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Abstract

The social connections people form online affect the quality
of information they receive and their online experience. Al-
though a host of socioeconomic and cognitive factors were
implicated in the formation of offline social ties, few of
them have been empirically validated, particularly in an on-
line setting. In this study, we analyze a large corpus of geo-
referenced messages, or tweets, posted by social media users
from a major US metropolitan area. We linked these tweets
to US Census data through their locations. This allowed us
to measure emotions expressed in the tweets posted from an
area, the structure of social connections, and also use that
area’s socioeconomic characteristics in analysis. We find that
at an aggregate level, places where social media users en-
gage more deeply with less diverse social contacts are those
where they express more negative emotions, like sadness and
anger. Demographics also has an impact: these places have
residents with lower household income and education levels.
Conversely, places where people engage less frequently but
with diverse contacts have happier, more positive messages
posted from them and also have better educated, younger,
more affluent residents. Results suggest that cognitive factors
and offline characteristics affect the quality of online interac-
tions. Our work highlights the value of linking social media
data to traditional data sources, such as US Census, to drive
novel analysis of online behavior.

Introduction

Humans have evolved large brains, in part to handle the
cognitive demands of social relationships (Dunbar 2003).
The social structures resulting from these relationships con-
fer numerous fitness advantages. Scholars distinguish be-
tween two types of social relationships: those represent-
ing strong and weak ties. Strong ties are characterized by
high frequency of interaction and emotional intimacy that
can be found in relationships between family members or
close friends. People connected by strong ties share mu-
tual friends (Granovetter 1973), forming cohesive social
bonds that are essential for providing emotional and mate-
rial support (Putnam 2000; Rimé 2009) and creating resilient
communities (Sampson, Raudenbush, and Earls 1997). In
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contrast, weak ties represent more casual social relation-
ships, characterized by less frequent, less intense interac-
tions, such as those occurring between acquaintances. By
bridging otherwise unconnected communities, weak ties ex-
pose individuals to novel and diverse information that leads
to new job prospects (Granovetter 1983) and career opportu-
nities (Burt 1995; 2004). Online social relationships provide
similar benefits to those of the offline relationships, includ-
ing emotional support and exposure to novel and diverse in-
formation (Aral and Van Alstyne 2011; Bakshy et al. 2012;
Kang and Lerman 2015).

How and why do people form different social ties,
whether online or offline? Of the few studies that addressed
this question, Shea et al. (Shea et al. 2015) examined the re-
lationship between emotions and cognitive social structures,
i.e., the mental representations individuals form of their so-
cial contacts (Krackhardt 1987). In a laboratory study, they
demonstrated that subjects experiencing positive affect, e.g.,
emotions such as happiness, were able to recall a larger
number of more diverse and sparsely connected social con-
tacts than those experiencing negative affect, e.g., sadness.
In other words, they found that positive affect was more
closely associated with weak ties and negative affect with
strong ties in cognitive social structures. This is consistent
with findings that negative emotional experiences are shared
more frequently through strong ties (Rimé 2009), not only
to seek support but also as a means of strengthening the
tie (Niedenthal and Brauer 2012). In addition to psycho-
logical factors, social structures also depend on the partic-
ipants’ socioeconomic and demographic characteristics. A
study, which reconstructed a national-scale social network
from the phone records of people living in the United King-
dom, found that people living in more prosperous regions
formed more diverse social networks, linking them to oth-
ers living in distinct communities (Eagle, Macy, and Clax-
ton 2010). On the other hand, people living in less prosper-
ous communities formed less diverse, more cohesive social
structures.

