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Abstract

Can we predict the future popularity of a song, movie or
tweet? Recent work suggests that although it may be hard to
predict an item’s popularity when it is first introduced, peek-
ing into its early adopters and properties of their social net-
work makes the problem easier. We test the robustness of such
claims by using data from social networks spanning music,
books, photos, and URLs. We find a stronger result: not only
do predictive models with peeking achieve high accuracy on
all datasets, they also generalize well, so much so that models
trained on any one dataset perform with comparable accuracy
on items from other datasets.
Though practically useful, our models (and those in other
work) are intellectually unsatisfying because common for-
mulations of the problem, which involve peeking at the first
small-k adopters and predicting whether items end up in the
top half of popular items, are both too sensitive to the speed
of early adoption and too easy. Most of the predictive power
comes from looking at how quickly items reach their first
few adopters, while for other features of early adopters and
their networks, even the direction of correlation with popu-
larity is not consistent across domains. Problem formulations
that examine items that reach k adopters in about the same
amount of time reduce the importance of temporal features,
but also overall accuracy, highlighting that we understand lit-
tle about why items become popular while providing a con-
text in which we might build that understanding.

How does a book, song, or a movie become popular? The
question of how cultural artifacts spread through social net-
works has captured the imagination of scholars for decades.
Many factors are cited as important for an item to spread vi-
rally through social networks and become popular: its intrin-
sic quality (Gladwell 2006a; Simonoff and Sparrow 2000),
the characteristics of its initial adopters (Gladwell 2006b),
the emotional response it elicits (Berger and Milkman 2012),
and so on. Often, explanations are used to justify the popu-
larity of different items after the fact (Berger 2013), mak-
ing it hard to apply these explanations to new events (Watts
2011).

Online social networks allow us to observe individual-
level traces of how items are transferred between people,
allowing more precise modeling of the phenomenon. Pre-
dicting the future popularity of an item based on attributes
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of the item and the person who introduced it has emerged as
a useful problem, both to understand processes of informa-
tion diffusion and to inform content creation and feed design
on social media platforms. For example, Twitter’s managers
may want to highlight new tweets that are more likely to be-
come popular, while its users may want to learn from char-
acteristics of popular tweets to imporve their own.

In general, even with detailed information about an item’s
content or the person sharing it, it is hard to predict which
items will become more popular than others (Bakshy et
al. 2011; Martin et al. 2016). The problem becomes more
tractable when we are allowed to peek into the initial spread
of an item. The intuition is that early activity data about the
speed of adoption, characteristics of people who adopt it and
the connections between them might predict the item’s fate.
This intuition shows encouraging results for both predicting
the final popularity of an item (Szabo and Huberman 2010;
Pinto, Almeida, and Gonçalves 2013; Zhao et al. 2015) and
whether an item will end up in the top 50% of popular
items (Cheng et al. 2014; Romero, Tan, and Ugander 2013;
Weng, Menczer, and Ahn 2013).

Buoyed by these successes, one might conclude that
the availability of rich features about the item and social
network of early adopters has helped us understand why
items become popular. However, past work studies individ-
ual datasets and varying versions of the prediction prob-
lem, making it hard to compare results. For instance, stud-
ies disagree on the direction of the effect of network struc-
tural features on item popularity (Lerman and Hogg 2010;
Romero, Tan, and Ugander 2013).

In this paper, we try to unify these observations on popu-
larity prediction through studying different problem formu-
lations and kinds of features over a wide range of online
social networks. Using an existing formulation that predicts
whether the final popularity of items is above the median
based on features of the first five adopters (Cheng et al.
2014), we confirm past work (Szabo and Huberman 2010)
showing that features about those adopters and their so-
cial network are at best weak predictors of popularity com-
pared to temporal features. For instance, a single temporal
heuristic—the average rate of early adoption—is a better
predictor than all non-temporal features combined across all
four websites. Further, models trained on one dataset and
tested on others using temporal features generalize fairly
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well, while those that use network structural features gen-
eralize badly.

In one reading, this is a useful contribution: peeking-
based popularity models that include temporal information
achieve up to 83% accuracy on Twitter and generalize well
across datasets. From a practical standpoint, we encourage
content distributors to use temporal features for predicting
the future success of items.

Intellectually, however, our finding is not very satisfying.
Rather than identifying features that shed light on why items
become popular, we mostly see that items that become pop-
ular fast are more likely to achieve higher popularity in the
end. Rapid adoption may be a signal of quality, interesting-
ness, and eventual popularity—but doesn’t tell us why. The
effect might also be driven by cumulative advantage (Frank
and Cook 2010; Watts 2011): items that receive attention
early have more chances to spread through via interfaces that
highlight popular or trending items.

