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Abstract

Recommender systems face several challenges, e.g., recom-
mending novel and diverse items and generating helpful ex-
planations. Where algorithms struggle, people may excel.
We therefore designed CrowdLens to explore different work-
flows for incorporating people into the recommendation pro-
cess. We did an online experiment, finding that: compared
to a state-of-the-art algorithm, crowdsourcing workflows pro-
duced more diverse and novel recommendations favored by
human judges; some crowdworkers produced high-quality
explanations for their recommendations, and we created an
accurate model for identifying high-quality explanations; vol-
unteers from an online community generally performed bet-
ter than paid crowdworkers, but appropriate algorithmic sup-
port erased this gap. We conclude by reflecting on lessons
of our work for those considering a crowdsourcing approach
and identifying several fundamental issues for future work.

Introduction

Recommendation algorithms are widely used in online sys-
tems to customize the delivery of information to match user
preferences. For example, Facebook filters its news feed,
the Google Play Store suggests games and apps to try, and
YouTube suggests videos to watch.

Despite their popularity, algorithms face challenges. First,
while algorithms excel at predicting whether a user will like
a single item, for sets of recommendations to please users,
they must balance factors like the diversity, popularity, and
recency of the items in the set (McNee, Riedl, and Konstan
2006). Achieving this balance is an open problem. Second,
users like to know why items are being recommended. Sys-
tems do commonly provide explanations (Herlocker, Kon-
stan, and Riedl 2000), but they are template-based and sim-
plistic.

People may not be as good at algorithms at predicting
how much someone will like an item (Krishnan et al. 2008).
But “accuracy is not enough” (McNee, Riedl, and Konstan
2006). We conjecture that people’s creativity, ability to con-
sider and balance multiple criteria, and ability to explain
recommendations make them well suited to take on a role
in the recommendation process. Indeed, many sites rely on
users to produce recommendations and explain the reasons
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for their recommendations. For example, user-curated book
lists in Goodreads1 are a popular way for users to find new
books to read.

However, sites – especially new or small ones – may not
always be able to rely on users to produce recommenda-
tions. In such cases, paid crowdsourcing is an alternative,
though paid crowd workers may not have domain expertise
and knowledge of users’ preferences.

All things considered, while incorporating crowdsourcing
into the recommendation process is promising, how best to
do so is an open challenge. This work takes on that challenge
by exploring three research questions:

RQ1 - Organizing crowd recommendation What roles
should people play in the recommendation process? How
can they complement recommender algorithms? Prior
work has shown that crowdsourcing benefits from an itera-
tive workflow (e.g., (Little et al. 2009; Bernstein et al. 2010;
Kittur et al. 2011)). In our context, we might iteratively gen-
erate recommendations by having one group generates ex-
amples and another group synthesizes recommendations, in-
corporating those examples along with their own fresh ideas.
Alternatively, we might substitute a recommendation algo-
rithm as the source of the examples. We are interested in the
effectiveness of these designs compared with an algorithmic
baseline. We speculate that this design decision will have a
measurable impact on the quality, diversity, popularity, and
recency of the resulting recommendations.

RQ2 - Explanations Can crowds produce useful expla-
nations for recommendations? What makes a good explana-
tion? Algorithm can only generate template-based explana-
tions, such as “we recommend X because it is similar to Y”.
People, on the other hand, have the potential to explain rec-
ommendations in varied and creative ways. We will explore
the feasibility of crowdsourcing explanations, identify char-
acteristics of high-quality explanations, and develop mecha-
nisms to identify and select the best explanations to present
to users.

RQ3 - Volunteers vs. crowdworkers How do recom-
mendations and explanations produced by volunteers com-
pare to those produced by paid crowdworkers? Volunteers
from a site have more domain knowledge and commitment
to the site, while crowdworkers (e.g. from Amazon Mechan-

1www.goodreads.com
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ical Turk) are quicker to recruit. We thus will compare result
quality and timeliness for the two groups.

To address these questions, we built CrowdLens, a crowd-
sourcing framework and system to produce movie recom-
mendations and explanations. We implemented CrowdLens
on top of MovieLens2, a movie recommendation web site
with thousands of active monthly users.

Contributions. This paper offers several research contri-
butions to a novel problem: how to incorporate crowd work
into the recommendation process. We developed an itera-
tive crowd workflow framework. We experimentally evalu-
ated several different workflows, comparing them to a state
of the art recommendation algorithm; crowd workflows pro-
duced comparable quality, more diverse, and less common
recommendations. Crowdworkers were capable of produc-
ing good explanations; we developed a model that identi-
fied features associated with explanation quality and that can
predict good explanations with high accuracy. Volunteers
generally performed better than paid crowdworkers, but pro-
viding paid crowdworkers good examples reduced this gap.

