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Abstract

Social spammers disseminate unsolicited information on so-
cial media sites that negatively impacts social networking
systems. To detect social spammers, traditional methods
leverage social network structures to identify the behavioral
patterns hidden in their social interactions. They focus on
accounts that are affiliated with groups comprising known
spammers. However, since different parties are emerging to
generate various spammers, they may form different kinds
of groups, and some spammers may even detach from the
flock. Therefore, it is challenging for existing methods to find
the optimal group structure that captures different spammers
simultaneously. Employing different approaches for specific
spammers is time-consuming, and it also lacks the adaptivity
of dealing with emerging spammers.
In this work, we aim to propose a group modeling framework
that adaptively characterizes social interactions of spammers.
In particular, we introduce to integrate content information
into the group modeling process. The proposed framework
exploits additional content information in selecting groups
and individuals that are likely to be involved in spamming
activities. In order to alleviate the intensive computational
cost, we transform the problem as a sparse learning task
that can be solved efficiently. Experimental results on real-
world datasets show that the proposed method outperforms
the state-of-the-art approaches.

1 Introduction

Social media sites have become a popular platform for infor-
mation dissemination. The increasing availability and popu-
larity of social media sites, combined with the potential for
automation, allow for the rapid creation and spread of spam,
which unfairly overwhelms legitimate users with unwanted
information. Since spamming behaviors significantly hinder
the overall value of social systems going forward, detection
of spammers would positively influence the quality of social
networking services and user experience.

Existing efforts have been made to discover the behavioral
patterns of social spammers deviating from that of legit-
imate users. In addition to messages, social networking
services make it available to utilize network structures to
detect spammers. Traditional methods can be classified
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into three categories, i.e., link-based, neighbor-based, and
group-based methods. Link-based methods utilize links as
a measure of social trust, where links are assumed to be
established by legitimate users. Therefore, simple measures
like the number of followers and followee/follower ratio
can directly be used to detect spammers. Neighbor-based
methods utilize links as a measure of homophily, assuming
that links are established within legitimate users and spam-
mers. However, these methods face novel challenges due to
evolved spamming strategies.

Since many users follow back when they are followed by
someone for the sake of courtesy, spammers could establish
a decent number of links with legitimate users (Sedhai and
Sun 2015). These noisy links no longer represent social trust
or a sign of homophily, which undermine the performance
of link- and neighbor-based methods. A more robust way
is to model the network structure instead of individual
links, which has been studied for identifying product review
spammers (Ye and Akoglu 2015). However, social network
structures are more difficult to be modeled, since social
spammers generated by different parties may detach or form
a group, and the group granularity could also be various.

In this work, we present a framework that adaptively
identifies different spammers by integrating content and
network structures. In particular, we hierarchically repre-
sent social network users with the social group structures.
Observing that a large group could usually be split into
several subsystems, we find many splits are unnecessary
for spammer detection. Therefore, we pose the spammer
detection problem as a sparse learning task and leverage the
additional content information to search the optimal group
structures catering to spammer detection. The proposed
method, Sparse Group Modeling for Adaptive Spammer
Detection (SGASD), adaptively detects not only different
spammer groups but also individual spammers detached
from the spammer flocks. The main contributions of this
paper are outlined as follows:

• Introduce an emerging problem of spammer detection,
which cannot be solved by existing solutions;

• Present a novel framework to adaptively model different
types of social interactions of spammers;

• Suggest mathematical formulation to solve the optimiza-
tion problem efficiently; and
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• Evaluate the proposed method on real world Twitter
datasets and elaborate the effects of different components.

The remainder of this paper is structured as follows. In
Section 2, we introduce the problem of social spammer
detection formally. In Section 3, we introduce our proposed
framework, as well as the optimization method and theoreti-
cal analysis. We conduct experiments on real world datasets
in Section 4. We introduce related work in Section 5. In
Section 6, we conclude the paper and present future work.

2 Problem Statement

Let A = [V,P, t] be a target account set with social media
content V, social links P and labels t. Specifically, V ∈
R

m×n are the n content features of m users; P ∈ R
m×m

denotes the adjacency matrix, where Pi,j = 1 indicates that
the jth account is followed by the ith account and equals
to 0 otherwise. t ∈ {0, 1}m records the identity label of a
subset of users, where ti = 0 represents the ith account is a
spammer and equals 1 otherwise.

Given a set of social media actors A with their attribute
matrix V, social links P, identity label information t of part
of users in the dataset, our goal is to learn a model w ∈
R

n with best performance to classify whether an unknown
account i is a spammer or not with Vi,∗w.

3 Adaptive Spammer Detection

In this section, we will first introduce how we enable
the adaptive group structure modeling to be efficient, and
then introduce how content information could be integrated.
Next, we will introduce the corresponding optimization
algorithm of SGASD. Finally, we provide a theoretical
analysis of time complexity as well as its convergence.