An alternative formulation of the problem that reduces the
effect of temporal features lets us see just what early adopter
and network features tell us. This formulation, called Tem-
poral Matching, compares items that achieve similar levels
of popularity in the same amount of time, rather than the
more common formulation of looking at the first k adopters
regardless of the time it takes to reach k. Controlling for the
average rate of an item’s adoption turns popularity predic-
tion into a hard problem. Using the same features as be-
fore, prediction accuracy across all datasets drops below
65%. Such a decrease in accuracy underscores the impor-
tance of choosing problem formulations that highlighting
relevant phenomena in popularity evolution. Current mod-
els may fare well on certain formulations, but there is still
much to learn about how items become popular.

Formulations of the prediction problem

We start by identifying two key dimensions to consider when
defining the popularity prediction task: how much peeking
into early activity on an item is allowed, and whether the
task is a regression or classification. For ease of exposition,
we use item to denote entities that are consumed in online
social networks. Adoption refers to an explicit action or en-
dorsement of an item, such as loving a song, favoriting a
photo, rating a book highly or retweeting a URL. Finally,
we define popularity of an item as the number of people
who have adopted it.

Predicting apriori versus peeking into early activity

Predicting popularity a priori for items such as movies (Si-
monoff and Sparrow 2000) or songs (Pachet and Sony 2012)
has long been considered a hard problem. One of the most
successful approaches has been to gauge audiences’ interest
in an item before it is officially released, such as by measur-
ing the volume of tweets (Asur, Huberman, and others 2010)
or search queries (Goel et al. 2010). Such methods can work
well for mainstream, popular items for which there might
be measurable prior buzz, but are unlikely to be useful for
genuinely new items such as tweets or photos uploaded by
users.

For such items, popularity prediction is tricky, even when
precise data about the content of each tweet and the seed
user’s social network is known. On Twitter, models with
extensive content features such as the type of content, its
source and topic, crowdsourced scores of interestingness,
and features about the seed user such as indegree and past
popularity of tweets are only able to explain less than half
of the variance in popularity (Martin et al. 2016). Further,
the content features are usually less important than features
of the seed user (Bakshy et al. 2011; Martin et al. 2016;
Jenders, Kasneci, and Naumann 2013).

In response, scholars have suggested modified versions of
the problem where one peeks into early adoption activity for
an item. In studies on networks including Facebook (Cheng
et al. 2014), Twitter (Lerman and Hogg 2010; Zhao et al.
2015; Tsur and Rappoport 2012; Kupavskii et al. 2013),
Weibo (Yu et al. 2015), Digg (Lerman and Hogg 2010;
Szabo and Huberman 2010) and Youtube (Pinto, Almeida,
and Gonçalves 2013), early activity data consistently pre-
dicts future popularity with reasonable accuracy. In light of
these results, we focus on the peeking variant of the problem
in this paper.

Classification versus regression

In addition to how much data we look at, we must also spec-
ify what to predict. A number of studies have used regression
formulations, predicting an item’s exact final popularity: the
number of retweets for a URL (Bakshy et al. 2011), votes
on a Digg post (Lerman and Hogg 2010) or page views of
a Youtube video (Szabo and Huberman 2010). However, we
may often be more interested in popularity relative to other
items rather than an exact estimate. For example, both mar-
keters and platform owners may want to select ‘up and com-
ing’ items to feature in the interface versus others1.

These motivations lead nicely to a classification problem
where the goal is to predict whether an item will be more
popular then a certain percentage of other items. For in-
stance, Romero et al. predict whether the number of adopters
of a hashtag on Twitter will double, given a set of hash-
tags with the same number of initial adopters (Romero, Tan,
and Ugander 2013). Cheng et al. generalize this formula-
tion to show that predicting whether an item will double its
popularity is equivalent to classifying whether an item be-
comes more popular than the median and study this ques-
tion in the case of Facebook photos that received at least five
adopters (Cheng et al. 2014). Besides the practical appeal
of classifying popular items, classification is also a simpler
task than predicting the actual number of adoptions (Ban-
dari, Asur, and Huberman 2012), thus providing a favorable
scenario for evaluating the limits of predictability of popu-
larity. Therefore, we focus on the classification problem in
this paper.

