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Abstract

Modeling the popularity dynamics of an online item is an im-
portant open problem in computational social science. This
paper presents an in-depth study of popularity dynamics un-
der external promotions, especially in predicting popularity
jumps of online videos, and determining effective and effi-
cient schedules to promote online content. The recently pro-
posed Hawkes Intensity Process (HIP) models popularity as
a non-linear interplay between exogenous stimuli and the
endogenous reactions. Here, we propose two novel metrics
based on HIP: to describe popularity gain per unit of promo-
tion, and to quantify the time it takes for such effects to un-
fold. We make increasingly accurate forecasts of future pop-
ularity by including information about the intrinsic properties
of the video, promotions it receives, and the non-linear effects
of popularity ranking. We illustrate by simulation the inter-
play between the unfolding of popularity over time, and the
time-sensitive value of resources. Lastly, our model lends a
novel explanation of the commonly adopted periodic and con-
stant promotion strategy in advertising, as increasing the per-
ceived viral potential. This study provides quantitative guide-
lines about setting promotion schedules considering content
virality, timing, and economics.

1 Introduction

“The fundamental scarcity in the modern world is the
scarcity of attention.” – Herbert A. Simon. Human attention
is limited, both for individuals and groups, and the mecha-
nisms governing its allocation still remain largely not under-
stood. Influencing attention allocation is a related open prob-
lem that has broad applications, such as optimizing informa-
tion dissemination for producers and managing information
overload for consumers. In this paper, we study the popu-
larity of cultural items under promotion in the online envi-
ronment. We seek to answer important questions on social
attention, such as: how well will an item respond to a given
amount of promotion? How much promotion is required for
this item to rise to the top 5% in popularity? What is the best
timing for spending a promotion budget for a given item?
Can we detect sleeping beauties (Garfield 1980), i.e., items
that have the potential to become popular but have yet to?
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This work is concerned with three open questions about
online promotion and popularity. The first gap is modeling
attention at the individual versus the aggregate level. Most
previous work study diffusion processes at the individual
level, in applications like profiling (Bleier and Eisenbeiss
2015), personalized recommendation (Zhang et al. 2014) or
optimizing reach (Zarezade et al. 2017). However, this ques-
tion remains open: How to quantify the aggregate atten-
tion received by a given item? Especially, how can we es-
timate the amount of attention induced by external promo-
tions. The second question is about predicting popularity un-
der promotion. There exists a number of generative models
for the popularity of online items (Shen et al. 2014) or of
diffusion cascades (Zhao et al. 2015; Mishra, Rizoiu, and
Xie 2016), however these concentrate mainly on the pre-
diction accuracy, and they leave open a question important
for designing promotion campaigns: What factors should
popularity forecast take into account? The third question
concerns building cost-effective promotion schedules. So-
lutions have been proposed for building promotion sched-
ules at the individual user level (Spasojevic et al. 2015;
Karimi et al. 2016) – i.e. the when-to-post problem, when
should a user post the content in order to maximize the audi-
ence within her social network. However, these approaches
do not generalize to an advertisement context, where addi-
tional factors should be accounted for, such as repeated pro-
motions, and the monetary value of promotions. The open
question is: What promotion schedules are effective for
different content?

In this work, we answer all three questions above, build-
ing upon a recently proposed popularity model, the Hawkes
Intensity Process (HIP) (Rizoiu et al. 2017). HIP models
popularity as being continuously driven by exogenous stim-
uli, which may or may not be amplified through an endoge-
nous word-to-mouth diffusion.

Addressing the first question, HIP models attention at the
collective-level, by taking the expectation over user behavior
in the online. We use it to quantify the expected attention
series generated by external promotion, and we propose in
Sec. 3 two metrics: the viral potential ν quantifies the total
expected views generated from one unit of promotion; the
maturity time t∗ quantifies the time needed for the majority
(e.g. 95%) of these views to unfold. These serve to determine
the amount of promotion needed to achieve a target number
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Figure 1: (a) Conceptual schema of the Hawkes Intensity Process. Top flow: popularity series ξ(t) is a result of external stimuli
s(t) driving endogenous response involving network effects, system memory and content virality. Bottom flow: the impulse
response ξ̂(t) is a result of a stimuli of unit impulse driving the same endogenous response. (b) An illustration of the LTI
property. The decomposition of the fitted viewcount series into scaled and temporally shifted impulse responses (inset), for the
Music video id 2V6 1VxiBt8.

of views, and comparatively analyze videos.
Addressing the second question, we investigate four fac-

tors that influence the forecast of future popularity under
promotion: the item’s viral potential, the amount of and the
timing of promotions, and the non-linear relationship be-
tween attention and popularity. We perform in Sec. 5 two
predictive exercises. We first forecast future views, and we
find that accounting for future promotion volume leads to the
largest reduction in prediction error (by 38.66%), whereas
the knowledge of promotions timing seems negligible. In
the second exercise, we detect items with a sudden rise in
popularity. We find that jointly taking into account the viral
potential and the non-linearity of popularity performs best.

