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Abstract

Online social networking services allow their users to post
content in the form of text, images or videos. The main mech-
anism driving content diffusion is the possibility for users
to re-share the content posted by their social connections,
which may then cascade across the system. A fundamental
problem when studying information cascades is the possibil-
ity to develop sound mathematical models, whose parame-
ters can be calibrated on empirical data, in order to predict
the future course of a cascade after a window of observation.
In this paper, we focus on Twitter and, in particular, on the
temporal patterns of retweet activity for an original tweet.
We model the system by Time-Dependent Hawkes process
(TiDeH), which properly takes into account the circadian na-
ture of the users and the aging of information. The input of
the prediction model are observed retweet times and struc-
tural information about the underlying social network. We
develop a procedure for parameter optimization and for pre-
dicting the future profiles of retweet activity at different time
resolutions. We validate our methodology on a large corpus
of Twitter data and demonstrate its systematic improvement
over existing approaches in all the time regimes.

1 Introduction

In recent years, online social networking sites (OSNs) have
become an increasingly central medium for information dif-
fusion. In OSNs, users can generate their own content, but
also discover information generated by their social contacts
and re-share it to their own contacts. Importantly, an infor-
mation can be re-shared multiple times, and the resulting
multiplicative mechanism may lead to cascades over a large
number of people, possibly even reaching regions of the so-
cial graph distant from the original post (Kwak et al. 2010).
Such cascades have been identified in a variety of OSNs, in-
cluding Facebook and Twitter (Dow, Adamic, and Friggeri
2013; Kumar, Mahdian, and McGlohon 2010).

A growing body of research has improved our under-
standing of information cascades, from the design of ac-
curate theoretical models for diffusion (Easley and Klein-
berg 2010; Goetz et al. 2009; Centola 2010), to the empiri-
cal study of the structural properties of cascades (Adar and
Adamic 2005; Gruhl et al. 2004; Salah-Brahim, Tabourier,
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and Le Grand 2012) and of their interplay with the struc-
ture of the underlying topology (Weng, Menczer, and Ahn
2014). From a practical point of view, a crucial question is
to predict the future evolution of an information cascade,
based on observations made during its early stage. The most
simple way to formulate this problem is to predict the final
size of the information cascade, that is the total number of
direct and indirect re-shares received by a given post. This
prediction problem has important applications for the good-
functioning of OSNs, for instance to rank content and im-
prove the presentation of information to often overflowed
users, and for media campaign management. In a machine
learning framework, this problem can be solved as a clas-
sification task, where an exhaustive set of features, includ-
ing semantic, structural and temporal information, are fed
into standard classification methods (Petrovic, Osborne, and
Lavrenko 2011; Hong, Dan, and Davison 2011; Bao et al.
2013; Cheng et al. 2014). An alternative approach consists
in building realistic, yet simple and principled, models of
information diffusion, and fitting their parameters on em-
pirical data (Zaman et al. 2014; Gao, Ma, and Chen 2015;
Zhao et al. 2015). This modeling approach has the advantage
of improving our understanding of the mechanisms driving
diffusion, and of testing the predictive power of information
diffusion models.

Present work: In this paper, we extend the classical prob-
lem of cascade size prediction and aim at predicting how
the cascade size evolves in time. In practice, we focus on
Twitter and on the number of retweets of an original tweet,
but our method is general and can be applied to any type of
OSN. Our problem is the following: given a time series of
retweets during a window of observation, being able to pre-
dict the time evolution of the frequency at which retweets
will appear in the future, at different temporal resolutions.
We are thus interested in predicting not only a number, the
final size of the cascade, but a curve, how popularity will
evolve in time, after a window of observation. To do so,
we adopt a modeling perspective and see the time series
as a Time-Dependent Hawkes process, TiDeH, which gen-
eralizes a classical model for self-exciting point processes.
Hawkes process differ from memoryless Poisson processes
as the future rate of activity is boosted by the occurrence
of previous events (Hawkes 1971). They can themselves
be seen as generalizations of epidemiological models and
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branching processes (Newman 2010), where an additional
ingredient is incorporated, a memory kernel determining the
time between a cause, e.g. a tweet, and its effect, a retweet.
Hawkes processes have been adopted in a wide range of ap-
plications, including information diffusion in OSNs (Zhao et
al. 2015), where their multiplicative nature naturally trans-
lates the fact that a new re-share exposes new followers and
may thus provoke new re-shares in the future. Here, we ad-
ditionally make the Hawkes process time-dependent by al-
lowing the model parameter to vary daily.