1Such featuring makes some items more salient than others and
surely affects the final popularity of both featured and non-featured
items; typically, formulations of the problem look at very small
slices of early activity, which presumably minimizes these effects.
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Study Problem Formulation Content Structural Early Adopters Temporal
Bakshy et al. (2011) Regression (no peeking) n – Y –
Martin et al. (2016) Regression (no peeking) n – Y –
Szabo et al. (2010) Regression – n – Y
Tsur et al. (2012) Regression Y Y – Y
Pinto et al. (2013) Regression – – – Y
Yu et al. (2015) Regression – n – Y
Romero et al. (2013) Classification (k = {1000, 2000}, n = 50%) – Y – –
Cheng et al. (2014) Classification (k = 5, n = 50%) n Y Y Y
Lerman et al. (2008) Classification (k = 10, n = 80%) – Y Y –
Weng et al. (2013) Classification (k = 50, n = {70, 80, 90%}) – Y n –

Table 1: A taxonomy of problem formulations for popularity prediction, along with importance of feature categories. Y means
that the features in the category were useful for prediction, n means they were tried but not as useful, and – that they were not
studied. Most studies report temporal and structural features as important predictors.

Our problem: Peeking-based classification

Based on the above discussion, the general peeking-based
classification problem can be stated as:

P1: Given a set of items and data about their early
adoptions, which among them are more likely to be-
come popular?

This question has a broad range of formulations based on
how we define the early activity period, how much activ-
ity we are allowed to poke at, and how we define popular.
The early activity period may be defined in terms of time
elapsed t since an item’s introduction (Szabo and Huberman
2010), or in terms of a fixed number k of early adoptions
(Romero, Tan, and Ugander 2013). Fixing the early activity
period in terms of number of adoptions has the useful side-
effect of filtering out items with less than k adoptions over-
all, both making the problem harder and eliminating unpop-
ular (thus often uninteresting) items. For this reason, most
past work on peeking-based classification defines early ac-
tivity in terms of the number of adoptions k.

The popularity threshold for what is “popular” may also
be set at different percentiles (n%). Table 1 summarizes past
work based on their choices of problem formulation and
choice of (k, n). One common approach is to collect all
items that have k or more adoptions, then peek into the first
k adoptions and predict whether eventual popularity of items
lies above or below the median (Cheng et al. 2014). We call
this Balanced Classification since there are guaranteed to be
an equal number of high and low popularity items. Another
variation is to only consider the top-n percentile of items as
high popularity (Lerman and Galstyan 2008), a formulation
that is arguably better-aligned with most use cases around
content promotion than Balanced Classification. However, it
is also harder than Balanced Classification; for this reason,
and to continue to align with prior work, we focus on Bal-
anced Classification.

While restricting to items with k adoptions helps to level
the playing field because it provides a set of comparably
popular items to study, it ignores the time taken to reach k
adoptions. Based on prior work, our suspicion is that in this
formulation temporal features dominate the others. To con-
trol for this temporal signal, we later introduce a problem
formulation where both k and t are fixed. That is, we collect

all items that received exactly k adoptions in a given time
period t, and then predict which of them would be in the top
half of popular items. We call this the Temporally Matched
Balanced Classification problem, and as we will see, chang-
ing the definition has a profound impact on the quality of the
models.

Choosing features

We now turn to the selection of features for prediction. Part
of the allure of modeling is that the features that prove im-
portant might give information about why some items be-
come popular in ways that could be both practically and sci-
entifically interesting. Features used in prior work can be
broadly grouped into four main categories: content, struc-
tural, early adopters and temporal (Cheng et al. 2014). Ta-
ble 1 shows which feature categories were used in prior
studies, with cells in bold representing features that were
reported to be useful for prediction. While all feature cat-
egories have been reported to be important contributors to
prediction accuracy in at least some studies, temporal and
structural features are frequently reported as important.

Temporal patterns of early adoption—how quickly the
early adopters act—are a major predictor of popularity.
Szabo and Huberman show that temporal features alone
can predict future popularity reliably (Szabo and Huber-
man 2010). When information about the social network or
its users is hard to obtain, utilizing temporal features can
be fruitful, achieving error rates as low as 15% in a re-
gression formulation (Pinto, Almeida, and Gonçalves 2013;
Zhao et al. 2015). A natural next question is to ask how much
these errors can be decreased by adding other features when
we do have such information.

Features about the seed user and early resharers—
collectively called early adopters—also matter. On Twitter,
for example, the number of followers of the seed user and
the fraction of her past tweets that received retweets increase
the accuracy of predictions (Tsur and Rappoport 2012). In-
formation about other early adopters is also useful for pre-
dicting photo cascades in Facebook (Cheng et al. 2014).

The structure of the underlying social network also has
predictive power (Lerman and Galstyan 2008; Romero, Tan,
and Ugander 2013; Cheng et al. 2014). However, these stud-
ies do not agree on the direction of effect of these features.
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For instance, on Digg, low network density is connected
with high popularity (Lerman and Galstyan 2008), but on
Twitter, both very low and very high densities are posi-
tively correlated with popularity (Romero, Tan, and Ugan-
der 2013). Their intuition is that a lower network density
indicates that the item is capable of appealing to a general
audience, while a higher network density indicates a tight-
knit community supporting the item, both of which can be
powerful drivers for an item’s popularity.