The present paper examines how psychological and de-
mographic factors affect the structure of online social in-
teractions. We restrict our attention to interactions on the
Twitter microblogging platform. To study these interactions,
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we collected a large body of geo-referenced text messages,
known as tweets, from a large US metropolitan area. Further,
we linked these tweets to US Census tracts through their lo-
cations. Census tracts are small regions, on a scale of city
blocks, that are relatively homogeneous with respect to pop-
ulation characteristics, economic status, and living condi-
tions. Some of the tweets also contained explicit references
to other users through the ‘@’ mention convention, which
has been widely adopted on Twitter for conversations. We
used mentions to measure the strength of social ties of peo-
ple tweeting from each tract. Using these data we studied
(at tract level) the relationship between social ties, the so-
cioeoconomic characteristics of the tract, and the emotions
expressed by people tweeting from that tract. In addition,
people tweeting from one tract often tweeted from other
tracts. Since geography is a strong organizing principle, for
both offline (Travers and Milgram 1969; Barthlemy 2011)
and online (Quercia et al. 2012; Liben-Nowell et al. 2005;
Backstrom, Sun, and Marlow 2010) social relationships, we
measured the spatial diversity of social relationships, and
studied its dependence on socioeconomic, demographic, and
psychological factors.

Our work complements previous studies of offline social
networks and demonstrates a connection between the struc-
ture of online interactions in urban places and their socioe-
conomic characteristics. More importantly, it links the struc-
ture of online interactions to positive affect. People who ex-
press happier emotions interact with a more diverse set so-
cial contacts, which puts them in a position to access, and
potentially take advantage of, novel information. As our so-
cial interactions increasingly move online, understanding,
and being able to unobtrusively monitor, online social struc-
tures at a macroscopic level is important to ensuring equal
access to the benefits of social relationships.

In the rest of the paper, we first describe data collection
and methods used to measure emotion and social structure.
Then, we present results of a statistical study of social ties
and their relationships to emotions and demographic fac-
tors. The related works are addressed after this. Although
many important caveats exist about generalizing results of
the study, especially to offline social interactions, our work
highlights the value of linking social media data to tradi-
tional data sources, such as US Census, to drive novel anal-
ysis of online behavior and online social structures.

Related Work
Eagle et al. (Eagle, Macy, and Claxton 2010) explored

the link between socioeconomic factors and network struc-
ture using anonymized phone call records to reconstruct the
national-level network of people living in the UK. Measures
of socioeconomic development were constructed from the
UK government’s Index of Multiple Deprivation (IMD), a
composite measure of prosperity based on income, employ-
ment, education, health, crime, housing of different regions
within the country. They found that people living in more
prosperous regions formed more diverse social networks,
linking them to others living in distinct communities. On
the other hand, people living in less prosperous communi-
ties formed less diverse, more cohesive social structures.

Quercia et al. (Quercia et al. 2012) found that sentiment
expressed in tweets posted around 78 census areas of Lon-
don correlated highly with community socioeconomic well
being, as measured by the Index of Multiple Deprivation
(i.e., qualitative study of deprived areas in the UK local
councils). In another study (Quercia, Capra, and Crowcroft
2012) they found that happy places tend to interact with
other happy places, although other indicators such as de-
mographic data and human mobility were not used in their
research (Cheng et al. 2011).

Other researcher used demographic factors and associated
them to sentiment analysis to measure happiness in different
places. For instance, Mitchell et al. (Mitchell et al. 2013)
generated taxonomies of US states and cities based on their
similarities in word use and estimates the happiness levels of
these states and cities. Then, the authors correlated highly-
resolved demographic characteristics with happiness levels
and connected word choice and message length with urban
characteristics such as education levels and obesity rates,
showing that social media may potentially be used to esti-
mate real-time levels and changes in population-scale mea-
sures, such as obesity rates.

Psychological and cognitive states affect the types of
social connections people form and their ability to recall
them (Brashears 2013). When people experience positive
emotions, or affect, they broaden their cognitive scope,
widening the array of thoughts and actions that come to
mind (Fredrickson 2001). In contrast, experiencing negative
emotions narrow attention to the basic actions necessary for
survival. Shea et al. (Shea et al. 2015) tested these theories in
a laboratory, examining the relationship between emotions
and the structure of networks people were able to recall.
They found that subjects experiencing positive affect were
able to recall a larger number of more diverse and sparsely
connected social contacts than those experiencing negative
emotions. The study did not resolve the question of how
many of the contacts people were able to recall that they
proceeded to actively engage.