Related work

Foundational crowdsourcing work showed that tasks could
be decomposed into independent microtasks and that peo-
ple’s outputs on microtasks could be aggregated to pro-
duce high quality results. After the original explorations,
researchers began to study the use of crowdsourcing for
more intellectually complex and creative tasks. Bernstein
et al. (Bernstein et al. 2010) created Soylent, a Microsoft
Word plugin that uses the crowd to help edit documents.
Lasecki et al. (Lasecki et al. 2013) used crowdworkers to
collaboratively act as conversational assistants. Nebeling et
al. (Nebeling, Speicher, and Norrie 2013) proposed Crow-
dAdapt, a system that allowed the crowd to design and eval-
uate adaptive website interfaces. When applying crowd-
sourcing for these more complicated tasks, various issues
arose.

Organizing the workflow. More complicated tasks tend
to require more complex worklows, i.e., ways to organize
crowd effort to ensure efficiency and good results. Early ex-
amples included: Little et al. (Little et al. 2009) proposed an
iterative crowdsourcing process with solicitation, improve-
ment and voting; and Kittur et al. (Kittur et al. 2011) ap-
plied the Map Reduce pattern to organize crowd work. For
Soylent, Bernstein et al. (Bernstein et al. 2010) developed
the find-fix-verify pattern: some workers would find issues,
others would propose fixes, and still others would verify the
fixes. Similar to this research, we developed an iterative
workflow for incorporating crowds into recommendation:
generate examples, then synthesize recommendations.

Types of crowdworkers. Depending on the difficulty and
knowledge requirements of a task, different types of crowd
workers may be more appropriate. Zhang et al. (Zhang et
al. 2012) used paid crowdworkers from Amazon Mechani-
cal Turk to collaboratively plan itineraries for tourists, find-
ing that Turkers were able to perform well. Xu et al. (Xu,

2http://movielens.org

Huang, and Bailey 2014; Xu et al. 2015) compared struc-
tured feedback from Turkers on graphic designs with free-
form feedback from design experts. They found that Turk-
ers could reach consensus with experts on design guidelines.
On the other hand, when Retelny et al. (Retelny et al. 2014)
explored complex and interdependent applications in engi-
neering, they used a “flash team” of paid experts. Using a
system called Foundry to coordinate, they reduced the time
required for filming animation by half compared to using
traditional self-managed teams. Mindful of these results, we
compared performance of paid crowdworkers to “experts”
(members of the MovieLens film recommendation site).

Crowdsourcing for personalization. Personalization –
customizing the presentation of information to meet an in-
dividual’s preferences – requires domain knowledge as well
as knowledge of individual preferences. This complex task
has received relatively little attention from a crowdsourcing
perspective. We know of two efforts that focused on a re-
lated but distinct task: predicting user ratings of items. Kr-
ishnan et al. (Krishnan et al. 2008) compared human pre-
dictions to those of a collaborative filtering recommender
algorithm. They found that most humans are worse than
the algorithm while a few were more accurate, and people
relied more on item content and demographic information
to make predictions. Organisciak et al. (Organisciak et al.
2014) proposed a crowdsourcing system to predict ratings on
items for requesters. They compared a collaborative filter-
ing approach (predicting based on ratings from crowdwork-
ers who share similar preferences) with a crowd prediction
approach (crowdworkers predicting ratings based on the re-
quester’s past ratings). They found that the former scales up
to many workers and generates a reusable dataset while the
latter works in areas where tastes of requesters can be easily
communicated with fewer workers.

Generating sets of recommendations is more difficult than
predicting ratings: as we noted, good recommendation sets
balance factors such as diversity, popularity, familiarity, and
recency. We know of two efforts that used crowdsourcing
to generate recommendations: Felfernig et al. deployed a
crowd-based recommender system prototype (Felfernig et
al. 2014), finding evidence that users were satisfied with the
interface. The StitchFix3 commercial website combines al-
gorithmic recommendations with crowd wisdom to provide
its members with a personalized clothing style guide. Our
research also explores incorporating people into the recom-
mendation process. We experimented with several roles for
people and evaluated their performance using a range of rec-
ommendation quality measures.

The CrowdLens Framework

Though individuals are not as accurate as algorithms in pre-
dicting ratings (Krishnan et al. 2008), crowdsourcing gains
power by aggregating inputs from multiple people. In this
section, we describe several key aspects of CrowdLens, in-
cluding the intended use of the recommendations, the rec-
ommendation workflow, and the user interface.

3www.stitchfix.com
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Figure 1: An example movie group. New users in Movie-
Lens express their taste on movie groups.