To answer the third question, we set out to analyze the
interplay of maturity time and promotion schedule. We con-
sider promotions to have a time-sensitive value, under the
common setting of compounding interests. Our analysis
shows that the optimal schedule depends on the items ma-
turity time: the most cost-effective way to promote fast un-
folding content is to introduce promotions late; the trade-off
between maturity and cost becomes increasingly important
for content with slow unfolding.

The main contributions of this work include:

• Quantify popularity under promotion with two metrics:
the total attention generated by one unit of promotion
and the time needed for it to unfold;

• Analyze the factors influencing popularity forecasts, and
evaluate prediction of popularity jumps;

• Quantify economic value versus time in promotion, and
provide guidelines for constructing cost-effective pro-
motion schedules;

• Explain why constant promotion is desirable – that this
schedule increases the perceived viral potential.

Differences between the current work and HIP. This
work differs from HIP in several significant ways. Firstly,
we address the problem of estimating future popularity in
the context of planned promotion. In contrast, HIP analy-
ses popularity using naturally occurring external attention,
which lacks control in the quantity and timing of intended
promotions. Secondly, in this paper one key focus is de-

tecting items which exhibit a sudden jump in popularity.
Whereas the original HIP work are mainly concerned with
forecasting the amount of future views. Lastly, this work ad-
dress two new problems – quantifying the factors that affect
the prediction of popularity, and profiling economically ef-
ficient promotion schedules. The R code for estimating and
simulating HIP, and the ACTIVE dataset are publicly avail-
able at https://github.com/andrei-rizoiu/hip-popularity .

2 Prerequisites: The HIP model

In this section, we briefly review the Hawkes Intensity Pro-
cess (HIP) that was recently introduced (Rizoiu et al. 2017)
to model the evolution of popularity under the continuous
influence of external stimuli (Sec. 2.1) and we elaborate on
the key property of HIP of being a Linear Transform Invari-
ant (LTI) system (Sec. 2.2).

2.1 The Hawkes Intensity Process

Self-exciting point processes are a class of stochastic pro-
cesses, where the occurrence of past events makes the oc-
currence of future events more probable. They capture sev-
eral key intuitions of online information dissemination, and
recently became one of the defacto choices for modeling so-
cial media (Zhao et al. 2015). One such process, the Hawkes
point process (Hawkes 1971), uses the following event rate
λ(t) to measure how likely a viewing event will occur at
time t:

λ(t) = μs(t) +
∑
ti<t

φmi(t− ti) (1)

λ(t) has two additive components. The first component is
proportional to a measure of external influence s(t) scaled
by a constant μ. Here s(t) represents the volume of promo-
tion over time. φmi(t− ti) is a time-decaying triggering ker-
nel (which here decays following a power-law), representing
the rate of views triggered by a previous event i, having oc-
curred at time ti with magnitude mi > 0. Furthermore, each
event ti < t adds to λ(t) independently.

HIP (Rizoiu et al. 2017) is derived from marked Hawkes
self-exciting processes (Hawkes 1971). It presents a new
analytical form that relates the expected number of events
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Figure 2: The relation between viral potential, volume of
promotions and gained attention. (a) 3 videos placed on the
equal-attention hyperbola νS = 400, 000: v1 (an Entertain-
ment video, id 5TQAnGjyN9A), v2 (Pets & Animals, id
00ATf2HR-FA) and v3 (Music, id bx8O62Tuzno). (b)
400,000 views are generated by 500 promotions (for v1 and
v2) and by 1231 promotions (for v3), placed at t = 0. The
corresponding maturity time is shown for each video.

(over all possible event history Ht) to the volume of pro-
motions, expressed as the following self-consistent integral
equation:

ξ(t) := EHt [λ(t)] = μs(t) + C

∫ t

0

ξ(t− τ)(τ + c)−(1+θ)dτ

(2)

Here ξ(t) is the intensity, or the number of expected events
in unit time; θ is a power-law exponent defining the decay of
social memory – the larger θ is, the faster an video is forgot-
ten. C scales the endogenous reaction by taking into account
content quality and network properties, and c is a cutoff term
to keep the endogenous reaction bounded as τ ↓ 0. The event
intensity ξ(t) is determined by the external stimulus s(t),
as well as the event intensity at a previous time ξ(t − τ)
scaled by a corresponding memory kernel (τ + c)−(1+θ) for
all temporal offsets τ < t. The parameters {μ, θ, C, c} are
estimated for each video from its popularity history (Rizoiu
et al. 2017).

2.2 HIP as an LTI system

HIP describes a linear time-invariant (LTI) system, as shown
previously (Rizoiu et al. 2017). That is to say that if ξ(t)
is the event intensity function for input s(t), then the event
intensity function for a shifted and scaled version of the in-
put as(t − t0) is aξ(t − t0) for a > 0, t0 ≥ 0, i.e., scaled
and shifted by the same amount. Consequently, the endoge-
nous reaction for a given video is completely characterized
by the event series spawned from one unit of input, denoted
as Dirac delta function δ(t). This response ξ̂(t) is called the
impulse response of the linear system:

ξ̂(t) = μδ(t) + C

∫ t

0

ξ̂(t− τ)(τ + c)−(1+θ)dτ . (3)

Fig. 1a illustrates this process of endogenous-generated pop-
ularity driven by exogenous signals – input s(t) results in
popularity series ξ(t) (top), whereas an impulse input δ(t)
result in response ξ̂(t). The sliced graph in Fig. 1b illus-
trates an important application of the LTI property. Namely,
the popularity series is explained as superpositions of scaled
impulse responses (gray and white slices) over time.

