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Abstract

Community discovery in social networks has received
a significant amount of attention in the social me-
dia research community. The techniques developed by
the community have become quite adept at identifying
the large communities in a network, but often neglect
smaller communities. Evaluation techniques also show
this bias, as the resolution limit problem in modular-
ity indicates. Small communities, however, account for
a higher proportion of a social network’s community
membership and reveal important information about the
members of these communities. In this work, we intro-
duce a re-weighting method to improve both the over-
all performance of community detection algorithms and
performance on small community detection.

Introduction
In real social networks, community sizes are widely dis-
tributed. For example, in Facebook1, there are huge univer-
sity communities with tens of thousands of people includ-
ing students, professors, alumni, etc. However, these net-
works also contain small communities of club sports, re-
search groups, and classes, among others, that are much
smaller. Prior work has shown that community sizes are dis-
tributed according to a power law in social networks (Tang
and Liu 2010). This means that networks will always have
far more small communities than big communities.

In addition to this superset and subset relationships within
communities, different communities that share similar inter-
ests may also have more connections to each other. For ex-
ample, members of two karate clubs that come from differ-
ent universities may become friends. Because of the tight
connection between the two communities, the number of
inter-community edges increases, and current algorithms
may merge the two communities together.

These phenomena can combine to cause useful communi-
ties to be completely “hidden” in larger communities, which
makes community detection extremely difficult. However, in
real world applications, we are usually more interested in the
small groups. The difficulty of detecting these groups make
it an area of interest for many organizations.
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In this paper, we introduce a method that can discover the
small, denser communities “hidden” inside the larger com-
munities. Instead of developing an entirely new method, we
introduce a technique for reweighting the network.

Background and Problems
As discussed, small communities can easily hide in large
communities. In our investigation of this phenomenon, we
noticed that a large class of existing algorithms depend heav-
ily on edge information: Infomap (Rosvall and Bergstrom
2008) relies on the fact that a random walker tends stay in-
side communities but will eventually leave and SLPA (Xie,
Szymanski, and Liu 2011) propagates labels from one node
to its adjacent neighbors by the same probability that ran-
dom walks use. Thus, the edge weights play a large role in
the performance of the algorithm. If we can find a set of
intra-community edges and assign them higher weights, the
walks or labels will stay in smaller communities.

Community Detection Formulation
In this paper, we are interested in applying our method to
undirected networks representing social networks. The fol-
lowing description of the community detection problem is
oriented toward networks with no edge weights, but the
method described can be generalized to weighted networks.

Some notation is as follows: Let G = (V,E) be the graph
associated with the network, with a node set V and an edge
set E. n,m are the number of nodes and edges in G, respec-
tively. A is the adjacency matrix of G, where A = (Aij):

Aij =

{
1 ij ∈ G
0 ij �∈ G

It is worth noting that A is assumed to be a sparse matrix
since G is a representation of a social network.

We wish to assign weights to the edges in E, such that
inter-community edges receive higher weights, while intra-
community edges receive lower weights. Furthermore, we
expect that the application of these weights will improve the
precision of current community detection algorithms with-
out affecting complexity.

Discovering Community Cores
We already claimed different weights can play an important
role in community detection. In this section, we address the
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two problems proposed earlier.
Choosing an appropriate reweighting method is not easy

or obvious. Edge betweenness centrality is a strong candi-
date since Girvan and Newman already use it as a technique
for detecting communities in their classical algorithm.

Selecting edge betweenness gives us two subsequent
problems to solve. First, edge betweenness measures inter-
community edges with higher weight, while we need these
edges to be lower weight. Second, the complexity for calcu-
lating betweenness is O(n3), which is infeasible. The first
problem is simpler to solve, and is addressed later. We solve
the second problem by approximating current-flow between-
ness, as introduced by (Newman and Girvan 2004).

Betweenness Centrality
Approximating current-flow betweenness can also be done
by approximating spanning-tree betweenness. Spanning-
tree betweenness is a measure of edge betweenness that
measures the number of spanning trees on which each
edge lies. This spanning-tree betweenness is equivalent to
current-flow betweenness according to (Mavroforakis et al.
2015) and demonstrated in (Bollobás 1998). In addition to
reiterating this equivalence, the former also describes a ef-
ficient way to compute this betweenness. For brevity, we
omit the exact algorithm and discussion of the algorithm’s
working. In summary, the algorithm uses a sampling tech-
nique to approximate current-flow betweenness and a fast,
approximate linear equation solver to solve Kirchoff’s Laws.
These two approximations reduce the computation’s com-
plexity from O(n3) to Õ(m log2 n log

(
1
ε

)
), where ε is the

error of both approximations.