Finally, while Tsur et al. report content features to be use-
ful (Tsur and Rappoport 2012), most studies find content
features to have little predictive power (Table 1). Even for
domains such as songs or movies where item information is
readily available, content features are not significantly asso-
ciated with item popularity (Pachet and Sony 2012). Further,
content features do not generalize well; it is hard to compute
generalizable content features across different item domains.
For these reasons, we do not consider content features in this
work.

Features

Based on the above discussion, we use the following cate-
gories of features, with the aim of reproducing and extend-
ing the features used in past work (Cheng et al. 2014): tem-
poral, structural, and early adopters. To these we add a set of
novel features based on preference similarity between early
adopters.

Temporal. These features have to do with the speed of
adoptions during the early adoption period between the first
and kth adoption. This leads to a set of features that focus
on the rate of adoption:

• timei: time between the initial adoption and the ith adop-
tion (2 ≤ i ≤ k). (Zhao et al. 2015; Maity et al. 2015;
Weng, Menczer, and Ahn 2013)

• time1...k/2: Mean time between adoptions for the first
half (rounded down) of the adoptions.

• timek/2...k: Mean time between adoptions for the last half
(rounded up) of the adoptions.

Structural. These features have to do with the structure of
the network around early adopters and can be broken down
into two sub-categories: ego network features that relate the
early adopters to their local networks, and subgraph features
that consider only connections between the early adopters.
Early adopters’ ego network features

• ini: Indegree of the ith early adopter (2 ≤ i ≤ k). This is
a proxy for the number of people who may be exposed to
an early adopter’s activity. For undirected networks, this
will simply be the degree, or the number of friends of an
early adopter. (Bakshy et al. 2011; Zhao et al. 2015)

• reach: Number of nodes reachable in one step from the
early adopters.

• connections: Number of edges from early adopters to the
entire graph. (Romero, Tan, and Ugander 2013)

Early adopters’ subgraph features

• indegreesub: Mean indegree (friends or followers) for
each node in the subgraph of early adopters. (Lerman and
Galstyan 2008)

• densitysub: Number of edges in the subgraph of early
adopters. (Romero, Tan, and Ugander 2013)

• ccsub: Number of connected components in the subgraph
of early adopters. (Romero, Tan, and Ugander 2013)

• distsub: Mean distance between connected nodes in the
subgraph of early adopters. This is meant to measure how
far the item has spread in the initial early adopters, similar
to the cascade depth feature by Cheng et al.

• sub ini: Indegree of the ith adopter on the subgraph (1 ≤
i ≤ k). (Lerman and Galstyan 2008)

Features of early adopters. These features capture infor-
mation about early adopters, such as their popularity, senior-
ity, or activity level, which might be proxies for their influ-
ence. They can be divided into two sub-categories: features
of the first user to adopt an item (root), and features averaged
over other early adopters (resharers).
Root features
• activityroot: Number of adoptions in the four weeks be-

fore the end of the early adoption period. This is simi-
lar to a measure used by Cheng et al. which measured
the number of days a user was active. (Cheng et al. 2014;
Petrovic, Osborne, and Lavrenko 2011; Yang and Counts
2010)

• ageroot: Length of time the user has been registered on
the social network.

• popularityroot: Number of friends or followers on the so-
cial network. (Lerman and Galstyan 2008; Tsur and Rap-
poport 2012)

Resharer features
• activityresharer: Mean number of adoptions in the four

weeks before the end of the early adoption period.
• ageresharer: Mean length of time the users have been reg-

istered on the social network.
• popularityresharer: Mean number of friends or followers

on the social network. (Tsur and Rappoport 2012)

Similarity To these previously tested features, we add
features related to preference similarity between the early
adopters. As with network density, our intuition is that sim-
ilarity between early adopters may matter in two ways: high
similarity may signify a niche item, or one that people with
similar interests are likely to adopt, while low similarity
might indicate an item that could appeal to a wide variety
of people.

Similarity was computed using the Jaccard index of two
users’ adoptions that occurred before the end of the early
adoption period of the item in question. We computed the
median, mean and maximum of similarity between adopters
because these give us an idea of the distribution of the affin-
ity of the early adopters; we do not include users who had
less than five adoptions before the item in question because
they are likely to have little overlap. The features we ex-
tracted are:
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Dataset Last.fm Twitter Flickr Goodreads

Number of users 437k 737k 183k 252k
Number of items 5.8M 64k 10.9M 1.3M
Number of adoptions 44M 2.7M 33M 28M
Mean adoptions 7.6 41.8 3.0 21.4
Median adoptions 1 1 1 1
Maximum adoptions 11062 82507 2762 88027

Table 2: Descriptive statstics for users, items, and adoptions in each dataset. We use adoption to mean loving a song on Last.fm,
tweeting a URL on Twitter, favoriting a photo on Flickr, and rating a book on Goodreads. The average number of adoptions per
item varies quite a bit, but the median popularity of 1 is consistent across datasets.