3 Quantifying popularity under promotions

In this section, we propose two new measures to quantify a
video’s total viral potential and the time it takes to (almost)
reach such potential. We reveal one novel insight about the
effect of promotions – that timing does not matter in infi-
nite time. Finally, we show how to more accurately estimate
attention resulted from promotions, in finite time.

Viral potential ν is designed to capture the total amount
of attention generated by one unit of promotion. It is de-
fined as the integral of the impulse response ξ̂(τ) over infi-
nite time, namely:

ν =

∫ ∞

0

ξ̂(τ)dτ . (4)

ν exists and is finite when the branching factor of the
HIP C

θcθ
< 1. Throughout this paper, we use estimates of

ν by simulating the impulse response series over 10,000
timesteps and numerically integrating it. ν can be used to
compare how promotable videos are relative to each other.
A corollary of HIP’s LTI property shows a way of using ν to
estimate the return of promotion campaigns.
Corollary 3.1. Any promotion series s(t), t ∈ [0, T ] so that∫ T

0
s(τ)dτ = S, applied to a HIP model with the same pa-

rameter will generate νS views, given infinite time.
That is to say that the total amount of attention driven

by a given amount of external promotion is fixed, no matter
when the promotions happen. This is easy to see with the
sliced graph in Fig. 1b, as moving one unit of promotion
from any time t to another time t+Δ results in moving one
unit of impulse response by Δ. This does not change the
total amount of resulting attention the when t → ∞.

Maturity time t∗. Having measured the total impact of
one unit of promotion, we would also like to quantify how
fast a given video achieves such effects. Inspired by the def-
inition of half-life in nuclear physics, we introduce maturity
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Popularity scale at 120 days
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Figure 3: Popularity scale on the ACTIVE dataset at 90 days (a) and 120 days (b), each box in the box plot contains 2.5%, or
343 videos. (c) Change in popularity between 90 days and 120 days. Outliers are videos whose popularity jumped. The outliers,
whose popularity increased by at least 20%, are highlighted in red.

time t∗, defined as the time it takes to achieve a significant
fraction ω of the total popularity of a unit impulse:

t∗ = min

{
t ≥ 0

∣∣∣∣
∫ t

0

ξ̂(t)dt ≥ ων

}
. (5)

t∗ is finite when ν exists and it captures the speed of the de-
cay of ξ̂(t). In this work, we use ω = 0.95, and numerically
estimate t∗ by performing a linear search in time: we sum
the increasingly longer prefixes of ξ̂(t) and we stop when
the obtained sum is greater than ων. The timestep where we
stop serves as t∗.

The virality and timing of example videos. We illustrate
in Fig. 2 the relation between viral potential, promotion and
gained view as a result of promotion. From Corollary 3.1 fol-
lows that the hyperbolas νS = const define equal-attention
lines – i.e. all combinations of potential and promotion vol-
ume that amount to the same effect –, which can be used
to study videos comparatively. Fig. 2a illustrates this with
three example videos, which lay on the same hyperbola cor-
responding to 400,000 target views. Videos v1 and v2 have
the same viral potential of ν ∼ 800. They would each re-
quire 500 units of promotions to achieve the target. v3 on
the other hand, has ν ∼ 325 (mainly due to its low exoge-
nous sensitivity μ3 = 5.76, compared to μ1 = 21.09 and
μ2 = 58.76), and would require 1,231 units of promotion
to attain the same goal. Note that despite having a similar ν,
videos v1 has a much longer maturity time t∗1 = 113 days
than v2, with t∗2 = 40 days. This is illustrated in Fig. 2b,
which shows generation of the 400, 000 views over time, for
the three videos.

Estimating attention in finite time. Many applications
are time-critical, and it is desirable to estimate the expected
attention in finite time. Given a promotion schedule s(t), t >
0, and the beginning and the ending of the time period tb and
te, respectively, we derive from Eq. (3) the expected atten-

tion in the time interval [tb, te] as:

Ξ[tb, te] = Ξold[tb, te] + Ξnew[tb, te] ,where

Ξold[tb, te] =

∫ tb

0

s(t)

∫ te

tb

ξ̂(τ − t)dτdt

Ξnew[tb, te] =

∫ te

tb

s(t)

∫ te−t

0

ξ̂(τ)dτdt . (6)

Ξold[tb, te] corresponds to the views generated by the un-
folding of the old promotions that occurred before the stud-
ied interval. Ξnew[tb, te] corresponds to the incomplete real-
ization of the current promotions that occur during [tb, te].

4 Popularity of tweeted videos

In this section, we introduce the tweeted video dataset, on
which the measurements and the simulations in the rest of
this paper are based. We also introduce the popularity scale,
and provide a unique observation of videos that jump, or
suddenly gain popularity after their initial appearance.