Measuring Intimacy
Using these edge centrality metrics, we can then move on
to actually reweighting the network. We define the measure
that we will use to reweight the network as Intimacy:

Definition 1 (Intimacy) In a network, the intimacy mea-
sure for each edge ij ∈ E(G) is a real number Iij that
is inversely proportional to its betweenness measure cij:

Iij := max
i,j

cij +min
i,j

cij − cij

To calculate intimacy, we first calculate the betweenness
measure over the entire network, which can be done quickly
thanks to the work in the previous section. From the descrip-
tion above, Algorithm 1 formalizes the procedure.

In the final step of this algorithm, we add an additional
ε term to ensure that every edge in the network has at least
some intimacy.

Intimacy Verification
In order to demonstrate that intimacy does, in fact, distin-
guish between inter- and intra-community edges, we per-
formed two test of intimacy values. The first, a Mann-
Whitney-Wilcoxon (Mann, Whitney, and others 1947) test,
demonstrated that inter- and intra- community edges had
substantially different distributions with a maximum p-value

Input: Original network adjacency matrix A
Output: Intimacy matrix I
Choose a set T of k samples of positive pole and
negative poles
for each s ∈ T do

Solve v in linear equation (D−A)v(st) = b(st).
Calculate current-flow betweenness cij for all edges
ij

end
Find cmin = min(cij), cmax = max cij .
Calculate S = cmax + cmin.
for each edge ij ∈ E do

Compute Iij = S − cij
end
for each pair (i, j) with Aij = 1 do

Iij = Iij + ε
end

Algorithm 1: Intimacy Calculation

of 3.54 × 10−8. The second, a pair comparison test, var-
ied the level of community overlap and showed that intra-
community edges had greater values than inter-community
edge with greater than 50% probability until more than 80%
of the community overlapped. From these tests, we can con-
clude that intimacy does, in fact, distinguish edge types.

Incorporating Intimacy
Since Intimacy can be computed quickly and differentiates
edge types, we can integrate the intimacy measure into com-
mon community detection algorithms.

1. Infomap (Rosvall and Bergstrom 2008). Using the proper-
ties of Random Walks, this algorithm generates a number
of modules and then optimizes communities by combin-
ing and separating these modules in such a way that min-
imizes the map equation.

2. Speaker-listener Label Propagation Algorithm (SLPA)
(Xie, Szymanski, and Liu 2011). Proceeding iteratively,
SLPA gives all nodes labels a gives a node’s label to each
of its neighbors and then repeats. After all iterations are
complete, labels above a given threshold are kept.

3. Louvain’s algorithm (Blondel et al. 2008). A very popular
modularity optimization method, Louvain’s algorithm is
an agglomerative heuristic algorithm.

To incorporate our method into these algorithms, we sim-
ply apply the original method on the reweighted network.

Experimental Results
Datasets
The data we use for our experiments are as follows, with
statistics given in Table 1.

• LFR Benchmark network (Lancichinetti, Fortunato, and
Radicchi 2008). The LFR benchmark is not a single data
set, but an algorithm for generating datasets. This algo-
rithm for generating datasets allows the user to control a
large number of features of the output graph.
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Network Nodes Edges Communities
Amazon 334,863 925,872 271,270
Youtube 1,134,890 2,987,624 8,385
DBLP 317,080 1,049,866 13,477

Table 1: Real-world dataset statistics

• Amazon Co-Purchasing Network (Leskovec and Krevl
2014): The Amazon Co-Purchasing Network is based on
the ‘Customers Who Bought This Item Also Bought’ fea-
ture. Two products, nodes, are linked if they are frequently
purchased together.

• YouTube (Leskovec and Krevl 2014): The YouTube net-
work is based on user-defined groups on the YouTube2

video sharing site. User groups form the ground-truth
community assignments.

• DBLP (Leskovec and Krevl 2014): The DBLP network is
based on collaboration between researchers in Computer
Science. In this network, the ground-truth communities
are determined by publication venue.

The sizes of these datasets can be found in Table 1.

Results
Previously, we demonstrated that our intimacy measure ef-
fectively distinguishes edge type by their values. We will
next demonstrate the performance-increasing potential of
the intimacy reweighting technique. To judge the level
of improvement, we will be evaluating community par-
titions using Generalized Normalized Mutual Information
(GNMI) (Lancichinetti, Fortunato, and Radicchi 2008). We
chose GNMI since standard NMI does not properly han-
dle overlapping communities. An implementation of this
method can be found online3.