3.1 Adaptive Group Structure Modeling

Finding group structure of linked nodes has been extensively
studied in the literature of community detection, which is
usually reduced to a clustering problem. The clustering pro-
cess is usually time-consuming. An adaptive group structure
is challenging to obtain since the update of parameters might
require an entire re-computation. We propose to solve this
problem by first generating all possible groups, and then
select optimal combinations.

In order to generate more possible groups, an intuitive
idea is to incrementally cluster all users hierarchically (For-
tunato 2010). Namely, individual users are first gathered to
form small groups, and small groups are merged to bigger
ones. Therefore, these (final and intermediate) groups pro-
vide necessary group structures with different granularities.
In order to represent the social group index, we introduce
the concept of index tree T , which is defined as follows,

Definition 1. Index tree T : Let T denote a tree of depth
d, where non-leaf nodes represent social communities and
leaf nodes are users. Let Ti = {Gi

1, G
i
2, . . . , G

i
ni
} denote

the nodes on layer i, where n0 = 1 and ni is the number of
nodes on layer i. Given i < d, Gi

j represents jth group
on the ith layer. G0

1 = {1, 2, . . . ,m} contains indices
of all users. In order to maintain a tree structure, nodes

Figure 1: An illustrative example of social community struc-
tures, where the hierarchical communities are of various
resolutions and the leaf node represents the individual user.

should satisfy the following conditions: 1) Nodes on the
same layer share no indices with each other (Gi

j ∩ Gi
k =

∅, ∀i = 1, . . . , d, j �= k, j ≤ ni, k ≤ ni); 2) Given
a non-root node Gi

j , we denote its parent node as Gi−1
j0

(Gi
j ⊆ Gi−1

j0 , 1 < i ≤ d).

Fig. 1 illustrates a toy example of community structures
with various resolutions, where the nodes filled with blue
lines are leaf nodes. In order to obtain such a group struc-
ture, we select a hierarchical community detection method,
namely Louvain (Blondel et al. 2008), where maximum
modularity is used to optimize the group structure. The code
is publicly available1.

Next, we introduce how we select groups with sparse
representation. Sparse learning aims to achieve sparse
representation of data, allowing only discriminant elements
to be selected, while noisy and redundant ones are discarded.
In order to employ sparse learning, we introduce a weighting
vector c ∈ R

m, where each entry is the weight for a user.
The sparse representation of the group structure can then be
obtained through minimizing

min
c

d∑
i=0

ni∑
j=1

||cGi
j
||2, (1)

where an �2-norm is imposed on each member of a group,
and an �1-norm is imposed on weights of all groups. The
combination of �1- and �2-norm leads to sparse represen-
tation of c, while �1-norm determines the organization
of sparsity. In particular, imposing �1-norm within each
group leads to the inter-group sparsity, i.e., weights of
users in some groups are selected to be assigned higher
weights, while users in other groups are with lower weights.
Therefore, redundant and noisy groups are filtered by the
sparse representation of c.

3.2 Spammer Detection with Group Structures

Since content information is also useful for identifying
spammers. In this section, we introduce how we integrate
social media content into the group modeling framework.

1https://perso.uclouvain.be/vincent.blondel/research/louvain.
html
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For generality, we adopt a regression method to model
messages as follows,

1

2
min
w

||Vw − y||22 +
λ1

2
||w||22, (2)

where V ∈ R
m×n is the data matrix, m is the number

of users and n is the number of textual features. Vi,j

represents the jth feature of the ith user. The feature value
can be induced based on term frequency using different
measures, such as normalized term frequency and TF-IDF.
In this work, only the term frequency is used. w ∈ R

n is
the model which needs to be optimized. y ∈ R

m is the
label vector of training data. The formulation achieves an
optimal w through minimizing the training error. ||w||22 is
the regularizer avoiding overfitting. λ1 controls the extent of
simplicity of the model. Note that other supervised methods
can also be used here.

Next, we employ the information induced from group
memberships to regularize the predictor as follows,

min
w,c

1

2

m∑
i=1

ci(Vi,∗w − yi)
2 +

λ1

2
||w||22

subject to
∑
i

ci = 1,

(3)

where each user is weighted by ci. We aim to achieve an
optimal c which differentiates selected groups of legitimate
users and spammers. By incorporating the regularizer in
Eq.(1), the objective can then be reformulated as follows,

min
w,c

1

2

m∑
i=1

ci(Vi,∗w − yi)
2 +

λ1

2
||w||22 + λ2

d∑
i=0

ni∑
j=1

||cGi
j
||2

subject to
∑
i

ci = 1,

(4)
where λ2 controls extent of inter-group sparseness, meaning
that a larger λ2 leads to fewer groups being selected. Next,
we will introduce how parameters can be learned efficiently.

