more geotag users. Geotag users may not
be a random sample of the population of any given block
group, but given the fine level of detail and large-scale de-
mographic variability, the demographics of a block group is
a reasonable proxy for the demographics of geotag users lo-
cated in that block group. Certainly, even with complications
of uniquely assigning mobile users, it is enough to establish
the nonrandom distribution of geotag users, and some can-
didate biases.

While from this study, we are unable to say whether or
not geotag users are representative of the Twitfer popula-
tion, the more interesting question we address is whether
geotagged tweets can be a useful proxy for the general pop-
ulation within the US. This is a critical question because
geotagged Tweets are an enormously popular source of data
for studying a wide variety of social and human phenom-
ena. For future work, we emphasize that findings using geo-
tagged tweets should not be assumed to generalize, and con-
clusions should be restricted only to geotag users with their
population biases.

Future Work There are a number of directions for fu-
ture work. One is to connect tweets to lower-resolution and
lower-accuracy but more current 2013 ACS 1-year county-
level estimates. Others are to see the effect of filtering out
non-personal users, and to build ways to filter out foreign
tourists and better uniquely place geotag users in the block
group that is likely to be their residence. Modeling demo-
graphic differences between users of different levels of use
is also possible with this data. We have applied one spa-
tial model, but spatial modeling is a rich area with many
other available techniques. For example, there are also rele-
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vant disease mapping models that break down incidence by
various demographic strata (Bivand, Pebesma, and Gémez-
Rubio 2013) that would be appropriate here, as well as non-
parametric models that might better capture irregular effects.
Furthermore, we elected to not consider the temporal aspect;
there is work on spatio-temporal modeling (Longley, Adnan,
and Lansley 2015; Sylvester et al. 2014; Nagar et al. 2014;
Kamath et al. 2013) but it tends to be in the short-term win-
dow of a day or week. With reliable spatio-temporal models
of how the prevalence of geotagged tweets per block group
changes over longer periods of time and a better understand-
ing of the demographic characteristics towards which geotag
users are biased, we may be able to create models to provide
a rapid and high-resolution proxy for demographic changes
such as processes of gentrification, or urbanization, or urban
decays; that is, utilize the very biases of social media data to
make inferences about larger phenomena.
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