• simcount: Number of similarities that could be computed
between early adopters.

• simmean: Mean similarity between early adopters.
• simmed: Median similarity between early adopters.
• simmax: Maximum similarity between early adopters.

Data and Method

Datasets from four online social networks

We build models using data from four different online social
platforms: Last.fm, Flickr, Goodreads and Twitter. These
platforms span a broad range of online activity, including
songs, photos, books and URLs; they also have a variety of
user interfaces, use cases, and user populations. These vari-
ations reduce the risk of overfitting to properties of a partic-
ular social network.

• Last.fm: A music-focused social network where users
can friend one another and love songs. We consider a
dataset of 437k users and the songs they loved from their
start date until February 2014 (Sharma and Cosley 2016).

• Flickr: A photo sharing website where users can friend
one another and favorite photos. We use data collected
over 104 days in 2006 and 2007 (Cha, Mislove, and Gum-
madi 2009).

• Goodreads: A book rating website where users can friend
one another and rate books. The dataset consists of 252k
users and their ratings before August 2010. Unlike the
other sites, Goodreads users rate books; we consider any
rating at or above 4 (out of 5) as an endorsement (adop-
tion) of the book (Huang et al. 2012).

• Twitter: A social networking site where users can form
directed edges with one another and broadcast tweets,
messages no longer than 140 characters (as of 2010). The
Twitter dataset consists of URLs tweeted by 737k users
for three weeks of 2010 (Hodas and Lerman 2014).

All of these websites have an active social network, pro-
viding an activity feed that allows users to explore, like, and
reshare the items that their friends shared. The Last.fm feed
shows songs that friends have to listened to or loved, Flickr
shows photos that friends have favorited, Goodreads shows
books that friends have rated, and Twitter shows tweets with
URLs that followees have favorited or retweeted. Thus, like
past studies on online social networks such as Facebook,
Twitter and Digg, we expect active peer influence processes
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Figure 1: Cumulative percentage of adoptions by items for
each dataset. Items on the x-axis are sorted by their popular-
ity; the lines show a step pattern because multiple items may
have the same number of adoptions. We observe a substan-
tial skew in popularity. For example, the most popular 20%
of items account for 60% of adoptions in Flickr and more
than 90% of adoptions in other datasets.

that should make structural and early adopter features rele-
vant.

Table 2 shows descriptive statistics about the datasets,
all of which have more than 150k users and millions of
items (with the exception of Twitter with 64k URLs). Twit-
ter has the highest mean adoptions per item (41), followed
by Goodreads (21). The maximum number of adoptions for
an item also varies, from more than 80k in Twitter and
Goodreads to 2.7k in Flickr. The median number of adop-
tions is consistent, however: at least half of the items have
only 1 adoption. The skew in popularity distribution is bet-
ter shown in Figure 1. The 20% of the most popular items
account for over 60% of adoptions in Flickr and over 90%
of the adoptions in the other three websites. On Twitter, the
skew is extreme: over 81% adoptions are on 4% of items.

Classification methodology

We first operationalize the Balanced Classification formu-
lation on these datasets. As a reminder, k is the number of
early adoptions that we peek at for each item, and we pre-
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Figure 2: Boxplot showing the number of adoptions after 28
days (10 for Twitter) for items which have at least 5 adop-
tions. The bold partial line is the mean number of adoptions.
Across datasets, most items receive less than 20 adoptions.

dict which of these items will end up more popular than the
median item.

We measure the final popularity at a time T days after the
first adoption of the item. To be consistent with prior work,
we follow Cheng et al. and set k = 5 and T = 28 days for
Last.fm, Flickr and Goodreads. Because the Twitter dataset
is only three weeks long, we use a smaller T = 10 days. To
avoid right-censoring, we include only items that had their
first adoption at least T days before the last recorded times-
tamp in each dataset. The parameter k also acts as a filter, al-
lowing only items with at least k adoptions. Figure 2 shows
properties of the data thus constructed.