Our evaluation depicted in Figure 1 took place on syn-
thetic networks generated using the LFR benchmark. In
these synthetic networks, we varied a number of parame-
ters, including the network size (N ), number of nodes in
overlapping communities (On), number of communities to
which nodes with overlap belong (Om), and the topological
mixing parameter (μ). We use 2 for the power-law degree
constants for both community sizes and node degree distri-
butions and 25 for the average node degree in all instances.
To ensure that our results are consistent we use 30 network
realizations and plot the average.

Figure 1 shows the results of combining our reweighting
technique with the SLPA algorithm. In all subgraphs, we
show the base algorithm’s performance (blue), the base al-
gorithm with intimacy reweighting (red), and the base algo-
rithm with random reweighting (black). Random reweight-
ing occurred by selecting edge weights randomly from the
uniform distribution of [1, 5]. Figure 1(a) clearly shows that
the NMI of community partitions increases when the net-
work is reweighted with intimacy. Figure 1(b) additionally

2www.youtube.com
3https://sites.google.com/site/andrealancichinetti/mutual

(a) NMI

(b) Community average size

Figure 1: Synthetic results: SLPA

shows that average community sizes decrease or remain
approximately the same when the network is reweighted.
These together show that the communities detected after the
network is reweighted are smaller on average and that these
smaller communities are more accurate to the ground truth.

In addition to reweighting on SLPA, we also performed
experiments with Infomap, which uses some global infor-
mation. Infomap maximizes the map equation to find its fi-
nal partitions, which uses global information. Under these
conditions, reweighting with intimacy does not provide as
strong a result as it does with SLPA.

Since our method shows promising results on these syn-
thetic networks, we next look to the real-world data sets.
Table 2 shows the results of testing these combinations. Our
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Network SLPA(no) SLPA(in) SLPA(rn) IMP(no) IMP(in) IMP(rn) LVA(no) LVA(in) LVA(rn)
Amazon 0.242 0.273 0.250 0.226 0.226 0.224 0.280 0.285 0.263
Youtube 0.024 0.018 0.013 0.004 0.006 0.005 0.027 0.026 0.018
DBLP 0.130 0.143 0.132 0.096 0.096 0.091 0.150 0.149 0.136

Table 2: NMI results for Infomap (IMP), SLPA, and Louvain’s algorithm (LVA) on real-world networks with no reweighting
(no), random reweighting (rn), and intimacy reweighting (in).

results here are similar to the ones obtained on synthetic net-
works with two exceptions. The first, SLPA and intimacy
on the YouTube network is interesting, as any reweighting
degrades performance. This pattern is not repeated, so it is
unclear why SLPA performs so well. The second anomaly
exists with Louvain’s algorithm on the YouTube and DBLP
networks. In this case, we see performance degradations
when reweighting. We believe that this is because the fi-
nal step of Louvain’s algorithm uses modularity to deter-
mine the optimal partition. Scaling up the network to these
sizes likely caused modularity to combine some of the new,
smaller communities together due to its resolution limit, re-
sulting in a lower NMI. Since the communities in our syn-
thetic networks were large relative to the size of the network,
this did not occur in our synthetic results.

These results indicate that our intimacy reweighting tech-
nique does provide strong, positive results across a wide va-
riety of network topologies, though the technique works bet-
ter as the size and complexity of the network increase. In
addition, the technique is more effective when used along-
side algorithms that do not take global information into ac-
count, like SLPA and Louvain’s algorithm. Algorithms that
use global information like Infomap can benefit, although
not as much.

Guidelines
Effectively applying this intimacy reweighting technique
can be situational. Since our technique operates faster than
the base community detection algorithms, it can be applied
without affecting computational complexity. Our technique
works best when the algorithm of choice does not use global
information. In addition, using a modularity-based tech-
nique may hamper performance on some networks. That
said, our method does result in smaller detected communi-
ties across detection methods and network types, so it may
be valuable if small communities are the goal.

Conclusion
This paper develops a new reweighting measure to improve
the performance of existing community detection methods
without compromising complexity. The reweighting tech-
nique finds global information in near linear time, and has
a wide range of applications. Applying this technique shows
gains in local-information based methods, like SLPA.

Our work also shifts the focus of common community de-
tection algorithms from large communities to small commu-
nities. Handling small communities may have impacts out-
side of improving community detection results and match-
ing community size distributions. One emerging problem

in community detection is Evolving Community Detection.
Additional ability to to detect communities earlier in their
course of course may assist with the task of detecting these
evolving, highly dynamic communities.
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