3.3 Learning Parameters

There are two variables that need to be optimized in Eq.(4).
Since the objective is not jointly convex with respect to
both c and w, we propose to find optimal solutions through
alternatively updating them, i.e., fixing one and updating the
other. By reducing the problem into two convex optimiza-
tion tasks, c and w keep being updated until convergence.
Now we introduce details of the algorithm:

Learning the predictor When c is fixed, the problem
only depends on w. We reformulate the objective function
as follows:

εw =
1

2

m∑
i=1

ci(Vi,∗w − yi)
2 +

λ1

2
||w||22. (5)

Therefore, the problem is reduced to an �2 regularized
weighted linear regression problem, which is to minimize
the cost εw. Since social media users and their corre-
sponding contents may be massive, a scalable optimization

method is needed. Here we use Stochastic Gradient Descent
(SGD) (Bottou 2010). Since Eq.(5) is convex, the corre-
sponding gradient can directly be obtained as:

∂εw
∂w

=
m∑
i=1

ciV
T
i,∗(Vi,∗w − yi) + λ1w. (6)

SGD is scalable since data examples can be updated in
parallel (Zinkevich et al. 2010). Detailed discussions about
the performance can be found in Section 4.

Learning the group structure When w is fixed, Eq.(4)
depends only on c. Since the squared loss (Vw − yi)

2

becomes a constant, we replace it with p, where pi =
(Vi,∗w − yi)

2. The objective can then be reformulated as:

min
c

1

2

m∑
i=1

cipi + λ2

d∑
i=0

ni∑
j=1

||cGi
j
||2

subject to
∑
i

ci = 1,

(7)

where the regularizer ||w||22 that is fixed here is also omitted.
It is easy to prove that Eq.(7) is strongly convex but not
directly differentiable, i.e., it is convex and non-smooth with
respect to c. In order to find the solution for the optimization
problem in Eq.(7), we reformulate the problem as follows:

φλ2
(c) = argmin

c

1

2
||c− x||2 + λ2

d∑
i=0

ni∑
j=1

||cGi
j
||2, (8)

where x ∈ R
m and xi =

p−1
i∑m

k p−1
k

. Therefore, the
equality constrained optimization problem is transformed
to a Moreau-Yosida regularization problem with the eu-
clidean projection of c on to a vector x (Lemaréchal and
Sagastizábal 1997). The new formulation is continuously
differentiable and it admits an analytical solution (Liu and
Ye 2010). Given a proper λ2, the optimal c ∈ R

m can
be obtained in an agglomerative manner, which is shown in
Algorithm 1. In the algorithm, the superscript of c is used to
denote the layer of the tree, meaning that the output of the
algorithm is c0. The bisection method can be implemented
to find the optimal λ2. Empirically, λ2 can be initialized

as
√

||l′ (0)||22∑d
i=0 ni

, where l(c) = 1
2 ||c − x||2. Then we use

φλ2(−l
′
(0)) to test whether λ2 is large or small enough.

When φλ2
(−l

′
(0)) = 0, which means λ2 is large enough

to generate a trivial solution, we start looking for the lower
bound as follows:

λ
(lower)
2 = max{λ(i)

2 |λ(i)
2 =

λ
(i)
2

2i
, π

λ
(i)
2
(−l

′
(0)) �= 0}

(9)
otherwise, if φλ2(−l

′
(0)) �= 0, we start looking for the

upper bound as follows:

λ
(upper)
2 = min{λ(i)

2 |λ(i)
2 = 2iλ

(i)
2 , π

λ
(i)
2
(−l

′
(0)) = 0}

(10)
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Algorithm 1: Solution of Moreau-Yosida Regulariza-
tion

Input: {c, G, λ2}
Output: c0.

1: Set cd+1 = x,
2: for i = d to 0 do:
3: for j = 1 to ni do:
4: Compute:

ciGi
j
=

⎧⎪⎪⎨
⎪⎪⎩

0 if ||ci+1

Gi
j

||2 ≤ λ2,

||ci+1

Gi
j

||2−λ2

||ci+1

Gi
j

|| ci+1

Gi
j

if ||ci+1

Gi
j

||2 > λ2,

5: end for
6:end for

Table 1: Statistics of TwitterS dataset used in this study.
Labels are obtained through Twitter suspended users.

Tweets Unique Users ReTweets
1,150,192 94,535 576,167

Links Spammers Positive Ratio
23,047,758 7,061 7.5%

In Algorithm 1, we traverse the tree in an agglomerative
manner, i.e., from leaf nodes to the root node. At each node,
the �2-norm of the weight c can be reduced by at most λ2

as shown in step 4. After the traverse, the analytical solution
of c can be achieved.