The tweeted videos dataset was collected (Rizoiu et al.
2017) in 2014, from all tweets that link to a YouTube video.
It contains 16 million unique videos tweeted between May
and December 2014 and with publicly available popularity
stats. In this work we use the ACTIVE subset of the dataset
of twitted videos, constructed so that all views, shares and
tweets series are at least 120 days long and the video meta-
data is available. ACTIVE contains 13,738 videos, which
were uploaded between 2014-05-29 and 2014-08-09, which
were tweeted at least 100 times between 2014-05-29 to
2014-12-26, and were viewed at least 100 times and shared
100 times (through the Youtube share mechanism). Each
video has recorded its metadata (title, author, upload date,
category) and the daily views, shares and tweets series.

Popularity scale is one way to visualize the non-linear
relationship between a video’s popularity rank (denoted in
percentiles) and the number of views it receives (Rizoiu et
al. 2017). This scale is estimated from a video collection by
sorting videos by their number of views, at a given age. For
compactness we group all videos into 40 equal-sized bins,
each containing 343 videos in the ACTIVE set. Fig. 3a and 3b
plot the boxplots of views in each bin, at 90 and 120 days of
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Figure 4: (a) The “What-If” analysis for two videos (vA and vB) with a similar viral potential, having achieved different
popularity levels. (left) The observed and fitted popularity series, the observed promotion and fitted parameters for vA. (right)
Observed, fitted popularity series for vB , and the hypothetical series (denoted as v′B), if vB had had the same promotion as vA.
(b) APE when predicting the number of views between 91 and 120 days, multiple predictors, using shares as promotions.

age, respectively. Fig. 3c explores the change of popularity
percentile between day 90 and 120, denoted as Ψ90(·) and
Ψ120(·), respectively. ΨT (v) : R → [0, 1] is a function that
returns the popularity percentile corresponding to v views,
on the popularity scale constructed at age T (i.e. T days af-
ter video upload). Most videos stay in or near the same per-
centile bin (i.e. the high density around the diagonal). The
outliers are videos whose popularity “jumped” between day
90 and 120. There are no outliers in the upper-left part of
the graphic, as the number of views cannot decrease over
time. A video can fall into a lower popularity bin if it ac-
cumulates views more slowly than the other videos in his
original bin. However, the popularity percentile can increase
considerably – Fig. 3c highlights the 33 videos whose pop-
ularity jumped by more than 20%. Note that one effect of
the non-linear mapping from views to rank is that similar
amounts of newly acquired views can have very different im-
pacts on rank: 40, 000 additional views between day 90 and
120 may increase a video’s popularity by 15% when starting
from lower 17.5% percentile, increase by 2.5% when start-
ing from middle 50% percentile or even decrease by 2.5%
when starting from upper 90% percentile – this is because in
order to continue to rank in the top 10% at 120 days, a video
requires an additional 144, 740 views, more than the 40, 000
being considered here.

5 Future popularity under promotion

In this section, we explore the relationship between viral po-
tential, promotion and popularity. Sec. 5.1 illustrates the re-
lationship between promotion and popularity using two ex-
ample videos that have similar viral potential. HIP is the
state of the art in popularity forecasting (Rizoiu et al. 2017),
however the factors that influence the performance of the
prediction were not well understood. We quantify the rel-
ative influence of four factors - the video’s viral potential,
the amount of promotion, the timing of the promotion and
the video’s prior position on the popularity scale - in two
predictive exercises: predicting future views (Sec. 5.2) and
predicting significant rises in popularity (Sec. 5.3).

5.1 What-if scenarios for two videos

The relationships among viral potential, promotion, and
popularity can be understood in a scenario where we can ask
“what-if” certain promotions are applied to a given video,
and compare the actual and the hypothetical outcomes. To
this end, we select two videos from the ACTIVE dataset that
have the same viral potential. Video vA (id 8jPir15Ms8c)
is an Entertainment video, having achieved a high popular-
ity percentile Ψ120(vA) = 85% and it is among the top
2.5% most shared videos, receiving 6192 shares in 120 days.
Video vB (id WTOC9Lw-gdc), is a Music video, with a low
popularity percentile and few shares (Ψ120(vB) = 15%, 162
shares). Although the two videos have similar viral potential
scores (ν � 126, 000), their popularity series present differ-
ent dynamics (shown in Fig. 4a). The only factor that led to
the popularity difference in video vA and video vB seems
to be the amount of promotions they receive. One may ask
“what if” vB actually went through the same promotions as
vA. We simulate the popularity series of video vB driven by
the promotion series of video vA, using Eq. (2). As shown
in Fig. 4a right, this “what-if” series is denoted as v′B , and
has much more views that vB . The total popularity of v′B is
now almost the same as the popularity of vA. This example
shows that given sufficient promotion, an unpopular video
with high potential could become popular. This insight is
used to predict popularity in the rest of this section.

5.2 Predicting future views

In this section, we study the factors which impact the predic-
tion of the number of views received by a video, as a result
of promotions. Based on HIP, we construct four predictors,
which embed increasingly detailed information about pro-
motions, and we show that this leads to progressively bet-
ter estimates. More precisely, we study the impact of the
amount of promotion and the timing of the promotion. We
also study the case when information about future promo-
tions is not available, quantifying how much can be inferred
about future popularity based on past popularity only. We
denote this latter setup as prediction, in contract with fore-
casting the popularity obtained through promotions.