Recommendation Context: Movie Groups

Human recommendations do not scale like algorithmic rec-
ommendations. It is simply too much work to ask users to
come up with long lists of personalized content for all users
of a system. Therefore, human-built recommendation lists
are typically non-personalized or semi-personalized: a video
game web site lists the top games of the year; a DJ plays mu-
sic suited for listeners that like a particular kind of music.

In this research, we explore the idea of using humans to
generate recommendations for users who have expressed a
preference for a particular type of movie. MovieLens uses
“movie groups” during the sign-up process: after users reg-
ister, they are asked to distribute three “like” points across
six movie groups, where each movie group is summarized
by three representative movies and three descriptive terms.
See figure 1 for an example. MovieLens then uses a semi-
personalized modification of collaborative filtering to rec-
ommend for these new users. First, MovieLens finds exist-
ing active users with similar movie tastes and represents a
new user’s preferences as the average rating vector of these
active users. Then the standard MovieLens (item-item) algo-
rithm can be applied. Finally, once a user has rated enough
movies him or herself, the system switches to using these ac-
tual ratings to represent the user’s preference. (See (Chang,
Harper, and Terveen 2015) for details.) This algorithm will
serve as the baseline of comparison for our crowd recom-
mendation approaches.

We therefore design CrowdLens to collect recommenda-
tions and explanations for each of the six movie groups of-
fered to new users of MovieLens.

Crowd Recommendation Workflow

There are many possible designs for generating recommen-
dations from a crowd of workers. Recent research provides
evidence that providing good “example” responses can im-
prove the quality (Kulkarni, Dow, and Klemmer 2014) and
diversity (Siangliulue et al. 2015) of responses in crowd-
sourced creative work; however, providing examples also
may lead to conformity and reduced diversity (Smith, Ward,
and Schumacher 1993). Therefore, we thought it was both
promising and necessary to experiment with a recommen-
dation workflow that used examples. CrowdLens organizes
recommendations into a two step “pipeline”: the first step
generates a candidate set of recommendations, and a sec-
ond step synthesizes the final set of recommendations, ei-
ther drawing from the generated candidates, or adding new

content. This process may enable both creativity – the first
group will come up with more diverse and surprising recom-
mendations – and quality – the second group will gravitate
toward and be guided by the best recommendations from the
first. This workflow is similar to workflows that have been
used successfully elsewhere for crowdsourcing subjective
and creative tasks (Little et al. 2009; Bernstein et al. 2010;
Kittur et al. 2011).

The first step (generate candidates) in the CrowdLens
pipeline can be fulfilled either by a recommendation algo-
rithm or by crowdworkers. This allows us to experiment
with different configurations of human-only and algorithm-
assisted workflows.

User Interface

See figure 2 for a screenshot of the CrowdLens recommen-
dation interface. The recommendation task is framed by ask-
ing workers to produce a list of 5 movies that “would be en-
joyed by members who pick [a specific movie group]”. As
detailed in the figure, the interface has four major parts:

1. Instructions for the crowdworker and a description of the
target movie group.

2. A set of example recommendations. Crowdworkers may
add recommendations from this list by clicking the “+”
sign next to each example movie. This component is vis-
ible only for workers in the second (synthesize) step, not
the first (generate).

3. The list of movies the crowdworker recommends. Each
recommendation is accompanied by a text box where the
crowdworker must write an explanation for why they are
recommending the movie.

4. An auto-complete search interface, which crowdworkers
can use to find movies to recommend. Users can search
for movies by title, actor, director, or tags.

Experiment

We conducted an online experiment of crowd recommenda-
tion in MovieLens. We recruited participants from Movie-
Lens and Amazon Mechanical Turk to generate and syn-
thesize recommendations and to produce explanations. We
evaluated the resulting recommendations and explanations
using both offline data analysis and human judgments,
which we gathered from another set of MovieLens users.

Participants We recruited 90 MovieLens participants via
email invitations between Dec 16, 2014 and Jan 30, 2015.
The qualification criterion for MovieLens users was logging
in at least once after November 1, 2014. We recruited 90
Amazon Mechanical Turk workers on Jan 30, 2015. Each
Turker was allowed to complete one HIT; this ensured that
no single Turker was assigned to multiple experimental con-
ditions. We recruited turkers from the US and Canada with
approval rate of over 95%, paying them above effective min-
imum salary in US.
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1. Task 
instruction

2. Examples

4. Search for 
movie, people 

or tag

3. List of 
recommendations
and explanations

Figure 2: CrowdLens user interface. The four core components are task instructions, example recommendations, multi-category
search, and the worker-generated recommendation list. The interface for generating examples is the same except without
component 2 - examples.
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Aggregated 
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Aggregated 
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Explanation 
Quality:
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Recommendations

Recommendations

Recommendations

Recommendations

ML

ML_AI

TK

TK_AI

AI

Figure 3: Five pipelines for producing recommendations. The human-only and algorithm-assisted pipelines were instantiated
with both MovieLens volunteers and paid crowdworkers from Mechanical Turk. The MovieLens recommendation algorithm
served as a baseline and was the source of input examples for the algorithm-assisted pipelines.