A number of innovative research works attempted to bet-
ter understand human emotion and mobility. Some of these
works focuses on geo-tagged location data extracted from
Foursquare and Twitter. Researchers reported (Cramer, Rost,
and Holmquist 2011; Noulas et al. 2011) that Foursquare
users usually check-in at venues they perceived as more in-
teresting and express actions similar to other social media,
such as Facebook and Twitter. Foursquare check-ins are,
in many cases, biased: while some users provide important
feedback by checking-in at venues and share their engage-
ment, others subvert the rules by deliberately creating unof-
ficial duplicate and nonexistent venues (Duffy 2011).

Methods

Data

Los Angeles (LA) County is the most populous county in
the United States, with almost 10 million residents. It is
extremely diverse both demographically and economically,
making it an attractive subject for research. We collected a
large body of tweets from LA County over the course of
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4 months, starting in July 2014. Our data collection strat-
egy was as follows. First, we used Twitter’s location search
API to collect tweets from an area that included Los Ange-
les County. We then used Twitter4J API to collect all (time-
line) tweets from users who tweeted from within this area
during this time period. A portion of these tweets were geo-
referenced, i.e. they had geographic coordinates attached to
them. In all, we collected 6M geo-tagged tweets made by
340K distinct users.

We localized geo-tagged tweets to tracts from the 2012
US Census.1 A tract is a geographic region that is defined
for the purpose of taking a census of a population, contain-
ing about 4,000 residents on average, and is designed to be
relatively homogeneous with respect to demographic char-
acteristics of that population. We included only Los Ange-
les County tracts in the analysis. We used data from the US
Census to obtain demographic and socioeconomic charac-
teristics of a tract, including the mean household income,
median age of residents, percentage of residents with a bach-
elor’s degree or above, as well as racial and ethnic composi-
tion of the tract.

Emotion Analysis

To measure emotions, we apply sentiment analysis (Pang
and Lee 2008), i.e. methods that process text to quantify
subjective states of the author of the text. Two recent inde-
pendent benchmark studies evaluate a wide variety of sen-
timent analysis tools in various social media (Gonçalves et
al. 2013) and Twitter datasets (Abbasi, Hassan, and Dhar
2014). Across social media, one of the best performing tools
is SentiStrength (Thelwall, Buckley, and Paltoglou 2012),
which also was shown to be the best unsupervised tool for
tweets in various contexts (Abbasi, Hassan, and Dhar 2014).

SentiStrength quantifies emotions expressed in short in-
formal text by matching terms from a lexicon and apply-
ing intensifiers, negations, misspellings, idioms, and emoti-
cons. We use the standard English version of SentiStrength2

to each tweet in our dataset, quantifying positive sentiment
P ∈ [+1,+5] and negative sentiment N ∈ [−1,−5],
consistently with the Positive and Negative Affect Sched-
ule (PANAS) (Watson, Clark, and Tellegen 2013). Sen-
tiStrength has been shown to perform very closely to hu-
man raters in validity tests (Thelwall, Buckley, and Pal-
toglou 2012) and has been applied to measure emotions in
product reviews (Garcia and Schweitzer 2011), online chat-
rooms (Garas et al. 2012), Yahoo answers (Kucuktunc et al.
2012), and Youtube comments (Garcia et al. 2012). In addi-
tion, SentiStrength allows our approach to be applied in the
future to other languages, like Spanish (Alvarez et al. 2015),
and to include contextual factors (Thelwall et al. 2013), like
sarcasm (Rajadesingan, Zafarani, and Liu 2015).