Experimental setup. We construct a temporal holdout
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Predictor
pred. / Historic Viral Future promo.

Equation
mean APE

forecast Views Promo. potential Volume Time ± std

B prediction Ψ−1
120 (Ψ90(V1:90)) 16.17%± 14.07%

P1 prediction V1:90 + Ξold[91, 120] 8.37%± 11.17%
P2 prediction V1:90 + Ξold[91, 120] + νS61:90 8.12%± 12.07%
P3 forecast V1:90 + Ξold[91, 120] + νS91:120 4.98%± 6.43%
P4 forecast V1:90+Ξold[91, 120]+Ξnew[91, 120] 4.94%± 6.38%

MLR1 prediction 7.07%± 9.32%
MLR2 forecast 6.94%± 9.09%

Table 1: Summary of predictors used for predicting future views. The columns show the factors included in each predictor, the
predicted value (equation) and the obtained prediction performance.

setup, each video is observed for the first 90 days, on which
we fit the parameters of the HIP model, using either tweets
or shares as external stimulation. The next 30 days (from
91 to 120) serve as the test period, and the tweets and the
shares in this period are used as promotion. We opted for
this setup due to the practical difficulty of performing inter-
ventions in large social environments, such as Youtube and
Twitter. Using tweets and shared during test period as pro-
motions is also supported by the lack of Granger causality
between the views, shares and tweets series, shown in (Ri-
zoiu et al. 2017). Commonly-used performance error met-
rics (such as the root-mean-square-error) are skewed by the
long-tailed viewcount distribution shown in Fig. 3, and we
chose not to use them. Instead, we evaluate each predictor
using the Absolute Percentile Error (APE):

APE = |Ψ120(Ξ)−Ψ120(V1:120)| , (7)
where Ξ and V1:120 are the predicted and the observed num-
ber of views during the first 120 days, respectively.

Constructed predictors. Table 1 summarizes the four
constructed predictors and the three used baselines, show-
ing the information leveraged by each predictor, the pre-
dicted value formula (where applicable) and the prediction
performance. The predictors P1 and P2 operate in a pre-
dictive setup, they do not make use of the promotion in-
formation. P1 leverages history (views and attention that
the videos received during the training period) as well as
the video viral potential. It quantifies the views in the pe-
riod 91:120 obtained by the unfolding of the “old” pro-
motions (promotion observed during the first 90 days) us-
ing Ξold[1 : 90] (Eq. 6). The predictor P2 is similar to P1

and it makes a more realistic assumption about future pro-
motions: it assumes that videos receive during the period
91-120 days the same amount of promotion as in the pe-
riod 61-90 days (denoted as S61:90). The third predictor, P3,
leverages history, viral potential and future promotion vol-
ume; it works in a forecasting setting in which the number
of promotions in test period are known (S91:120). Predictor
P4 leverages history, viral potential and promotion schedul-
ing; in addition to P3, it leverages the promotion schedule
in the test period s(t), t ∈ [91, 120] and predicts the num-
ber of views using the formula in Eq. (6). We show in Ta-
ble 1 the data baseline B, which outputs, for each video, the
number of views required for it to maintain, at 120 days,
the same popularity percentile as at 90 days. We also im-
plement two baseline predictors, using multivariate linear

regression (MLR), based on the observation that past pop-
ularity is indicative of future popularity (Pinto, Almeida,
and Gonçalves 2013). MLR1 leverages the past viewcounts
to predict the viewcounts during the period 91-120 days.
MLR2 is enhanced with information about promotions, both
historic and future. Note that popularity prediction systems
that require observing individual events (Zhao et al. 2015;
Mishra, Rizoiu, and Xie 2016) cannot be used here, since the
views information from Youtube is aggregated daily. MLR1

and MLR2 are evaluated with 5-fold cross validation. Shares
are used to train the HIP model and MLR2 (and they serve as
promotions in the forecasting setup). The results for tweets
are shown in the online supplement (sup 2016).

Results. Fig. 4b and Table 1 summarize the performances
of our predictors and the baselines, over the ACTIVE dataset.
The data baseline B shows the difficulty of the problem, all
other predictors and baselines outperform this data baseline.
Visibly, introducing more detailed information consistently
leads to a reduction in mean APE. Accounting for future pro-
motions has the largest impact, reducing mean APE from
8.12% of P3 to 4.98% of P2. Further accounting for pro-
motion schedule has a considerably smaller impact, with P4

outperforming P3 by only 0.04% in APE. Consistent with
the results in (Rizoiu et al. 2017), both HIP-based forecast-
ing P3 and P4 consistently outperform the baseline MLR2.
The situation is different for the predictive exercise, where
the baseline MLR1 outperforms both P1 and P2. Approx-
imating the future volume of promotions (in P2) has only
marginal impact.

5.3 Predicting popularity jumps

Recall in Fig. 3c there are 33 videos that had large jumps
in the popularity scale. Predicting such sudden increase in
popularity is relevant for content optimization or marketing.
This can be done by building upon the methods in Sec. 5.2,
and taking into account the non-linear effect of the popular-
ity scale. We study the following factors which influence the
prediction of popularity: the viral potential, the promotion
volume and the position on the popularity scale.