Our methodology is set up as follows: for a tweet of in-
terest, we observe its retweet sequence {ti, di} up to time
t0 + T , where ti is the i-th retweeted time, di is the number
of followers of the i-th retweeting person, t0 is the posted
time of the original tweet, d0 is the number of followers of
the tweeting person, and T is the duration of the observa-
tion. We first fit the parameters of TiDeH based on time se-
ries of retweets and information on the number of followers.
We then predict retweet activity, defined as the number of
retweets in the k-th bin t ∈ [(k − 1)Δpred, kΔpred}, where
Δpred is the bin width that represents the time resolution of
the prediction (Fig. 1). Let us note here that our prediction
task generalizes the task of predicting the total number of
retweets, as the latter is recovered either for large values of
Δpred or by summing all of the future values of retweet ac-
tivity. The prediction of future events is performed by solv-
ing numerically a self-consistent integral equation of the
model during the prediction period. As we will see, TiDeH
presents a series of advantages over existing approaches, as
it significantly improves the accuracy of predictions and that
it provides a systematic, mathematically sound, framework
to predict temporal variations of re-shares in OSNs.

The rest of the paper is organized as follows: Section 2
surveys the related work. In Section 3, we describe the data-
set, describe TiDeH, and provide evidence for the circadian
dependence of the model parameter. We then devise an opti-
mization method for parameter estimation and test it on arti-
ficial data. In section 4, we present our procedure to predict
the future profiles of retweet activity and compare the accu-
racy of different versions of TiDeH. In section 5, we thor-
oughly evaluate our method on empirical data and compare
its performance with state-of-the-art approaches. In Section
6, we conclude and discuss future research directions.

2 Related work

The study of information cascades in OSNs is an active field
of research (Rogers 2010). Many papers have analyzed and
described the temporal and structural properties of empiri-
cal information cascades (Dow, Adamic, and Friggeri 2013;
Kumar, Mahdian, and McGlohon 2010). In parallel, theoret-
ical works have considered the design of theoretical mod-
els of cascade dynamics in networks (Easley and Klein-
berg 2010). Our work is at the interface between these ap-
proaches, as the prediction of the future course of a cascade
is performed through a properly calibrated information dif-
fusion model. The problem of cascade prediction is gener-
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Figure 1: Predicting retweet activity. A. Top: Retweet se-
quence. Black (Grey) bars represent the retweet (original
tweet) times. Bottom: Retweet activity. Retweet activity is
defined by the number of retweet in a time window. The du-
ration of the time bin Δ determines the temporal resolution
of the analysis. B. Prediction problem. We aim to predict
the future retweet activity from observed retweet times and
number of followers up to time t0 + T . In general, two dif-
ferent types of binning, Δobs and Δpred, can be used for
the estimation of model parameters and for the prediction of
future events.

ally defined to estimate the final size of a cascade, or equiva-
lently the total popularity of an original post. Broadly speak-
ing, two types of methods have been developed to solve this
problem. On the one hand, machine learning methods con-
sist in collecting an exhaustive list of potentially relevant
features for each cascade, including semantic content, meta-
information, structural and temporal features. Learning or
statistical methods are then applied in order to classify the
cascades and predict their future size. Following the semi-
nal observation that popularity on early days and later ones
are high log-linear correlated (Szabo and Huberman 2010),
more recent works focusing on Twitter include (Petrovic,
Osborne, and Lavrenko 2011), where learning techniques
are shown to achieve similar performance to humans, but
also (Yang and Counts 2010) showing that the number of
username mentions helps predicting the speed and shape of
retweet dynamics. In the case of re-shares on Facebook, let
us also mention (Cheng et al. 2014) where the authors ob-
serve that temporal and structural features of cascades are
key predictors for their growth. Known drawbacks of this
family of methods include a high sensitivity to the quality
of the features, the requirement of an extensive training, and
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thus a limited applicability in real-time online settings (Ban-
dari, Asur, and Huberman 2012).