We classify items based on their popularity after T days,
labeling those above the median 1 and others as 0. For each
item, we extract features from the early adoption period,
the time between the first and kth adoption. We use 5-fold
cross validation to select the items that we train on, then use
the trained model to predict final popularity of items in the
test set. Since we use median popularity as the classifica-
tion threshold, the test data has a roughly equal number of
items in each class, allowing us to use accuracy as a reason-
able evaluation metric. We tried several classification mod-
els using Weka (Hall et al. 2009), including logistic regres-
sion, random forests and support vector machines. Logistic
regression models generally performed best, so we report re-
sults for those models unless otherwise specified.

Balanced classification

We start by comparing the predictive power of models us-
ing different sets of features across the four datasets on the
Balanced Classification problem.

Temporal features dominate

Figure 3 shows the prediction accuracy of the models. Simi-
lar to prior work on Facebook that used peeking (Cheng et al.
2014), when using all features we are able to predict whether
an item will be above the median popularity around three-
fourths of the time: 73% for Goodreads, 75% for Flickr, 81%
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Figure 3: Accuracy for prediction models incorporating dif-
ferent categories of features. The y-axis starts at 50%, the
baseline for a random classifier on the balanced formulation.
On all datasets, temporal features are the most predictive, al-
most as accurate as using all available features.

for Last.fm and 83% for Twitter.
Training models with individual feature categories shows

that temporal features are by far most important. Across all
four datasets, a model using only temporal features performs
almost as well as the full model. The next best feature cat-
egory, resharer features, is able to predict 71% on Twitter
and less than 60% on the other three datasets. Even a model
that uses all non-temporal features, denoted by the “all-
temporal” line in Figure 3, is not very good. For Goodreads
and Flickr, this model is not much better than a random clas-
sifier. For Last.fm and Twitter, accuracy for non-temporal
features improves somewhat, but is still at least 10% worse
than when including temporal features.

Even a single temporal feature can be more predictive
than models constructed from all non-temporal features.
Consider the feature timex, which is the number of days
for an item to receive x number of adoptions. At x = 5 =
k, the feature time5—time taken for an item to receive
5 adoptions—is the most predictive temporal feature for
all datasets. A model based on this single feature achieves
more than 70% accuracy on all datasets and accounts for
nearly 97% of the accuracy of the full model for each
dataset. While past work has highlighted the importance of
temporal features as a whole (Szabo and Huberman 2010;
Cheng et al. 2014), it is interesting to find that we may not
even need multiple temporal features: a single measure is
able to predict final popularity class label for items in all
datasets.

Cross-domain prediction

The analysis in the previous section confirms past findings
about the importance of temporal features across a range of
websites. We now extend these results to show that temporal
features are not only powerful, they are also general: models
learnt on one item domain using temporal features are read-
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Test \ Train Last.fm Flickr Goodreads Twitter
Using only temporal features

Last.fm 80.6 80.7 78.0 80.0
Flickr 73.9 74.7 70.0 73.9
Goodreads 70.3 69.7 71.9 70.3
Twitter 82.7 82.3 79.7 82.2

Using only non-temporal features

Last.fm 62.1 56.3 60.2 52.3
Flickr 53.0 55.1 51.8 48.2
Goodreads 56.0 52.1 57.1 50.6
Twitter 45.8 44.1 56.4 73.4

Table 3: Prediction accuracy for models trained on one
dataset (columns) and tested on each dataset (rows). The
diagonals report accuracy on the same dataset, while other
cells report accuracy when the model is trained on one
dataset and tested on another. The power of temporal fea-
tures generalizes across domains: testing a model on any
dataset, trained on any other dataset, loses no more than 5%
accuracy compared to testing a model on the same dataset.
For non-temporal features, prediction accuracy decreases
substantially when applying models to other datasets.

ily transferable to others. In contrast, non-temporal features
do not generalize well: even the direction of their effect is
not consistent across domains. To show this, we train pre-
diction models separately for each dataset, as before, then
apply each model to every dataset.

Temporal features generalize

Table 3 shows the accuracy of models trained only on tem-
poral features from one dataset and tested on all four. Read-
ing across the rows shows that regardless of which social
network a model was trained on, its accuracy on test data
from another network remains within 5% of the accuracy on
test data from the same network.

Such consistent prediction accuracy is impressive, espe-
cially because the median time to reach 5 adoptions varies,
ranging from 1 day in Flickr to 15 days for Goodreads. This
suggests that there are general temporal patterns that are as-
sociated with future popularity, at least across these particu-
lar networks.

Other features have inconsistent effects

The story is less rosy for non-temporal features. Table 3
shows the cross-domain prediction accuracy for models
trained on all non-temporal features (in light of their low
accuracy when taken individually, we combine all non-
temporal features). Accuracies on the same dataset corre-
spond to the “all-temporal” line in Figure 3; they are gener-
ally low and drop further when tested on a different dataset.
In particular, models trained on other websites do poorly
when tested on Twitter, with the Last.fm and Flickr models
performing worse than a random guesser on Twitter data.
Meanwhile, a model trained on Twitter is almost 10 percent-
age points worse than the Last.fm-trained model for predict-
ing popularity on Last.fm.