Constructed predictors. Based on HIP, we construct
three predictors which incorporate increasingly more infor-
mation. R1 outputs the video viral potential. R2 leverages
the viral potential and the amount of promotions: it outputs
the forecasted number of views during the period 91-120
days. R3 leverages the viral potential, the amount of pro-
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Predictor Oracle
Viral Promo. Pop. scale

Equation AUC
potential volume position

R1 ν 0.6
O1

V91:120
S91:120

0.62
R2 νS91:120 0.79
O2 V91:120 0.88

R3
Ψ120(V1:90 + νS91:120)
−Ψ90(V1:90)

0.91

O3 Ψ120(V1:120) −Ψ90(V1:90) 1

Table 2: Summary of predictors used for predicting popularity jumps. The columns show the factors included in each predictor,
the predictors output value (equation) and the obtained prediction performance.
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Figure 5: ROC curves of detecting popularity jumps – videos
with a sudden increase in popularity of more than 20% be-
tween day 90 and 120, using shares as promotion.

motions and the position on the popularity scale at day 90:
it outputs the forecasted popularity percentile gained dur-
ing the period 91-120 days. Each predictor is doubled by an
“oracle” predictor, based on the real data in the test period.
The oracle predictors (O1, O2 and O3) serve as baselines to
benchmark the maximum performance that can be achieved
using a particular information. For example, O1 mirrors R1

in using the viral potential alone. Note that the viral poten-
tial is the number of views generated by a single promotion,
and can be computed on the testing data as V91:120

S91:120
(where

V91:120 and S91:120 are the series of view and shares during
91-120 days). Similarly, O2 outputs the observed number of
view in the period 91:120 days, and O3 the popularity per-
centile gained in the same period.

Experimental setup. We employ the same temporal hold-
out setup as in Sec. 5.2: each video in the ACTIVE dataset
is observed during the first 90 days, and the “jumping” be-
havior if predicted on the next 30 days. All predictors output
real values, which we transform into a binary classifier us-
ing a threshold. We vary the threshold and we report the per-
formance using ROC curves and AUC (Area Under Curve).
Note that auc ∈ [0.5, 1.0], higher is better, the random bi-
nary classifier obtains auc = 0.5 and perfect classification
scores auc = 1. We varied the popularity jump threshold
from 0.1 to 0.5 and the trends and the conclusions are similar
for all values. Here, we show the results for a jump threshold
of 0.2, the rest are in the online supplement (sup 2016).

Results. Fig. 5 shows the ROC curves obtained for each
predictor, using shares as promotions. The results for tweets
are shown in the online supplement (sup 2016). The AUC
obtained by each predictor is shown in Table 2. Both R1 and

the oracle O1 achieve rather low prediction performances,
with auc(R1) = 0.60 and auc(O1) = 0.62. This indicates
that video potential is only weakly linked to jumping be-
havior, which happens due to a number of reasons: videos
of low potential that receive high promotion, or videos with
high potential that receive low promotion, and the varying
effects of views across the popularity scale. Accounting for
the volume of promotion provides a boost in prediction per-
formance, both for R2 (auc(R2) = 0.79) and for the oracle
(auc(O2) = 0.88). Note that the oracle O2 does not achieve
perfect performance in predicting popularity jumps. This is
due to the unequal impact of views on popularity, e.g. in
order to jump 20% on the popularity scale, a video needs
83, 245 views if it started from 25%, and 327, 820 views if it
starts from the median 50%. We obtain a performance boost
when we account for the position on the popularity scale at
day 90, with auc(R3) = 0.91. Note that the forecasts made
using potential, promotion and scale information (R3) are
more accurate than the oracle O2, achieving a 0.66 true pos-
itive rate with 0.05 false positive rate. This demonstrates the
importance of taking into account the non-linear effect of the
popularity scale. O3 obtains a perfect score (auc(O3) = 1).

6 Profiling promotion schedules

In this section, we focus on time as a key variable for deploy-
ing promotions and observing their outcome, and present
two novel observations. The first one explores the trade-
off between maturity time of a video and the time-sensitive
value of promotions under the economic setting of com-
pounding interest (Sec 6.1). In the second, we explain the
common practice of advertising at regular intervals as an in-
crease in perceived potential (Sec. 6.2).