Experimental Design We have a 2 × 2 between-subjects
design with the following factors:

1. Type of worker: volunteer (MovieLens user) or paid
crowdworker (from Amazon Mechanical Turk).

2. Source of examples: are example recommendations gen-
erated by an algorithm or aggregated from another set of
workers?
In discussing our results, we refer to the four resulting

experimental conditions as ML, ML AI, TK, and TK AI
– see figure 3. These pipelines generate both recommen-
dations and explanations. We also include a baseline con-
dition – the semi-personalized collaborative filtering algo-
rithm (Chang, Harper, and Terveen 2015) described above.
We refer to the baseline as AI. The baseline algorithm only
generates recommendations, therefore there is no baseline
condition for studying explanations.

In each of the four experimental pipelines, five partic-
ipants independently produced a set of 5 recommended
movies for each of the 6 MovieLens movie groups. In the
human-only pipelines, (TK and ML), 5 participants gener-
ated the initial (example) recommendations. This accounted
for the total of 180 experimental participants:

• 90 MovieLens volunteers: (10 (ML) + 5 (ML AI)) × 6
(MovieLens movie groups) plus

• 90 Turkers: (10 (TK) + 5 (TK AI)) × 6 (MovieLens
movie groups)

We clarify the recommendation pipelines by walking
through an example - recommending for movie group shown
in figure 2 in ML pipeline.

1. 5 MovieLens volunteers independently recommend
movies for the movie group with no examples provided
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Figure 4: Interface for collecting judgments of recommendations and explanations.

(using an interface similar to figure 2 but part 2 removed).
They also write explanations for their recommendations.

2. To prepare for the synthesis step, we find N unique movies
from 5× 5 movies in step 1.

3. Each of the next 5 MovieLens volunteers used interface
in figure 2 to synthesize recommendations with the ran-
domly ordered N movies shown as examples (using inter-
face shown in figure 2).

4. We aggregate recommended movies in step 3 to get top
5 most frequent recommendations (if there were ties, we
chose randomly), together with explanations on these 5
movies from step 1-3.
For algorithm-assisted pipelines (e.g., ML AI ), we re-

place step 1-2 with the baseline recommendation algorithm,
generating the same N number of examples with its human
counterpart.

Obtaining Human Quality Judgments

We recruited MovieLens users to provide judgments of the
recommendations and explanations produced in the recom-
mendation pipelines. We emailed users who had logged in
at least once after November 1, 2014 and who had not been
invited to participate in the crowd recommendation exper-
iment. 223 MovieLens users responded to the survey be-
tween March 4 and March 29, 2015.

We randomly assigned judges to 1 of of 6 movie groups to
evaluate corresponding recommendations and explanations
from the 5 pipelines. Judges rated the set of unique movies
from the 5 pipelines in random order (shown in figure 4).
To avoid the effect of explanations on movie quality judg-
ment, judges can only rate the corresponding explanations
after rating a movie.

Figure 4 shows the instructions for judges. Judges rated
recommended movies on a five point scale from “Very inap-

propriate” to “Very appropriate” (mapped to -2 to 2) (with
the option to say “Not Sure”), and explanations on a five
point scale from “Not helpful” to “Very helpful” (mapped to
-2 to 2).

Study: Recommendations

We first ask a simple question: do the different recommen-
dation pipelines actually differ? Do they produce different
movies? We then evaluate recommendations produced by
the five pipelines using the standard criteria – quality, di-
versity, popularity, and recency – as well as human judg-
ments. We conclude this section by discussing our results in
the context of our research questions. We study the explana-
tions of recommendations given by crowd in next section.

ML AI ML TK AI TK

ML 0.5 (0.96) - - -
TK AI 1.8 (0.90) 1.3 (0.75) - -

TK 0.5 (0.76) 0.5 (0.76) 1 (1) -
AI 2.5 (0.69) 0.8 (0.69) 2.2 (0.37) 1 (0.82)

Table 1: Average number of overlapping movies recom-
mended from any pair of pipelines across 6 movie groups.
Each pipeline generates 5 movies as final recommendations.
Standard deviations are included in parenthesis.