Beyond positivity and negativity, meanings expressed
through text can be captured through the application of
the semantic differential (Osgood, Suci, and Tannenbaum
1964), a dimensional approach that quantifies emotional

1American Fact Finder (http://factfinder.census.gov/)
2http://sentistrength.wlv.ac.uk/

meaning in terms of valence, arousal, and dominance (Rus-
sell and Mehrabian 1977). The dimension of valence quanti-
fies the level of pleasure or evaluation expressed by a word,
arousal measures the level of activity induced by the emo-
tions associated with a word, and dominance quantifies the
level of subjective power or potency experienced in rela-
tion to an emotional word. Research in psychology sug-
gests that a multidimensional approach is necessary to cap-
ture the variance of emotional experience (Fontaine et al.
2007), motivating our three-dimensional measurement be-
yond simple polarity approximations. The state of the art in
the quantification of these three dimensions is the lexicon of
Warriner, Kuperman, and Brysbaert (WKB) (Warriner, Ku-
perman, and Brysbaert 2013). The WKB lexicon includes
scores in the three dimensions for more than 13,000 English
lemmas. We quantify these three dimensions in a tweet by
first lemmatizing the words in the tweet, to then match the
lexicon and compute mean values of the three dimensions
as in (González-Bailón, Banchs, and Kaltenbrunner 2012).
The large size of this lexicon allows us to match terms in in
82.39% of the tweets in our dataset, which we aggregate to
produce multidimensional measures of emotions.

The Figure 1 presents word clouds of tweets from a tract
with one of the highest average valence and one from a tract
with a lower average valence. The words themselves are col-
ored by their valence, with red corresponding to high and
blue to low valence words. Despite seemingly small differ-
ences in average tract valence, the words depicted in the
word clouds are remarkably different in the emotions they
convey. The “happy” tract has words such as ‘beach’, ‘love’,
‘family’, ‘beautiful’, while the “sad” tract contains many
profanities (though it also contains some happy words).

Social Tie Analysis

Twitter users address others using the ‘@’ mention con-
vention. We use the mentions as evidence of social ties, al-
though sometimes users address public figures and celebri-
ties also using this convention. We use mention frequency
along a tie as a proxy of tie strength, drawing upon mul-
tiple studies that used frequency of interactions as a mea-
sure of tie strength (Granovetter 1983; Onnela et al. 2007;
Quercia et al. 2012). In contrast to other measures, such as
clustering coefficient, it does not require knowledge of full
network structure (which we do not observe).

Tie strength For each tract, we create a mention graph
with users as nodes and an edge from user A to user B if
A mentions B in her tweets. Using this graph, the average
social tie strength per tract is defined as

Si =

∑ki

j=1 wj

ki
(1)

where wj is the weight of the jth edge (i.e., the number of
times user A mentioned user B), and ki is the total number
of distinct users mentioned in tract i.

We do not have complete knowledge of network struc-
ture, since we only observe the tweets of users who geo-
referenced their tweets, and not necessarily the tweets of
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Figure 1: Word cloud of tweets from two tracts with average valence of (a) 6.122 and (b) 5.418. Words are colored by their
valence, with red corresponding to high valence words, and blue to low valence words.

(a) (b)

Figure 2: Mentions graphs of two different tracts showing (a)
strong ties (average tie strength Si = 7.33) and (b) weak ties
(Si = 1.08). Tweeting users are represented as white nodes,
while mentioned users are red nodes. Users who tweet and
are mentioned are pink in color. The width of an edge repre-
sents the number of mentions.

mentioned users. However, even in the absence of complete
information about interactions, average tie strength captures
the amount of social cohesion and diversity (Gonçalves,
Perra, and Vespignani 2011). Figure 2 illustrates mention
graphs from two tracts with very different tie strength val-
ues. High tie strength (Fig. 2(a)) is associated with a high de-
gree of interaction and more clustering (Granovetter 1973).
In contrast, low tie strength is associated with a sparse, more
diverse network with few interconnections (Fig 2(b)).