A second type of predictive methods aims at calibrating
models of information diffusion on time series of events
during a window of observation, possibly by incorporat-
ing additional social network information. Two important
ingredients of the models are the instantaneous character
of events in OSNs, which are thus so-called “point pro-
cesses” in the mathematical literature, and the multiplica-
tive nature of the diffusion, as new events tend to trig-
ger new ones. For these reasons, several works have de-
veloped models based on self-exciting point processes and,
in particular, Hawkes processes. A major distinction be-
tween our model and existing ones (Zaman et al. 2014;
Yang and Zha 2013) is its time-dependence as we take into
account circadian rhythms of online popularity and aging
of information. Importantly, the infectiousness of the orig-
inal tweet naturally depends on its posting time, in agree-
ment with observations that it is an intuitive predictor for
popularity (Petrovic, Osborne, and Lavrenko 2011), and this
effect is also present for later retweets. Our model can be
seen as a time-dependent extension of SEISMIC (Zhao et al.
2015), as our model also incorporates a partial information
of the network structure, but with two additional differences.
First, our goal is to predict the time evolution of the number
of retweets in the future, and not simply the total number
of retweets. As we show below, the incorporation of circa-
dian patterns is particularly important to improve accuracy
in this context. Second, we develop a framework for predict-
ing future activity that is mathematically consistent with the
modeling. Our model is also related to the time-dependent
Poisson process model (Gao, Ma, and Chen 2015), which
we compare to TiDeH below, and to SpikeM (Matsubara et
al. 2012), which incorporates daily cycles and a finite popu-
lation ensuring an asymptotic decay of the propagation, but
differs from our approach by its deterministic and descrip-
tive character. These two models also have the drawback of
neglecting the effect of social network topology on infor-
mation cascade, despite its important impact in spreading
processes.

Beyond these works on information diffusion, it is im-
portant to emphasize here that Hawkes processes have been
applied in a variety of settings in order to describe and to pre-
dict univariate or multivariate data. Originally defined to de-
scribe earthquake dynamics (Hawkes 1971), where a power-
law memory kernel was first introduced (Ogata 1988), it was
for instance applied to predict where and when aftershocks
would occur (Helmstetter and Sornette 2003). In finance,
and in particular high frequency finance (Bacry, Mastromat-
teo, and Muzy 2015), estimations of the model parameters
allow to quantify if price changes are dominated by endoge-
nous feedback processes, as opposed to exogenous news
(Filimonov and Sornette 2012). Similar applications have
also been developed to model popularity of online content,
in particular in Youtube (Crane and Sornette 2008), by esti-
mating the different types of response after endogenous and
exogenous bursts of activity. In social dynamics, (Masuda
et al. 2013) showed that the model can help reproduce em-
pirical features observed in conversation event sequences,

and (Mohler et al. 2011) applied it in order to predict crim-
inal events. In scientometrics, citation dynamics have been
also modeled by modified Hawkes models (Golosovsky and
Solomon 2012), and future citations of a given paper pre-
dicted by reinforced Poisson process (Shen et al. 2014). Fi-
nally, let us also note that Hawkes processes have also trig-
gered theoretical research associated to the non-Markovian
nature of their dynamics, and its impact on spreading times
(Delvenne, Lambiotte, and Rocha 2015).

3 Modeling retweet activity via

time-dependent Hawkes Process

3.1 Data sets

We analyzed 166,076 tweets on Twitter from October
7 to November 7, 2011, which was used in a previous
study (Zhao et al. 2015) and available in http://snap.stanford.
edu/seismic/. For each tweet, the dataset includes tweet ID,
posting time, time of retweets, and the number of followers
of users for the original tweet and later retweets. The retweet
times are recorded up to 7 days (168 hours) from the original
post for each tweet. Note that the data contains some mini-
mal information about the network structure (the number of
followers), as it is easily available through the Twitter API,
but the presence of connections between users in the Twit-
ter network is not known. We focus on a subset of popular
tweets (738 tweets) that have at least 2,000 retweets in order
to calibrate our model and to evaluate the performance of
our predictions.

3.2 TiDeH: Time-dependent Hawkes process

We develop a Time-Dependent Hawkes process (TiDeH) for
predicting retweet activity, and extending the classical sta-
tionary Hawkes process (Hawkes 1971; Zhao et al. 2015)
(Fig. 2). The probability for getting a retweet in a small time
interval [t, t+Δt] is described as

Prob (Getting a retweet in [t, t+Δt]) = λ(t)Δt, (1)

where the time-dependent rate depends on previous events
as

λ(t) = p(t)
∑
i:ti<t

diφ(t− ti), (2)

and where p(t) is the infectious rate, ti is the time of i-th
retweet. Following (Zhao et al. 2015), we also incorporate
the number di of followers of the i-th retweeting person. By
doing so, the model essentially generates a branching pro-
cess for the diffusion, and gives more importance to highly
connected nodes. This step is akin to tree-like and hetero-
geneous mean-field approximations popular to simplify the
theoretical study of epidemic spreading on networks (New-
man 2010). The memory kernel φ(s) is a probability distri-
bution for the reaction time of a follower, that is the time
interval between a tweet by the followee and its retweet by
the follower. This distribution has been shown to be heavily
tailed in a variety of social networks (Vázquez et al. 2006;
Crane and Sornette 2008), and it is fitted to the empirical