Different pipelines yield different
recommendations

Table 1 shows that there is little overlap between the dif-
ferent pipelines. The table shows the average (across the
6 movie groups) number of common movies between each
pair of pipelines (each of which generated 5 movies). Rec-
ommendations from the two human-only pipelines, ML and
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TK, have little in common with recommendations from the
baseline algorithm: 0.8 common movies for ML and 1 com-
mon movie for TK. The overlap increases for the algorithm-
assisted pipelines, with 2.5 common movies ML AI and AI
and 2.2 common movies between TK AI and AI.

Measured Quality: Algorithm slightly better

Our intuition for evaluating quality was: if a pipeline recom-
mends a movie for a specific movie group, how highly would
users who like that group rate this movie? We used existing
MovieLens data to formalize this intuition: for each movie
group, we find the set of MovieLens users who assigned at
least one point to the group, and then compute these users’
evaluations on recommendations as average of their past rat-
ings on recommended movies.4

We compared quality of recommendations from the five
pipelines as follows. We used a mixed-effect linear model,
in which the pipeline as fixed effect and user as random ef-
fect, accounting for the variations of how differently users
rate on 5 point scale. Then, we did pairwise comparisons of
least squared means of 5 average ratings.

As we expected, recommendations from the baseline al-
gorithm have the highest average rating (p < 0.001 using
least squared means comparison) as shown in Table 2, be-
cause the algorithm is designed to recommend movies of
highest average ratings for people who like a movie group.
Average ratings of crowd generated recommendations, how-
ever, are only slightly worse, less than 0.2 stars on 5-star
scale. TK is the worst in all crowd pipelines.

Average Measured
Quality (SD)

Average Judged
Quality (SD)

AI 4.19 (0.65) 0.93 (0.63)
ML 4.12 (0.63) 1.26 (0.31)

ML AI 4.10 (0.66) 1.23 (0.35)
TK 4.00 (0.68) 1.07 (0.68)

TK AI 4.12 (0.64) 1.26 (0.31)

Table 2: Measured and human-judged quality of recom-
mended movies. For a movie group in a pipeline, measured
quality is computed as the average of ratings (on a 5 star
scale) on recommended movies from MovieLens users who
indicated a preference for the movie group. User judgments
from the online evaluation range from -2 (very inappropri-
ate) to 2 (very appropriate). Both columns show the average
for all pipelines across six movie groups.

Judged Quality: Crowdsourcing pipelines slightly
preferred

The human judgments of recommendations gave us another
perspective on quality. We analyzed the judgments as fol-
lows. We first removed “Not Sure” responses. Then for
each judge, we computed their rating for each pipeline by
averaging their ratings for the five movies generated by that

4There were a median of 485.5 such users per movie group; min
180, max 780.

pipeline. We analyzed the ratings using mixed-effect model
similar with that described in the previous section.

Human judges preferred recommendations from all crowd
pipelines over the baseline algorithm (p < 0.01 using least
squared means comparison) as shown in Table 2. (Note that
there was larger variance in judgments of recommendations
from the algorithm).

There also was an interaction effect between the two
experimental factors. Recommendations from algorithm-
assisted Turkers (TK AI) were better than those from Turk-
ers only (TK). However, there was no differences between
the two pipelines involving MovieLens users.

Diversity: A trend for crowdsourcing

Diversity is an attribute of a set of items: how “different”
are they from each other. More diverse recommendations
help users explore more broadly in a space of items. And
prior work showed that recommender system users like a
certain amount of diversity (Ziegler et al. 2005; Ekstrand et
al. 2014).

We computed the diversity of the 5 movies from each rec-
ommendation pipeline using the tag genome (Vig, Sen, and
Riedl 2012). The tag genome consist of vectors for sev-
eral thousand movies measuring their relevance to several
thousand tags. This lets us compute the similarity of any
two movies by computing the similarity of their vectors, for
example using cosine similarity. We compute the topic di-
versity of a set of recommendations as the average pairwise
cosine similarities between the tag genome vectors of the
recommended movies, a common way to quantify diversity
of recommendations (Ziegler et al. 2005). The higher the
value, the less diverse the recommendations.

We compared diversity, popularity and recency (described
in the following two sections) of recommendations using
ANOVA analysis with TukeyHSD test.

As we had conjectured, crowdsourcing pipelines tend to
result in more diverse recommendations (figure 5a). How-
ever, the only statistically significant difference was between
Turkers in the human-only process (TK) and the baseline al-
gorithm (p < 0.05). Note that the statistical power for this
analysis was reduced because we have fewer data points, just
one value per set of recommendations (since diversity is a
property of a set of items, not a single item). Thus, we have
confidence that that if we had more data, we would find that
people generally recommend more diverse movies than the
algorithm.