6.1 The economics of time for promotions

Following from Corollary 3.1, the scheduling of S promo-
tions does not matter in infinite time, as they eventually re-
sults in νS units of popularity gain. However, practical ap-
plications seek to optimize the impact of promotions after a
given time, e.g., how much was a video’s popularity boosted,
a month after the promotion campaign has ended? The two
counter-acting factors at play here are both about time – the
time that the effects of a promotion have to unfold –, and the
time-sensitive (monetary) value of carrying out promotions
for a given piece of content. If the cost of promotion at any
give time is constant, then the best strategy is to place all
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Figure 6: Analysis of three promotion schedules on the achieved popularity, after 120 days. (top) Distribution of 600 promotions
over 90 days, for the early, even and late schedules (the y-axis is log-scale). The cost of schedules, function of interest rate.
The impulse response and maturity time for the three subject videos: v1 (id 9MwgExiIjnY) is a video of a Japanese youtuber,
v2 ( id 5TQAnGjyN9A) is a short Entertainment video, v3 (id d03B1Zp4GtQ) is a Brazilian boy gang video about playing
games and drinking. (bottom) Reaction of each of the three videos to the promotion schedules.

promotions as early as possible, this will lead to maximum
unfolding of popularity in the target time window. A more
realistic setting, however, needs to account for the varying
value of promotions in carried out in different times. One
simple way to model this is via compounding interest (Witt
1613) with rate a; say every dollar stored for one unit time
(e.g. day) is worth (1 + a) dollars. In this setting, putting all
promotions at the beginning of k days actually needs (1+a)k

times the cost of putting all promotions at the last day.
The cost of three prototypical schedules. We first dis-

cuss three prototypical promotion schedules – late, even and
early. Without loss of generality, we set the promotion bud-
get at 600 promotions and the promotion time window at
90 days. late is spending the promotion budget at the last
day of the promotion period. This is the least costly option,
i.e. 600$. even is spreading the promotion budget equally
each day. Its cost is 600

90

∑90
k=1(1 + a)k, visibly higher than

the cost of late. early is spending the entire promotion bud-
get in the first day, for a cost of 600(1 + a)k. These three
schedules are general enough to provide an intuition of the
trade-off between maturity and value of currency. An arbi-
trary schedule can be composed from them and its effects
are also linear combinations of what is presented here, due
to the LTI property (Sec. 2.2). The top row of Fig. 6 illus-
trates each of the three prototypical schedules and the cost
of each schedule versus the annually interest rate.

Scheduling effects on three videos. We simulate the ef-
fects of each of the three promotion schedules on three
videos and we plot the results for each video in Fig. 6 (bot-
tom). The median values of the popularity scale at 30, 60,
90 and 120 days (as seen in Fig. 3) are shown as increas-
ingly lighter gray lines. We plot the position (i.e. the pop-
ularity bin) obtained by the videos at each of these tempo-
ral checkpoints, when promoted with the three schedules.
Here, we set each simulated video at median (50%) popu-
larity and mandate that it remain at the median at 30, 60,

90, and 120 days if there were no promotions. The three
videos have similar viral potential (ν � 800), but with very
different maturity time t∗ (shown in Fig. 6 (top right) ):
t∗ = 1360 days for v1, t∗ = 113 days for v2 and t∗ = 7
days for v3. For video v1, the slow unfolding of promo-
tion effect makes the early schedule the most effective as
the other schedules never catch-up. For video v2, the even
schedule amounts to the same popularity percentile at 120
days as the early schedule. Not all promotions in the even
schedule completely unfold, and the return of the two sched-
ules is not exactly the same, however the 80% popularity
bin covers volumes of view between 574,007 and 762,478
views, and both videos get assigned to it. Notice also that
the early promotion achieves a popularity of 82% at 60 and
90 days, but is degraded to 80% at 120 days. This is because,
after t∗ days, promotions stop generating new views, and the
video’s popularity slips. This phenomenon is more obvious
for v3, for which the even schedule catches-up with early at
90 days, and all three schedules achieve the same popularity
percentile at 120 days, but for different costs.

We conclude that promotion strategies should vary for
videos of different maturity time: late schedule is the
most economical for videos whose popularity unfolds fast
enough; for videos with a long maturity time, early promo-
tion is costly but will lead to the most attention.

6.2 Promotion and perceived potential

In this section, we study in more detail the even promotion
schedule. Despite not being the most advantageous in terms
of cost or popularity unfolding, even promotion schedules
are worth further examination, since they are very widely
used in commercial settings – the car advertisement before
the prime-time TV show every evening, for example. The
process is shown in Fig. 7: we show in graph (a) the example
of a common popularity pattern of Youtube videos: the daily
viewcount has an initial peak, followed by a steady decay.
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Figure 7: Effects of the even promotion schedule: apparent increase of video viral potential. (a) An example viewcount evolu-
tion; (b) the same evolution under an even promotion schedule with s∗ = 5 promotions daily. (c) Side-by-side plotting of the
two evolutions. (d) Equivalent promoted input response ξ̂p(t), for increasing amounts of constant promotion.

Graph (b) shows the same system constantly promoted with
a daily promotion of s(t) = s∗ = 5, ∀t ∈ 1, 2, . . . 90. With
t∗ = 14, the number of additional views gained through
promotion stabilizes after about 20 days. The number of ad-
ditional daily views is νs∗ due to the LTI property (Sec. 2.2),
as shown with the sliced graph (Rizoiu et al. 2017). Fig. 7
(c) contrasts the promoted and the unpromoted relaxation;
we see that the daily views in the promoted system have
a slower decrease and converge to a non-zero value – the
evenly promoted system appears to posses a longer memory.
We refit the HIP model parameters of the promoted system
with varying s∗ (without informing HIP about the promo-
tion), as shown in Fig. 7 (d). We observe that the equiva-
lent memory exponent θp is smaller and the promoted im-
pulse response ξ̂p(t) has a slower decay. Both are indica-
tive of a longer system memory, and a higher viral potential.
This provides a plausible explanation for the widely used
even promotion schedule: by constantly injecting promotion
into a social system, the perceived viral potential appears in-
creased and the video stays longer in the public attention,
thus generating more views.