193



data by the function

φ(s) =

⎧⎨
⎩
0 (s < 0)

c0 (0 ≤ s ≤ s0)

c0(s/s0)
−(1+θ) (Otherwise)

, (3)

The parameters were set to c0 = 6.49 × 10−4 (/seconds),
s0 = 300 seconds, and θ = 0.242 (Zhao et al. 2015). As we
show in the following section, p(t) is observed to decrease
to zero for sufficiently long times, which ensures that the
predicted number of retweets does not diverge.
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Figure 2: Time-dependent Hawkes process. A. Simulated
retweet activity. The original tweet (time 0) and retweet
times are represented as a bar. B. Infectious rate p(t) (1st
term of Eq. 2). C. Memory Effect

∑
i diφ(t− ti) (2nd term

of Eq. 2). D. Instantaneous probability of a retweet λ(t), as
obtained by the product of B and C.

3.3 Modeling the infectious rate of a tweet

.

Estimating the instantaneous infectious rate. The infec-
tious rate p(t) is estimated by using moving time windows.
Assuming that the infectious rate is constant in a small time
window t ∈ [tst, ten], p(t) is calculated by the maximum
likelihood method,

p̂t =
δR∑

i ni{Φ(ten − ti)− Φ(ti − tst)} , (4)

where δR is the number of retweets in the time window and
Φ(t) is the integral of the memory kernel, Φ(t) =

∫ t

0
φ(s)ds.

Note that alternative methods could be applied, without the
need for moving time windows, for instance by using the
empirical Bayes method (Koyama and Shinomoto 2005).
However, our choice is motivated by its simplicity and the
window size (Δobs = ten − tst) is set to 4 hours. Examples
of the estimated infectious rate from a retweet sequence are
shown in Figure 3.
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Figure 3: Estimated infectious rate from two retweet se-
quences. Two types of dynamics are observed, i.e., a decay
(A) and a decay with circadian oscillations (B). Black lines
are the rates estimated by the moving time window and red
lines indicate the fit by the proposed model.

Modeling the infectious rate of retweets. Infectious rates
p(t) from a retweet sequence (Fig. 3) clearly show two prop-
erties, a circadian cycles and a slow decay. The decay is
expected due to the inevitable aging of information, whose
life-cycle is known to be short in microblogging systems,
but also to the decreasing number of potentially interested
followers, as the cascade progresses. The oscillations are
expected for cascades that remain geographically localized,
within a limited number of time zones, such that daily cycles
of human activity naturally translate into cycles of retweet
activity. Based on this observation, we propose a minimal
model for the time dependence of the infectious rate

p(t) = p0

{
1− r0 sin

(
2π

Tm
(t+ φ0)

)}
e−(t−t0)/τm (5)

where, as before, t0 is the time of the original tweet. The
period of oscillation is set to Tm = 1 day. The parameters,
p0, r0, φ0, τm correspond to the intensity, the relative ampli-
tude of the oscillation, its phase, and the characteristic time
of popularity decay respectively. These 4 parameters are fit-
ted by minimizing the least square error

Ep =
M∑
k=1

{p̂k − p((k + 0.5)Δobs)}2, (6)
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where M = T/Δobs is the number of bins, and p̂k is the
estimate of the infectious rate in a time bin t ∈ [kΔobs, (k+
1)Δobs]. The Levenberg−Marquardt algorithm is then used
to minimize the error, and the parameter range of r and τm
is restricted, i.e., −1 < r < 1 and 0.5 < τm < 20 days.

Validation of the fitting procedure on synthetic data.
We validate the fitting procedure for (p0, r0, φ0, τm) by an-
alyzing synthetic data generated by TiDeH (1,2) with the
time-dependent infectious rate (5). The number of followers
di was obtained from a retweet sequence of the empirical
data. Figure 4 shows that the fitting procedure, when applied
to one retweet sequence, can reconstruct the unobservable
infectious rate from the simulated sequence. We evaluate the
accuracy of the parameter estimation by comparing its esti-
mates with the “ground-truth” values used to generate the
synthetic data. Table 1 summarizes the mean and standard
deviation of the estimates for 100 trials. The relative errors
are 0.0 %, 1.9 %, 9.6%, and 1.0 %, for p0, r0, φ0, and τm,
respectively, suggesting that the fitting procedure accurately
reconstructs the parameters for sufficiently long observation
period, here set to T = 2 days.