Spatial diversity Geography and distance are impor-
tant organizing principles of social interactions, both of-
fline (Travers and Milgram 1969; Barthlemy 2011) and on-

line (Quercia et al. 2012; Liben-Nowell et al. 2005; Back-
strom, Sun, and Marlow 2010). While most social interac-
tions are short-range, long-distance interactions serve as ev-
idence of social diversity (Eagle, Macy, and Claxton 2010).
In this paper, we use the movement of people across tracts
as evidence of the spatial diversity of their social structures.
Following Eagle et al. (Eagle, Macy, and Claxton 2010), we
measure spatial diversity of places from which people tweet-
ing from a given tract also tweet from, using Shannon’s En-
tropy ratio, as

Di =
−∑ni

j=1 pij log(pij)

log ni
(2)

where ni is the number of tracts from which users who
tweeted from tract i also tweeted from, and pij is the pro-
portion of tweets posted by these users from tract j such
that

pij =
Tij∑ni

j=1 Tij
(3)

where Tij is the number of tweets that have been posted in
tract j by the users who have tweeted from both tract i and
j.

Thus, spatial diversity is a ratio that compares the empir-
ical entropy of data with its expected value in the uniformly
distributed case. As a consequence, a high spatial diversity
value for a tract suggests that people tweeting from that tract
split their tweets evenly among all the tracts they are tweet-
ing from. In contrast, a low value implies that people tweet-
ing from that tract concentrate their tweets in few tracts.

Results

Happier places tend to attract more Twitter users: the cor-
relation between the mean valence of tweets posted from a
tract and the number of people tweeting from the tract is
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0.30 (p < 0.001). Beyond this correlation, we observe sys-
tematic trends between emotions expressed in tweets posted
from a tract, and the structure of social interactions of people
tweeting from that tract.

A number of variables seem to contribute to shaping the
structure of online social interactions within an urban area.
Amongst these possibilities are affect and demographic fac-
tors. The affect variables are: valence (V ), arousal (A), dom-
inance (D), positive (P ), negative (N ) sentiment. The de-
mographic variables are: mean income (inc) of population
within a tract, education (edu) as measured by the percent-
age of population with bachelor’s degree of above, percent-
age of employed residents (emp), their median age (age),
and the fraction of Hispanic (hsp), Asian (asi), African
American (blk), populations white (wht) populations within
a tract. The correlations of these variables with tie strength
(tie) and spatial diversity (spa) are described in Tables 1 and
2.

Although not presented in these Tables, another interest-
ing relation is between valence and dominance: they are
highly and significantly correlated (r = 0.88, p < 0.001).
Bearing these relations in mind, we test linear regression
models for tie strength (tie ∼ V×D+A, tie ∼ P+N , tie ∼
inc+edu+age+emp and tie ∼ hsp+wht+blk+asi) and
spatial diversity (spa ∼ V ×D +A, spa ∼ P +N , spa ∼
inc+ edu+age+ emp and spa ∼ hsp+wht+ blk+asi).

Regression coefficients for each model are computed
on normalized data and summarized in Figure 3. For tie
strength (top row), some interesting results are depicted. In
(a), while arousal and valence:dominance are mainly neu-
tral, dominance and valence have negative dependencies
with strength of ties: i.e., the lower the valence, the stronger
the tie strength. Similarly, in (b), negative and positive sen-
timent represent negative dependencies with tie strength.
Hence, larger positive sentiment (P ) values are associated
with weaker social ties. Stronger ties are associated with
smaller values of N , i.e., more negative sentiment. In (c),
education has a negative dependence, while others are ba-
sically neutral and, in (d), Hispanic ethnicity has a positive
dependence to tie strength, with others basically neutral.