Crowd may give less common recommendations

Prior research(Ekstrand et al. 2014) showed an item’s pop-
ularity – how frequently it has been rated by users – to be
positively correlated with new user satisfaction by earning
trust. But popular items are “common knowledge”, and thus
less likely to be novel to users, and helping users to discover
and explore new items is one of the benefits of recommender
systems (Vargas and Castells 2011).

We measured movie popularity as the log transform of its
number of ratings in MovieLens (this followed a normal dis-
tribution after the transformation). Note that this definition
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Figure 5: Objective measurements of recommended movies. The middle line represents the median and box boundaries in-
dicate 25th and 75th percentiles. (a) shows average pairwise similarities between tag genome vectors (lower values are more
“diverse”), (b) shows number of ratings from all MovieLens users on a natural log scale, and (c) shows number of days since
release for movies on natural log scale (lower values are more “recent”).

of “popularity” does not mean an item is “liked”, just that
many users expressed an opinion of it.

Crowdsourcing pipelines tended to result in less popular
– thus potentially more novel – movies than the algorithm
(see figure 5b). Turkers in the human-only pipeline (TK)
recommended significantly less popular movies (p < 0.05);
for MovieLens volunteers, there was a similar trend, but it
was not statistically significant.

Recall that workers were more likely to include examples
from the algorithm in their recommendation sets than exam-
ples from previous workers. That result is reflected in this
analysis: for example, Turkers who saw examples from the
algorithm (TK AI) were more likely to include them than
Turkers who saw examples from previous Turkers (TK); this
made their final results more similar to the algorithmic base-
line results; in particular, they included more popular items.

Recency: Little difference

Prior work showed that different users prefer more or less re-
cent movies in their recommendations (Harper et al. 2015).
We measured movie recency as the log transform of the
number of days since the movie’s release date. The lower
the value, the more recent the movie.

Figure 5c suggests that there is a trend for crowdsourcing
pipelines to result in more recent movies; however, these
differences were not significant.

Discussion

RQ1. We find evidence that the design of the crowdsourc-
ing workflow matters – different pipeline structures lead to
different recommendation sets, as measured by overlapping
movies. As compared with the algorithmic baseline, the four
human pipelines generated more diverse lists that contain
less popular movies. We find differences in evaluated quality
between the human pipelines and the algorithmic baseline.
Looking further into these differences, we find an interesting
contradiction: the algorithm-only pipeline generates recom-
mendations with the highest average rating from target users,

while the human pipelines are judged to be more appropri-
ate in an online evaluation. We conjecture that the judges
are considering user experience factors (e.g., topic match to
movie group) that also can impact recommendation quality
(McNee, Riedl, and Konstan 2006) — humans recommend
movies that are a better fit for the task, but have lower his-
torical ratings.

To summarize the trade-off, using algorithm-generated
examples instead of human-generated examples reduced the
time required to produce recommendations, but leads to less
organic recommendation sets.

RQ3. Perhaps most interesting, we find only small dif-
ferences in our outcome measures between MovieLens vol-
unteers and Turkers. Since MovieLens members are self-
selected as being interested in movies, while Turkers are
not, one might conjecture that Turkers are at an enormous
disadvantage: movie lovers will recognize more of the
movies shown, and will more easily recall related high-
quality movies to mind. Possibly we do not find large dif-
ferences because our recommendation task skews towards
mainstream movies (we do not show obscure movies in the
movie groups) or because movie watching is such a common
pastime. Whether or not this is the case, this is a positive
early result for systems wishing to use paid crowdworkers
to recommend content.

As mentioned above, we observe an interesting interac-
tion effect where Turkers appear to benefit from algorithmic
suggestions more than MovieLens users. It is interesting to
speculate why this might be the case. We speculate that this
effect for Turkers reveals a relative weakness for recall tasks,
along with a strength for synthesis tasks.

Study: Explanations

In this section, we turn our attention to the other output of
the CrowdLens process: recommendation explanations. We
first analyze the overall quality of explanations, focusing on
the differences between paid crowdworkers and MovieLens
volunteers (RQ3). Then, we analyze language features that
are predictive of high quality explanations (RQ2).
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Explanation quality

The users recruited from MovieLens used our evaluation UI
(figure 4) to enter 15,084 ratings (on a scale of -2 to 2) of the
quality of 336 crowdsourced explanations. We compare the
quality of explanations using a mixed effect linear model, in
order to eliminate per-user scoring biases. The model has
two independent variables — the type of worker (volunteer
or crowd worker) and the source of examples. The model
has one dependent variable — average rating of the expla-
nations.

The average rating for explanations from both types of
workers is slightly above 0 on a scale of -2 (“Not helpful”) to
2 (“Very helpful”). MovieLens users’ explanations, on aver-
age, received higher ratings than explanations from Turkers
(means: 0.14 vs. 0.03, p < 0.0001).