Table 1: Parameter estimation by the least square method
from simulated data (observation time T : 2 days ).

Parameter Estimate True
p0 0.001± 0.00009 0.001
r0 0.416± 0.069 0.424
φ0 0.113± 0.030 0.125
τm 2.02± 0.66 2.00

As a next step, we examine the dependence of the esti-
mation accuracy on the duration of the observation period.
Fig. 5 shows that accuracy deteriorates for short durations.
In particular, we cannot obtain reliable estimates for the
phase φ0 and the time constant τm if the observation time is
shorter than 24 hours. A possible reason for this lack of ac-
curacy is that there are too many parameters to be estimated
from limited data. To test this hypothesis, we consider the
situation when only the amplitude parameter p0 is to be fit-
ted, while the other parameters (r0, φ0, τm) are known. In
that case, p0 can be accurately estimated, even from a very
short observation window, T = 1 hour (Fig. 6).

4 Predicting future retweet activity via

TiDeH

We develop a procedure to predict the future retweet activity
of an original tweet based on TiDeH. It consists in two steps.
First, the infectious rate p(t) is calibrated. Second, the future
retweet rate λ(t) is calculated based on the infectious rate
and the observed retweet sequence {ti, di} (ti < T ), and
the future retweet activity is estimated.

4.1 Step 1: Fitting the infectious rate p(t)

We consider three ways to identify the infectious rate p(t)
from a retweet sequence. In a first approach, we assume that
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Figure 4: Estimating the infectious rate p(t) from synthetic
data. A. Activity of simulated data. The number of events
in two hours window is counted. B. Fitted infectious rate.
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the infectious rate is constant p(t) = p0 and this single pa-
rameter is estimated from the observed retweet sequence by
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Figure 6: Dependence of the accuracy of parameter estima-
tion on the observation time T : case when only p0 is un-
known.

the maximum likelihood method (4). In a second approach,
we consider the model (5) for the time-varying infectious
rate, and all the parameters (p0, r0, φ0, τm) are estimated
from the observed retweet sequence by using the fitting pro-
cedure developed in section 3.3. In a third approach, we
again adopt (5) for the time-varying infectious rate, but we
now optimize the shape parameters (r0, φ0, τm) by minimiz-
ing the prediction error (Sec. 4.3) on a training data set. We
used the simplex downhill method (Nelder and Mead 1965)
for the minimization. Then, the intensity p0 was estimated
from the retweet sequence of interest by using the fitting
procedure developed in section 3.3. This method with train-
ing is motivated by our observation that the prediction for p0
is accurate when the other 3 parameters are fixed, even for
short observation windows, and its performance was eval-
uated by using a 5-fold cross validation. From now on, we
call the models associated to the three different fitting proce-
dures standard Hawkes process, TiDeH without training and
TiDeH with training respectively.

4.2 Step 2: Evaluating the future retweet activity

The retweet activity Ak is defined as the number of retweets
in the k-th bin and it is determined from the retweet rate
λ(t) by (1). To calculate the retweet rate λ(t), we need to
know all the previous retweet times ti up to time t. Unfortu-
nately, we can observe the retweet times only up to time T .
To incorporate the impact of unobserved retweets after time
T , we consider the expectation of the retweet rate given the
R(T ) retweet times up to time T ,

λ̂(t) = E[λ(t)|t1, t2, · · · , tR(T )]. (7)

Taking the conditional expectation on Eq.(2), a self-
consistent equation can be derived as

λ̂(t) = f(t) + dpp(t)

∫ t

T

λ̂(t)φ(t− s)ds, (8)

where we assumed that the random variables for di and ti
are independent, and

f(t) = p(t)
∑

i:ti<T

diφ(t− ti). (9)

dp is the conditional expectation of di for i > R(T ),

dp = E[di|t1, t2, · · · , tR(T )], (10)

and it is estimated by the mean number of followers during
the observation window. The first term of (8) describes the
contribution of the observed retweets and the second term
describes that of the self-excitation induced during the pre-
diction period. Eq. (8) is known as a Volttera integral equa-
tion, and it can be numerically solved by evaluating the inte-
gral by the trapezoidal method (Press et al. 1996). Here, we
set the time step to 0.1 hour.