Not only does prediction accuracy drop across websites,
but fitting single-feature logistic regression models for each
feature shows that for 12 of the 25 features, the coeffi-
cient term flips between being positive and negative across
models fit on different datasets. Similar to the contrast-
ing results found in prior work (Lerman and Hogg 2010;
Romero, Tan, and Ugander 2013), we find that all measures
of subgraph structural features of the early adopters, namely
indegreesub, densitysub, ccsub, distsub and sub ini (ex-
cept for sub in1 and sub in4), can predict either higher
or lower popularity depending on the dataset. For exam-
ple, a higher densitysub—number of edges in the subgraph
of early adopters—is associated with higher popularity on
Flickr (β coefficient=0.04), whereas on Last.fm, a higher
density is associated with lower popularity (β coefficient=-
0.09). Features from the root, resharer and similarity cat-
egories show a similar dichotomous association with final
item popularity.

Gaps between prediction and understanding

These results show that not only are non-temporal features
weak predictors, the direction of their effect on popularity is
inconsistent across different domains. Combining this with
our observation that a single temporal heuristic is almost as
good a predictor as the full model raises questions about
what it is that popularity prediction models are predicting
and how they contribute to our understanding of popularity.

Temporal features drive predictability

While our work may seem contrary to recent work that
claims that early adopters and properties of their social net-
work matter for prediction, many of their findings are consis-
tent with our own. Most prior work that uses peeking finds
that temporal features are a key predictor (Tsur and Rap-
poport 2012; Szabo and Huberman 2010; Pinto, Almeida,
and Gonçalves 2013; Yu et al. 2015). Further, even though
Cheng et al. conclude temporal and structural features are
major predictors of cascade size, they report for predicting
photos’ popularity on Facebook, accuracy for temporal fea-
tures alone (78%)is nearly as good as the full model (79.5%)
(Cheng et al. 2014).

By holding modeling, feature selection and problem for-
mulation consistent, we contribute to this literature by
demonstrating the magnitude and generality of the predic-
tive power of temporal features across a range of social net-
works. Having multiple networks also lets us show that, un-
like temporal features, using non-temporal features does not
generalize well to new contexts. These features might be
useful for understanding the particulars of a given website,
but it seems likely that they are capturing idiosyncrasies of
that site rather than telling us something general about how
items become popular in social networks.

Is cumulative advantage the whole story?

If non-temporal features are weakly predictive and not gen-
eralizable, and all that matters is the rate of initial adop-
tion, then how do predictive exercises with peeking advance
scientific understanding of what drives popularity? In other
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words, what does it mean when one claims that popularity is
predictable once we know about initial adopters?

One answer is that early, rapid adoption is a signal of in-
trinsic features of an item that help to determine its pop-
ularity. Items with better content command a higher initial
popularity, and thus the predictive power of early tempo-
ral features is simply a reflection of content quality or in-
terestingness to the social network in question. Given in-
creasing evidence from multiple domains that content fea-
tures are at best weakly connected to an item’s popularity
(Salganik, Dodds, and Watts 2006; Pachet and Sony 2012;
Martin et al. 2016), this seems unlikely to be the whole ex-
planation.

Another explanation is that items that get attention early
are more likely to be featured in the interface, via feeds,
recommendations or ads; they might also be spread through
external channels could drive up the rate of early adoption.
Those would be interesting questions to explore. Still, what-
ever be the driving reasons, these models are telling us that
once items achieve initial popularity, they are much more
likely to become more popular in the future. This is simply
a restatement of cumulative advantage, or the rich-get-richer
phenomenon (Borghol et al. 2012).

Overall, though, we find that neither our results nor other
work say much about why or how items become popular, ex-
cept that items that share temporal patterns of popular items
early on tend to be the ones that are more popular in the fu-
ture, and that making popularity salient and ordering items
by popularity can increase this effect (Salganik, Dodds, and
Watts 2006). While such predictions are practically useful
for promoting content, they are not so useful for informing
creation of new content or assessing its value, nor for under-
standing the mechanisms by which items become popular.

Temporally matched balanced classification

In this section, we give a problem formulation that lessens
the importance of temporal features by conditioning on the
average rate of adoption. That is, instead of considering all
items with k adoptions, we consider items with k adoptions
within about the same amount of time. Given the dominance
of cumulative advantage, such a formulation would be bet-
ter suited for future research in understanding how items be-
come popular, as gains in accuracy will likely shed light on
attributes of early adopters, items, and networks that affect
their final popularity.

k-t problem formulation

We call this formulation Temporally Matched Balanced
Classification, or a k-t formulation of the problem:

P2: Among items with exactly k adoptions at the end of
a fixed time period t, which ones would be higher than
the median popularity at a later time T?