There is no significant difference between workers in the
human-only and algorithm-assisted pipelines. This is as ex-
pected, since showing example movies is not directly related
to the task of writing explanations.

Features of Good Explanations

We expect that the quality of explanations provided by
crowdworkers will vary substantially — it is natural in
crowd work that some contributions will be higher quality
than others. In this analysis, we explore the features of ex-
planations that are predictive of high evaluation scores. If
we can extract key features of good explanations, we can
use this knowledge to provide guidelines for workers as they
write explanations.

For this analysis, we labelled explanations with an aver-
age rating ≥ 0.25 as “good” (145 explanations are in this
class) and those with an average rating ≤ −0.25 as “bad”
(102 explanations are in this class). We extracted language
features using “Pattern”5, a popular computational linguis-
tics library. We treated explanations as a bag of words, nor-
malizing words to lowercase and removing common stop
words. Based on these features (summarized in table 3), we
classify explanations as “good” or “bad” using a logistic re-
gression model.

Qualitatively, we observe substantial variance in the qual-
ity of explanations. To inform our discussion of features
that are predictive of high and low quality evaluations, let us
look at several sample explanations from the study (evalu-
ated “good” or “bad” as described above).

Two examples of “good” explanations:

For “Apollo 13”: Dramatic survival on a damaged
space module. Great acting by Tom Hanks, Bill Pax-
ton and Kevin Bacon.
For “Sleepless in Seattle”: Cute movie of cute kid
matchmaking in Seattle and true love upto a the Em-
pire State Building across the country in New York City
- so romantic!

We notice that these (and other good explanations) con-
tain some specific details about the movie (e.g., actors, set-
ting, and plot) and the reasons why the movie is good.

Two examples of “bad” explanations:

5http://www.clips.ua.ac.be/pattern

For “Apollo 13”: Because is almost exclusively dra-
matic, good acting and intense.
For “The Avengers”: It’s good vs evil

We notice that these (and other bad explanations) are too
short, overly derivative of the tags shown to describe the
movie groups, and not as detailed as the good explanations.
Qualitative insights such as these informed the development
of features that we subsequently extracted for our regression
analysis.

As described above, we use logistic regression to predict
“good” explanations, using a broad set of extracted features
as input. To evaluate the accuracy of the logistic regression
model, we ran a 5-fold cross validation and got a high aver-
age F-measure6 of 0.78. With this high accuracy, we are con-
fident that the extracted features are indicative of the quality
of explanations.

Table 3 summarizes the model’s features and effects. The
model reveals that longer explanations, and explanations
containing tags, genres, or other adjectives are more likely
to be highly-evaluated.

Discussion

RQ2. Our evaluation revealed that the crowdsourcing
pipelines resulted in explanations with neutral to acceptable
quality on average, and many that were judged very good.
The challenge, therefore, is in selecting and displaying only
those explanations with the highest quality. Machine learn-
ing methods can predict this measured quality with good
accuracy using easily extracted features. We find that the
highest-quality explanations tend to be longer, and tend to
contain a higher percentage of words that are tags, genres,
or other adjectives.

RQ3. In our experiment, MovieLens volunteers provided
better explanations than paid Turkers. Likely, this is because
the MovieLens volunteers are more familiar with movie rec-
ommendations. Also, because they have volunteered to par-
ticipate in the experiment, they may be more motivated or
informed than average users.

Reflection: Volunteers vs. Paid Crowdworkes

A basic decision for crowd-powered projects is where to re-
cruit workers. All projects can recruit from marketplaces
like Mechanical Turk. Some can call on volunteers from an
existing online community. We explored both options, and
our results illuminate key issues.

Time vs. cost. Volunteers may contribute without com-
pensation because of their commitment to the community,
but (for small and medium-sized communities), it takes
much longer to recruit them in sufficient numbers than to re-
cruit paid crowdworkers. As research-oriented online com-
munities go, MovieLens is among the largest, with a long
tradition of members participating in experiments. Yet it
took us 1.5 months to recruit participants for our experiment
vs. 1 day for Turkers. On the other hand, the MovieLens
volunteers were free and Turkers are not. Individual projects

6 2·precision·recall
precision+recall
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Feature Effect P-value

log(# words) 1.55 ∼ 0
% words that appear in tags on movie 2.58 < 0.0005
% adjectives 4.55 < 0.005
% words that appear in genres of movie 5.97 < 0.01
Modality (-1 to 1 value computed by Pattern to represent uncertain to certain tone) 0.98 < 0.01
Subjectivity (0 to 1 value computed by Pattern) 1.26 0.06
# typos (given by Google spell checker) -1.61 0.07
% words that are directors’ names 3.97 0.07
Polarity (-1 to 1 value computed by Pattern to represent negative to positive attitude) 0.54 n.s.
% nouns 1.64 n.s.
% verbs -1.62 n.s.
% words that appear in movie title -0.02 n.s.
% words that are actor names -2.88 n.s.
% words that are three tags used to describe the movie group the movie is recommended for 1.75 n.s.
% words that appear in plot summary of the movie -0.38 n.s.