An alternative approach to evaluate the future retweet
rate λ(t) consists in performing Monte Carlo simulations
of TiDeH for a number of realizations, and in calculating
the average value of λ(t). We did not adopt this approach,
because it requires a high computational cost to generate
sufficiently large samples of the stochastic process. When
comparing the two approaches, we have found that at least
10,000 realizations of the Monte Carlo simulations are re-
quired to produce reasonable estimates for the retweet rate
λ(t) (Data not shown).

4.3 Effect of the infectious rate models on
prediction performance

Let us now examine how the choice of fitting procedure for
the infectious rate, described in subsection 4.1, impacts the
prediction performance. The quality of the prediction is eval-
uated by the mean and by the median of the absolute error.
The absolute error per hour is defined as

εA =
1

Tmax − T

∑
k

|Âk −Ak|, (11)

where Âk and Ak are the predicted and actual value of the
retweet activity in the k-th bin, and Tmax = 168 hour is the
end time of prediction period.

We first consider the effect of the observation time on pre-
diction performance (Fig. 7). TiDeH clearly outperforms the
standard Hawkes model for all values of T . For example,
the median error of TiDeH with training is 8.2 for T = 1
hour and 1.6 for T = 1 day, to be compared with 12.6
and 5.6 for the standard Hawkes process respectively. As ex-
pected, longer observation windows improve the accuracy of
the predictions. We also observe that training can improve
the prediction performance for short observation windows
(T < 24 hours), and that the model with training provides
accurate predictions, even for very short observation win-
dows, such as T = 1 hour. The model without training is
accurate for sufficiently large values of T , but it cannot be
applied for short observations because the quality of param-
eter fitting deteriorates, as we showed in Sec. 3.3. Finally,
we consider the effect of the time resolution Δpred, that is
the granularity of the time dependence, on prediction perfor-
mance (Fig. 7). TiDeH again performs significantly better
than the standard Hawkes model, and its error is roughly
independent of the time resolution. Overall, these results
show that TiDeH with training is the best predictive method
among the three methods, and it is thus selected for compar-
ison to state-of-the-art methods in the next section.

4.4 Summary of TideH with training

Our selected procedure to predict future retweet activity is
summarized in table 2. Given a desired value of temporal
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traning. The window size Δpred is set to 4 hours.
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Figure 8: Dependence of the error (A: Mean, B: Median)
on time resolution Δpred. Abbreviations of the prediction
methods are the same as in Fig. 7. The observation time T is
fixed to 6 hours.

resolution Δpred, we proceed as follows: First, we identify
the infectious rate of a tweet p(t) by fitting the proposed
oscillatory model. We recommend to optimize the shape pa-
rameters (r, φ0, τm) using a training data set, and then to es-
timate the intensity p0 for the target retweet sequence. Sec-
ond, we calculate the mean number of followers in the tar-
get sequence. Third, the time course of the future retweet
activity λ̂(t) is evaluated by solving numerically the self-
consistent equation for TiDeH (8). Finally, the retweet ac-
tivity in a bin Ak is calculated from the estimated retweet
rate, Ak =

∫ T+Δpredk

T+Δpred(k−1)
λ̂(s)ds. The computational cost

after parameter optimization is O(R(T )Tpred) + O(T 2
pred)

where R(T ) is, as before, the number of observed events,
and Tpred is the duration of the prediction period.

5 Comparison of prediction performance

with previous methods

5.1 Baseline methods for comparison

In this section, we describe four methods used as a base-
line to estimate the predictive performance of our method.
It should be noted that a direct comparison can not be per-
formed because previous methods were originally designed
for different prediction tasks: our work predicts the time

Table 2: Selected method for the prediction of future
retweet activity (TiDeH with training)

1. Identify the infectious rate p(t).
a) Optimize the shape parameters (r0, φ0, τm) by

minimizing the error for the training data.
b) Fit the amplitude p0 from the retweet sequence.

2. Calculate the average number of followers.

3. Evaluate future retweet rate λ̂(t) by solving
the integral equation (8).

4. Evaluate the mean number of retweet Ak.

Ak =
∫ T+kΔpred

T+(k−1)Δpred
λ̂(s)ds.

evolution of retweet activity, whereas previous works (Sz-
abo and Huberman 2010; Zhao et al. 2015) primarily fo-
cused on predicting the final number of retweets. For this
reason, we have modified three of the existing methods so
that they now predict the cumulative number of retweet up
to time t, R(t). The number of retweets in the k-th bin
(t ∈ [T +(k−1)Δpred, T +kΔpred]) can then be calculated
from the cumulative number of retweets by

Ak = R(T + kΔpred)−R (T + (k − 1)Δpred) .