Regarding spatial diversity (bottom row in Fig. 3), results
are more diverse. In (e), dominance and valence:dominance
are mainly neutral, whereas arousal presents negative de-
pendence and valence presents positive dependence, i.e. the
higher the valence, the broader the spatial diversity. In (f),
negative and positive sentiment have positive dependencies
with respect to spatial diversity. In (g), age is neutral, educa-
tion and employment percentage present positive and mean
income negative dependencies. Finally, in (h), besides His-
panic presenting negative dependence, all others are mainly
neutral.

Overall, these results show that besides the correlations
between the chosen variables, some of them contribute more
to explain the tie strength and social diversity while others
have minor contributions. More details regarding affect, de-
mographics and social interactions results are presented in
the following.

Emotion and Social Ties

Table 1 reports correlations between affect and the struc-
ture of social interactions measured from tweets. We quan-
tify affect using mean valence, arousal and dominance of
tweets posted from a tract (measured by WKB lexicon),
and mean positive and negative sentiment, (measured by
SentiStrength). The social variables are average social tie
strength per tract and spatial diversity, a measure of inter-
tract mobility. Most of these correlations are statistically sig-
nificant.

Variables Tie Strength Spatial Diversity

Valence -0.36∗∗∗ 0.32∗∗∗
Arousal 0.14∗∗∗ -0.20∗∗∗
Dominance -0.31∗∗∗ 0.31∗∗∗

Positive Sent. -0.18∗∗∗ 0.23∗∗∗
Negative Sent. -0.24∗∗∗ 0.28∗∗∗

*p¡0.05, **p¡0.01, ***p¡0.001

Table 1: Correlation coefficient of per-tract strength of ties
measure and mean value of affect.

The average value of valence across all tracts is 5.78,
which corresponds to slightly positive affect with respect to
the neutral point of 5.0, in line with emotional expression in
other media (Garcia, Garas, and Schweitzer 2012). This con-
trasts with the negative correlation between valence and tie
strength. Consequently, tracts with stronger social ties are
associated with less positive — sadder, angrier — tweets
than tracts with weaker social ties, which are associated with
more positive — happier — tweets. This can be seen clearly
in Figure 4, which shows the values of mean valence for
tracts after they were ordered by average social tie strength
and divided into three equal-sized bins, or tertiles. The bot-
tom third of tracts, i.e., those with weakest social ties, have
the highest values of valence (mean 5.82). In contrast, the
top tertile composed of tracts with strongest social ties has
the lowest values of valence (mean 5.74). These differences
are statistically significant (p < 0.01).

For a different perspective on this relationship, we order
tracts by the average valence, arousal, and dominance of
their tweets and group them into three equal-size bins. Fig-
ure 5 reports the average tract tie strength across these ter-
tiles. Tracts from which people post lower valence (sadder)
tweets, on average, are associated with significantly stronger
social ties (p < 0.01) than tracts with higher valence (hap-
pier) tweets (Figure 5(a)). Tracts from which users post
messages expressing higher arousal tend to have slightly
stronger ties (Figure 5(b)) although only the difference be-
tween mean tie strength of the mid and top tertiles are signif-
icant (p < 0.05). In contrast, tracts associated with message
expressing higher dominance, Figure 5(b), are associated
with significantly weaker social ties (p < 0.01). Since weak
ties are associated with more diverse social relationships,
our observation confirms the relationship between emotions
and diversity of network structure.

The sentiment values computed by SentiStrength are con-
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Figure 3: Error bars based on linear regression models: coefficients (tie, spa) are estimated against sentiment (WBK (a), Sen-
tiStrength (b)), socioeconomics (c) and ethnicity (d) variables
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Figure 4: Box plot of mean valence of tweets posted from
tracts, after they were grouped by mean tie strength into
three equal-sized groups, or tertiles. Lines inside the boxes
indicate median value of valence, whereas the boxes them-
selves show interquartile ranges.

sistent with this trend. The correlation between tie strength
and positive sentiment while weaker, is also negative, sug-
gesting that tracts with more positive tweets have weaker
ties. Note that values for negative sentiment are below zero,
with lower values representing stronger negative sentiment.
In this case, negative correlation with tie strength means
that tracts with more negative tweets have stronger ties than
tracts with less negative tweets. This result is in line with
theories of social regulation of emotions (Rimé 2009) and
with previous results in protest movements that showed how
online negative emotions were associated with stronger col-
lective action (Alvarez et al. 2015).