Table 3: Extracted features of recommendation explanations, along with their effect and statistical significance in a logistic
regression model to predict whether an explanation is evaluated to be good or bad by MovieLens users.

must assess the time v.s. cost tradeoff. However, when doing
so, they must consider another issue: work quality.

Quality. Volunteers from a community generally have
more domain knowledge than paid crowdworkers and some
commitment to the community. Thus, one would conjecture
that volunteers would produce better work. This is what we
found: MovieLens volunteers produced better recommen-
dations and explanations than Turkers. Some Turkers wrote
very short explanations or copied-and-pasted excerpts from
the Wikipedia page for a movie. However, one other factor
must be considered when deciding between volunteers and
paid crowdworkers: algorithmic support.

Algorithmic support. Algorithmic techniques for assess-
ing and increasing result quality are necessary for crowd-
sourcing to be effective: even the basic “output agreement”
technique is an example (VonAhn and Dabbish 2008). We
saw this, too. When Turkers were provided example recom-
mendations from the MovieLens algorithm, the quality of
their recommendations became comparable to MovieLens
volunteers. And while we did not run this experiment, the
model of features of high quality explanations could be ap-
plied directly to offer guidelines to people writing explana-
tions and automatically assess and critique a written expla-
nation; for example “Your explanation has a 60% chance
to be evaluated positively; to improve it, consider writing
a longer explanation that describes more attributes of the
movie that would make someone interested in watching it”.

Thus, to summarize: if you are planning a crowdsourc-
ing effort and have access to site volunteers as well as paid
crowdworkers, you should consider the time it would take to
recruit sufficient volunteers, the knowledge required to pro-
duce acceptable results, and the algorithmic support tools
available to assist workers.

Limitations and Future Work

This work is an early exploration of crowdsourcing in rec-
ommendation. It did not address all issues in sufficient

depth, and it suggests a number of promising opportunities
for future research.

First, several deeper evaluations of crowd-powered rec-
ommendation are possible. We asked human judges to eval-
uate individual recommended movies instead of comparing
recommendations sets from different pipelines. Comparing
(typically overlapping) sets of items on multiple dimensions
(quality, diversity, etc.) is a difficult cognitive task. How-
ever, recent research successfully experimented with tech-
niques to ease this task, such as highlighting items unique to
each set (Harper et al. 2015). Thus, a logical next step would
be a field study in which human judges evaluate sets of rec-
ommendations from different crowdsourcing pipelines and a
baseline algorithm. Further, while we asked judges only to
evaluate the effectiveness of explanations, other factors such
as transparency, trust, and persuasiveness and other factors
have been studied (Tintarev and Masthoff 2012). Thus, a
study that gathered multidimensional assessments of recom-
mendation explanations – both automatically generated and
produced by people – would be interesting.

Second, we saw that humans can benefit from algorithmi-
cally generated examples; can algorithms also benefit from
human-produced recommendations? We saw that human-
produced recommendation sets tended to be more diverse
and feature more potentially novel items. These recommen-
dation sets could be used as input to a learning algorithm, for
example, to produce an ensemble recommender that com-
bined output from people and the baseline recommendation
algorithm.

Third, crowdworker performance can be influenced by
many factors such as compensation amount, previous ex-
perience, demographics, etc. We can study in more depth
about how these factors affect the outcome of crowd recom-
mendations.
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Summary

We explored a novel research problem: how to incorporate
human wisdom into the recommendation process. We exper-
imented with two different workflows and two types of par-
ticipants: volunteers from the MovieLens web site and paid
crowdworkers from Amazon Mechanical Turk. We found
that crowdsourced workflows resulted in recommendations
that were higher evaluated by users than a state-of-the-art
recommendation algorithm and that tended to be more di-
verse and include less common (thus potentially more novel)
items. Volunteers produced better recommendations than
paid crowdworkers; however, when the crowdworkers were
provided with algorithmically generated examples, this gap
disappeared (albeit at the cost of reduced diversity). The
crowdsourcing process resulted in many recommendation
explanations that were judged of high quality; again, volun-
teers performed better than paid crowdworkers. We identi-
fied features of good explanations and a model that can pre-
dict high-quality explanations with good accuracy. Finally,
we reflected in depth on the tradeoffs in recruiting volun-
teers vs. paid crowdworkers and identified a number of rich
topics for future research.
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