The fourth method is only used to evaluate the accuracy of
TiDeH to predict the final number of retweets in the next
section.

1. Linear regression (LR) (Szabo and Huberman 2010).
The first method is a linear regression of the logarithm of
the popularity R(t) performed on a training set of ntr tweet
sequences

logR(t) = αt + logR(T ) + σtξt.

αt is obtained by minimizing the squared error

Et(αt) =

ntr∑
k=1

{logRk(t)− αt − logRk(T )}2 ,

and Rk(t) is the cumulative number of retweets for the k-
th tweet in the training data and ξt is a gaussian random
variable with zero mean and unit variance. The variance σt

is determined by the maximum likelihood estimator σ̂2
t =

Et(α̂t)/ntr, where α̂t and σ̂2
t are the fitted values of αt and

σ2
t respectively. The cumulative number of retweets R(t) is

predicted by the unbiased estimator

R̂(t) = R(T ) exp(α̂t + σ̂2
t /2).

2. Linear regression with degree (LR-N) (Zhao et al.
2015). The second method is an extension of the linear re-
gression that incorporates the effect of the number of follow-
ers on popularity

logR(t) = αt + β1
t logR(T ) + β2

t logD(T )

+β3
t log d0 + σtξt,
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where D(T ) =
∑

i:ti<T di is the cumulative number of
followers up to time T , d0 is the number of followers for
the original poster, and the parameters αt and β1,2,3

t are ob-
tained by minimizing the squared error

Et(αt, β
1
t , β

2
t , β

3
t ) =

ntr∑
k=1

(logRk(t)− αt

−β1
t logRk(T )− β2

t logDk(T )− β3
t log d0,k)

2.

The variance σt is then determined by the maximum like-
lihood estimator σ̂2

t = Et(α̂t, β̂
1
t , β̂

2
t , β̂

3
t )/ntr, where α̂t,

β̂1,2,3
t , and σ̂2

t are the fitted values of αt, β
1,2,3
t , and σ2

t ,
respectively. The cumulative number of retweet R(t) is pre-
dicted by the unbiased estimator

R̂(t) = R(T )β̂
1
t D(T )β̂

2
t d

β̂3
t

0 exp(α̂t + σ̂2
t /2).

3. Reinforced Poisson process (RPP) (Shen et al. 2014;
Gao, Ma, and Chen 2015). For the third model, we
adapted a recent method, which is based on a time-
dependent Poisson process, where the retweet rate λ(t) is
defined as

λ(t) = cfγ(t)rα(R),

where fγ(t) = t−γ describes the aging effect, rα(R) =

ε + 1−e−α(R+1)

1−e−α is a reinforcement mechanism associated
to the multiplicative nature of the spreading, and R is the
cumulative number of retweets at time t. The model param-
eters {c, γ, α} are determined by maximizing the likelihood
function (Gao, Ma, and Chen 2015). The log-likelihood
function is maximized by the gradient descent method, and
the iteration terminated when a convergence criterion is sat-
isfied, i.e., the relative change in the parameters is lower
than 10−4. The learning rate for the gradient method is set
to 10−5 and the parameters are optimized in the range sug-
gested in (Gao, Ma, and Chen 2015), that is 1.5 ≤ γ ≤ 3.5
and 0.001 ≤ α ≤ 0.1.

After fitting the parameters, the cumulative number of
retweets is evaluated from the expectation of the Poisson
process,

dR

dt
= λ(t),

which can be solved exactly

R(t) = (log(1 + ex)− x− log ε̃− α)/α,

with

x(t) =
ε̃cα(T 1−γ − t1−γ)

(1− γ)(1− e−α)
− (R(T ) + 1)α

− log(ε̃− e−α(R(T )+1)),

and ε̃ = 1 + ε(1 − e−α). This expression is then used to
predict the cumulative number of retweets.

4. SEISMIC (Zhao et al. 2015). This fourth method has
recently been proposed for predicting the final number of
retweets (Zhao et al. 2015)

R̂(∞) = R(T ) + αT
p̂(T )ΔD(T )

1− βT p̂(T )
,

where p̂(T ) is the infectious rate at the end of observation
window T and ΔD(T ) =

∑
i:ti<T di(1 − Φ(T − ti)).