7 Related work

This work is related to three topics in this area: measurement
of online social networks, models for popularity and espe-
cially stochastic point processes, and the effects of external
promotion.

Measurements of one or more social networks. There
are a number of well-known measurement studies of con-
tent, user, and popularity on social networks, including Twit-
ter (Kwak et al. 2010), YouTube videos (Gill et al. 2007),
news media (Leskovec, Backstrom, and Kleinberg 2009),
as well as specific measurements about popularity and aux-
iliary attributes such as locality (Brodersen, Scellato, and
Wattenhofer 2012). Most current measurement studies are
on a single social media network, or done independently
for different networks; our work observes behavior from
two different networks (Youtube and Twitter) linked by the
same media item. A few studies link two networks for pre-
dictive tasks, including the novel user-level measurements
done by Abisheva et al. (Abisheva et al. 2014), a study by
Yu et al. (Yu, Xie, and Sanner 2014) on using Twitter feeds
to predict Youtube popularity change and a system by Yan

et al. (Yan, Sang, and Xu 2014) for finding optimal Twit-
ter followees to maximize video promotion on Twitter. Our
popularity scale over time that are inspired by these large-
scale measurements, we then use this scale to measure the
performance of popularity models.

Modeling attention and popularity. A number of mod-
els have been proposed to describe the volume of social me-
dia activity over time. The seminal meme-tracker (Leskovec,
Backstrom, and Kleinberg 2009) uses a curve with poly-
nomial increase followed by exponential decay to describe
sawtooth-shaped volume of news mentions. SpikeM (Mat-
subara et al. 2012) uses a fixed memory component, modu-
lated by a periodic component, however it does not explic-
itly account for external influence. Most recently, Tsytsa-
rau et al. (Tsytsarau, Palpanas, and Castellanos 2014) mod-
els popularity volume as the convolutions two sequences,
news event importance and media response, each of a pre-
defined shape. (Raghavan et al. 2014) models online activity
patterns using a couple Hidden Markov Model. Stochastic
point-processes provide a formal language to describe social
events over time, and is seen in a number of state-of-the-art
models. These include: reinforced Poisson processes (Shen
et al. 2014), multi-scale survival processes (Zhang et al.
2016), self-excited processes used to predict popularity of
retweet cascades (Zhao et al. 2015; Mishra, Rizoiu, and Xie
2016). The version of Hawkes processes averaged over an
entire network and event times is the HIP model (Rizoiu et
al. 2017) that we build upon. This work focus on predicting
popularity jumps and quantifying the effects of promotion
schedules based on point processes.

Scheduling promotions. Intervention strategies for indi-
vidual and group attention has been a long-standing topic,
going back to as long as marketing existed. (Sun 2005)
found that endogenous consumption responds to promotion
as a result of forward-looking and stockpiling behavior. In
the online, promotion studies concentrated on user profiling
and personalized online advertising (Bleier and Eisenbeiss
2015) or personalized product recommendation (Zhang et
al. 2014). (Chierichetti, Kleinberg, and Panconesi 2014) de-
termines the sequence of activating nodes so as to maxi-
mize the total activation in a network. (Liu, Slotine, and
Barabási 2011) apply linear control theory to observe that
sparse inhomogeneous networks are difficult to control (or
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steer to a desired state). In broadcast advertising, (Bollapra-
gada, Bussieck, and Mallik 2004) use a mixed-integer pro-
gram to schedule multiple airings of a television adver-
tisement as evenly as possible. In this work, we provide
a mathematically-grounded method to quantify the effects
of promotion schedules, and provide key intuitions why
evenly-spaced advertising may be preferred.

8 Discussion

We present a mathematically-grounded model to estimate
the amount of attention driven by external promotion. We
adopt a stochastic point process model for popularity, which
allows us to propose two novel metrics relating to the pro-
motability of Youtube videos: the viral potential, designed to
capture the total amount of attention generated by one unit
of promotion and the maturity time, measuring the speed
with which this attention is accumulated. We show that we
can accurately predict dormant videos – i.e. videos that ex-
hibit a sudden increase in popularity, at a later time after the
initial appearance. We perform a cost-return analysis of the
impact of promotion schedule on popularity and we explain
the widely used constant promotion strategy as increasing
perceived social memory.

Assumptions, limitations and future work. This work
makes a number of simplifying assumptions, some of which
can be address in future work. First, we assume that the sys-
tem’s reaction to external random stimuli is identical to the
reaction to promotion. We leave as future work to measure
how users respond to a post if it were from a friend, or from
a publicity source on the social web. Second, the HIP model
describes the average behavior of the network (Rizoiu et al.
2017), and we assume this does not change over time, e.g.
in the 120 days studied here. Future work can include mod-
eling local network topology and its temporal shifts. Lastly,
this paper assumes that popularity ranking is the optimiza-
tion target. Content- and category-specific ranking are also
valid targets, and are left as future work.
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