We also report the relationship between affect of a tract
and the spatial diversity of users tweeting from that tract, a
measure of inter-tract mobility defined in Section . As shown
in Figure 6, tracts with more positive tweets have signifi-
cantly higher spatial diversity than tracts with less positive
tweets (p < 0.001). This suggests that people expressing
happier emotions move (and tweet from) a larger number of
different places than people expressing more negative emo-
tions, whose movements are confined to a smaller set of
tracts.

Demographics and Social Ties

We find a relationship between demographic characteris-
tics of tracts from which people tweet and the social struc-
ture of tweeting users. Table 2 reports correlations between
average per-tract social tie strength, spatial diversity and de-
mographic variables extracted from US Census data. While
a previous study (Eagle, Macy, and Claxton 2010) of the re-
lationship between social structure and economic prosperity
used somewhat different indicators — e.g., they used net-
work diversity to measure diversity of social contacts — we
reach qualitatively similar conclusions. Specifically, we find
a negative correlation between (mean) income, one measure
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Figure 6: Spacial (inter-tract) diversity for three quantiles,
ordered by the mean valence of tweets posted from them.

of economic prosperity, and sociability: higher incomes are
associated with weaker social ties. There is an even stronger
negative relationship between education (measured by the
percentage of tract residents who hold a Bachelor’s degree or
higher) and sociability. Socioeconomic variables are highly
inter-correlated, and it is difficult to infer causal relation-
ships within data. Still, the higher correlation of education
with tie strength and mobility implies that education may
be more predictive of sociability than other demographic at-
tributes.

We take a closer look at the relationships between so-
cial tie strength and demographic attributes using quantile
analysis. Figure 7 shows the box plot of tie strength of a
group of tracts after they were divided into three equal-size
groups based on each demographic attribute. For example,
Figure 7(top) divides tracts by mean income into the lowest-
earning, mid-earning, and highest-earning tertiles and shows
the range of social tie strength values in each tertile. Only the
top income and education tertiles have significantly weaker
social ties than the other two tertiles (p < 0.01). How-
ever, when tracts are divided into tertiles according to the
number of Hispanic residents, the differences between the
mean tie strengths of all tertiles are significant (p < 0.01).
This result highlights the social component of culture: His-
panic cultures focus more on sociability values and are less
individualist than anglo-saxon cultures (for example, Mex-

Variables Tie Strength Spatial Diversity

Mean Income -0.12∗∗∗ 0.08∗∗
Employment -0.12∗∗∗ 0.23∗∗∗
Age -0.18∗∗∗ 0.18∗∗∗
Education -0.27∗∗∗ 0.35∗∗∗

White -0.14∗∗∗ 0.20∗∗∗
African Amer. 0.06∗ 0.03
Hispanic 0.35∗∗∗ -0.27∗∗∗
Asian Amer. -0.03 0.10∗∗∗

*p¡0.05, **p¡0.01, ***p¡0.001

Table 2: Correlation between demographic characteristics of
tracts and measures of social structure of people tweeting
from these tracts.

ico scores 30 and the US 91 in the individualism scale of
Hofstede (Hofstede 1980)). This provides an explanation for
the stronger links of tracts with higher number of Hispanic
residents, as their online network structures reflect their
shared values (Garcia-Gavilanes, Quercia, and Jaimes 2013;
Kayes et al. 2015).