The infectious rate p̂(T ) is estimated by a kernel estima-
tor, and their hyper-parameters are αT = 0.326, βT =
20 (Zhao et al. 2015). Note that while the information diffu-
sion model behind SEISMIC is a Hawkes process related to
the one of TiDeH, its predictor is based on a Galton-Watson
type branching process, whose parameters are fitted by the
Hawkes process. In contrast, TiDeH also uses Hawkes pro-
cess for the prediction of the future retweet activity. As it is
designed, SEISMIC can only be applied to predict the final
number of retweets, not for the future time course of retweet
activity.

5.2 Prediction results

We now compare the prediction accuracy of the proposed
method (TiDeH) with that of the three methods LR, LR-N
and RPP. A comparison with SEISMIC is also performed
when possible.

First, we have examined the dependency of the prediction
performance on the observation time T . To do so, we have
performed a 5-fold cross validation test, except for RPP as it
does not require training for the prediction. As shown in Fig-
ure 9, TiDeH performs best in all the regimes, from short (1
hour) to long (48 hours) observation times, followed in or-
der of accuracy by RPP, LR-N, and LR. In general, methods
based on point processes (TiDeH and RPP) perform signif-
icantly better those based on linear regressions (LR-N and
LR). We also observe that the errors increase when the ob-
servation time is decreased, and that this increase in error is
minimal for TiDeH. Figure 10 is a magnified view of Fig-
ure 9 clearly showing that TiDeH outperforms RPP, with a
systematic improvement of accuracy of around 20 %. On av-
erage, the error of TiDeH is 17.9 % (mean error) and 21.7
% (median error) smaller than that of RPP. Let us also note
that LR-N performs much better than LR for short obser-
vation times, confirming that network information, here the
number of followers, is a key ingredient for prediction im-
provement.

As a second step, let us consider the impact of the win-
dow size Δpred on prediction performance. Figure 11 shows
a similar pattern as above, with TiDeH the best predictor
over all time scales, from precise (1 hour) to coarse (1 day)
predictions, followed by RPP, LR-N, and LR. In general, the
dependency of the error on the window size is weak, and the
error slightly decreases when the window size is increased,
possibly because the observation time is not sufficient to
learn the retweets dynamics with a greater accuracy and/or
the retweet dynamics has characteristic times larger than 1
day.

Finally, we estimate the prediction performance of TiDeH
for a standard objective function, the final number of
retweets. In addition to the three baseline method, we also
compare its performance with the fourth baseline, SEISMIC.
Figure 12 shows that TiDeH provides again the most accu-
rate predictions for the final number of retweets. In terms of
the mean and median error, we observe an improvement of
around 30 % over the two runners up (SEISMIC and RPP).
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Figure 9: Comparison of prediction performance: Depen-
dence of the error on observation time T . LR: Linear regres-
sion, LR-N: Linear regression with the number of follow-
ers, RPP: Reinforcement poisson process, TiDeH: proposed
model. We predicted the retweet activity up to Tmax = 168
hours from the original post with the window size Δpred = 4
hours.
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Figure 10: Magnified view of Fig. 9. Prediction performance
of the best two methods (RPP and TiDeH) were shown.
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Figure 11: Comparison of prediction performance: Depen-
dence of the error on time resolution Δpred. The abbrevia-
tions of the methods are the same as Fig. 9. The observation
time T is fixed to 6 hours.
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Figure 12: Comparison of prediction performance for the fi-
nal number of retweets (T = 6 hours, Tmax = 168 hours).
The abbreviations of the methods are the same as Fig. 9.

6 Conclusion and Future work

In this work, we have introduced TiDeH, a framework based
on self-exciting point processes to predict the future time
evolution of the popularity of a tweet. The method is based
on the calibration of a model for information diffusion in so-
cial networks, which incorporates network information, cir-
cadian rhythms of online activity and aging of information.
By doing so, the model provides a description based on ab-
solute times, that is the time of the day, and relative time,
that is the time since the previous triggering event, with a
yet small number of parameters. As compared to previous
models, our approach also has the advantage of mathemat-
ical consistency, as the modeling and the prediction tasks
are performed in the same framework, and leads to a sys-
tematic improvement of accuracy in a wide range of time
scales. Interestingly, our model also outperforms state-of-
the-art methods to estimate the final number of retweets of
a tweet, which emphasizes the importance of an appropriate
modeling to solve prediction task.

Here, we have focused on the popular tweets that have
more than 2,000 retweets, but the majority of informa-
tion cascades on social networks are significantly shorter.
It would be interesting to develop a parameter optimization
technique for shorter data to overcome the limitation. Poten-
tial extensions of our work include a more detailed circadian
activity by enriching the proposed model with higher har-
monics and incorporating additional network information,
such as correlations between number of followees and num-
ber of followers.
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