To do this, for each dataset we filtered items to those that
had exactly k adoptions in t days. We extracted features of
these items as previously described, adding a new temporal
feature for each day in t:
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Figure 4: Percent accuracy for fixed t & k using all features
and non-temporal features, and for fixed k with all features
and non-temporal features. k = 5, T = 28 days for all;
t = 15 days for Goodreads, t = 1 days for Flickr, and t = 7
days for Last.fm. Fixing t reduces accuracy substantially
compared to when t is not fixed. As expected when control-
ling for time, non-temporal features now provide most of the
explanatory power.

• adoptionsi: Number of adoptions on day i of the early
adopter period. (Szabo and Huberman 2010; Tsur and
Rappoport 2012; Pinto, Almeida, and Gonçalves 2013)

As before, we choose k = 5 and T = 28 days. For each
dataset, we set t to be the median time it took an item to
reach five adoptions: t = 15 for Goodreads, t = 7 for
Last.fm, and t = 1 for Flickr. We exclude Twitter due to
a lack of data when we filter for both k and t. We again
do 5-fold cross-validation, predicting if each item would be
above or below the final median popularity after T days.

Figure 4 shows the results. As we hoped, non-temporal
features now provide most of the explanatory power in the
full model. Further, comparing the all-temporal series with
fixed k and t to the one with only fixed k shows that the abso-
lute accuracy of non-temporal features increases in this for-
mulation. This suggests that de-emphasizing temporal fea-
tures in prediction might in fact improve our understanding
of other features that drive popularity.

Our understanding, however, is limited: even conditioning
on a single temporal feature makes for a much harder prob-
lem, with the overall prediction accuracy below 65% for all
datasets even when using all features. There is clearly much
room for improvement.

Discussion and Conclusion

Using multiple problem formulations, we show that tempo-
ral features matter the most in predicting the popularity of
items given data about initial adopters and our current abil-
ity to build explanatory features of those adopters and their
networks. Using datasets from a variety of social networks,
we show that temporal features are not only better at predict-
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ing popularity than all other features combined, but that they
readily generalize to new contexts. When we discount tem-
poral phenomena by removing temporal features or adjust-
ing the problem formulation, accuracy decreases substan-
tially.

From a practical point of view, these results provide em-
pirical support for a promising approach where only tem-
poral features are used to predict future popularity (Szabo
and Huberman 2010; Zhao et al. 2015) because the drop in
accuracy by casting aside non-temporal features is gener-
ally small. Maybe creative feature engineering is not worth
the effort for the Balanced Classification task. This way of
looking at the problem resonates a bit with the Netflix prize,
where most of the learners that were folded into the winning
model were never implemented in Netflix’s actual algorithm,
in part because the cost of computing and managing those
learners was not worth the incremental gains (Amatriain and
Basil 2012).

Although less valuable than temporal features, the non-
temporal features examined so far do have some predictive
power on their own. This might be useful when temporal in-
formation is unavailable: for example, for very new items
(Borghol et al. 2012), or for external observers or datasets
where timestamps are unavailable (Cosley et al. 2010). En-
couragingly, non-temporal features increase in accuracy a
little on the k-t formulation compared to the fixed-k bal-
anced classification problem, suggesting that making time
less salient might allow other factors to become more visi-
ble and modelable.

Using k-t models could also bend time to our advantage.
Comparing the overall performance and predictive features
in models with smaller versus larger t might highlight item,
adopter, and network characteristics that predict faster adop-
tion (and eventual popularity). Another way to frame this
intuition is that instead of predicting eventual popularity, we
should try to predict initial adoption speed.

Deeper thinking about the context of sharing might also
be useful. Algorithmic and interface factors, for instance,
have been shown to create cumulative advantage effects; it
would be interesting to look more deeply into how system
features might influence adoption behaviors. Likewise, dif-
fusion models tend to focus attention on sharers rather than
receivers of information—but those receivers’ preferences,
goals and attention budgets likely shape their adoption be-
haviors (Sharma and Cosley 2015). Thus, consideration of
audience-based features might be a way forward.

Most generally, we encourage research in this area to go
beyond the low-hanging fruit of time. For building better
theories of diffusion, maximizing accuracy with temporal in-
formation may act both as a crutch that makes the problem
too easy, and as a blindfold that makes it hard to examine
what drives those rapid adoptions that predict eventual pop-
ularity.
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