Figure 8 shows the association between spatial diversity
and demographic characteristics. Income does not appear to
significantly affect spatial diversity: only the top tertile of
tracts by incomes has a significantly different spatial diver-
sity (p < 0.001) from the other two tertiles. Education, how-
ever, has a stronger dependence: tracts with better-educated
residents also have significantly higher (p < 0.001) spatial
diversity than tracts with fewer educated residents. In addi-
tion, ethnicity appears to be a factor. Tracts with larger His-
panic population have significantly lower spatial diversity
(p < 0.01) than other tracts.

Discussions

The availability of large scale, near real-time data from
social media sites such as Twitter brings novel opportunities
for studying online behavior and social interactions at an un-
precedented spatial and temporal resolution. By combining
Twitter data with US Census, we were able to study how the
socioeconomic and demographic characteristics of residents
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Figure 7: Demographic analysis of social ties. Tracts were ordered by demographic characteristic (mean household income,
percentage of residents with Bachelor’s degree or above, and number of Hispanic residents) in that tract and divided into three
groups of equal size. Lines inside the boxes indicate median value of tie strength within each group, whereas the boxes show
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rightmost box represents the top third of tracts with largest values of the attribute.
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Figure 8: Demographic analysis of spatial diversity (inter-tract mobility). Tracts were ordered by (a) mean household income,
(b) percentage of residents with Bachelor’s degree or above, or (c) number of Hispanic residents in that tract and divided into
three groups of equal size. The figure shows the box plot of inter-tract mobility values of tracts in different quantiles. Leftmost
box represents the bottom third of tracts with lower values of the demographic attribute, and rightmost box represents the top
third of tracts with largest values of the attribute.
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of different census tracts are related to the structure of on-
line interactions of users tweeting from these tracts. More-
over, sentiment analysis of tweets originating from a tract
revealed a link between emotions and sociability of Twitter
users.

Our findings are broadly consistent with results of previ-
ous studies carried out in an offline setting, and also give
new insights into the structure of online social interactions.
We find that at an aggregate level, areas with better educated,
somewhat younger and higher-earning population are asso-
ciated with weaker social ties and greater spatial diversity (or
inter-tract mobility). In addition, Twitter users express hap-
pier, more positive emotions from these areas. Conversely,
areas that have more Hispanic residents are associated with
stronger social ties and lower spatial diversity. People also
express less positive, sadder emotions in these areas. Since
weak ties are believed to play an important role in deliver-
ing strategic, novel information, our work identifies a social
inequity, wherein the already privileged ones (more affluent,
better educated, happier) are in network positions that po-
tentially allow them greater access to novel information.

Some important considerations limit the interpretation of
our findings. First, our methodology for identifying social
interactions may not give a complete view of the social net-
work of Twitter users. Our observations were limited to so-
cial interactions initiated by users who geo-reference their
tweets. This may not be representative of all Twitter users
posting messages from a given tract, if systematic biases ex-
ist in what type of people elect to geo-reference their tweets.
For demographic analysis, we did not resolve the home lo-
cation of Twitter users. Instead, we assumed that charac-
teristics of an area, i.e., of residents of a tract, influence
the tweets posted from that tract. Other subtle selection bi-
ases could have affected our data and the conclusions we
drew (Tufekci 2014). It is conceivable that Twitter users re-
siding in more affluent areas are less likely to use the geo-
referencing feature, making our sample of Twitter users dif-
ferent from the population of LA county residents. Recog-
nizing this limitation, we did not make any claims about the
behavior of LA residents; rather, we focused on the associ-
ations between emotions and characteristics of a place and
the behavior of Twitter users, with an important caveat that
those who turn on geo-referencing may differ from the gen-
eral population of Twitter users.

For the analysis of emotions, we only considered English
language tweets, although a significant fraction of tweets
were in Spanish. This may bias the average affect of tracts,
especially for low-valence tracts, which have a larger num-
ber of Hispanic residents. In the future, we plan to address
this question by conducting sentiment analysis of Spanish
language tweets.
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