3.4 Time Complexity Analysis

Here we analyze the time complexity of the algorithm.
The computational costs include computation of c and
w. The computational cost for c comes from estimating
the Moreau-Yosida regularization problem, which takes∑d

i=0

∑ni

j=1 |Gi
j |. The computation of w is a standard �2

regularized regression problem, which can be accelerated
with the parallel implementation. The calculation of Lou-
vain method could also speed up and it needs to be done only
once as preprocessing. Since the optimization is conducted
in an alternative manner and both sub-tasks are convex, both
procedures will monotonically decrease. In addition, since
the objective function has lower bounds, such as zero, the
above iteration converges.

4 Experiments

In this section, experiments are conducted to test the effec-
tiveness of SGASD. In particular, we compare SGASD with
state-of-the-art approaches based on real-world datasets.

4.1 Datasets

In the literature of spammer detection, two methods are
commonly used to obtain data with ground truth, i.e., us-
ing Twitter suspended user list, and using social honeypot
accounts. We adopt two Twitter datasets by each of them.

Table 2: Statistics of TwitterH dataset used in this study.
Labels are obtained through followers of honeypot accounts.

Tweets Unique Users ReTweets
4,453,380 38,400 223,115

Links Spammers Positive Ratio
8,739,105 19,200 50%

The first dataset (TwitterS) is collected using the sus-
pended account list of Twitter. In order to get ground
truth data for positive instances, we follow the conventional
practice to use the suspended user list. We crawled data
from February 3rd, 2011 to February 21st, 2013, and
follow the conventional practice (Hu et al. 2013) to check
whether they were suspended as spammers. The second
dataset (TwitterH) is obtained from a subset of followers of
honeypot accounts (Lee, Eoff, and Caverlee 2011) and it is
publicly available2. Statistics of the datasets are shown in
TABLE 1 and Table 2.

4.2 Baseline Methods

In this section, we adopt several methods to evaluate dif-
ferent aspects of SGASD. We include state-of-the-art link-
based, neighbor-based and group-based methods for spam-
mer detection, as well as two variations of SGASD to eval-
uate different components. Details of the adopted baselines
are as follows:

Ratio of Follower/Followee: The ratio of
follower/followee (RFF) is a metric that identifies
anomalous social behaviors in the link-based manner (Lee,
Eoff, and Caverlee 2011).

Social Spammer Detection in Microblogging: Social
Spammer Detection in Microblogging (SSDM) (Hu et al.
2013) incorporates a graph regularizer into Elastic Net,
which proves to be effective in dealing with spammers in
a neighbor-based manner.

Network Footprints Score: The approach detects groups
of spammers by measuring the Network Footprints Score
(NFS) (Ye and Akoglu 2015), which is a metric quantifying
the distortion of reviews brought by spammers towards a
product. We adopt this method by replacing product rating
scores with the concentration probability of topics, since
social spammers aim to lead attention to a particular topic.

Content: We propose a variant of SGASD that only mod-
els the message by removing the tree-structured regularizer
from Eq.(4). The method is a least square regression model.

Network: We propose another variant of SGASD that
only models the network structure. In particular, we use
Louvain method to find groups of both training and testing
examples. The testing examples which are 1) detached from
all groups; 2) members of spammer-dominated groups; are
classified as spammers.

As a common practice, parameters of these methods, such
as the decision probability threshold for RFF , are tuned
through cross-validation on separate validation datasets.

2http://infolab.tamu.edu/data/
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(a) Precision with varying ratio of spammers. (b) Recall with varying ratio of spammers.

Figure 2: Precision and recall of SGASD, Content and Network with varying ratio of positive and negative examples.

Table 3: The precision, recall and F1-measure comparison
on the TwitterS dataset. SGASD achieves the best F1.

Method Precision Recall F1

RFF 51.75% 56.80% 54.16%
SSDM 87.66% 80.26% 83.80%
NFS 84.31% 66.23% 74.18%
Content 80.21% 66.93% 72.97%
Network 83.63% 29.35% 43.45%
SGASD 87.30% 88.72% 88.01%

Table 4: The precision, recall and F1-measure comparison
on TwitterH dataset, where SGASD achieves the best F1.

Method Precision Recall F1

RFF 77.60% 65.02% 70.76%
SSDM 92.15% 92.00% 92.07%
NFS 88.16% 65.67% 75.27%
Content 86.80% 82.46% 84.58%
Network 76.30% 45.10% 56.68%
SGASD 93.75% 96.92% 95.31%

4.3 Experimental Results

Experimental results on TwitterS and TwitterH can be found
in TABLE 3 and TABLE 4, and all results below are ob-
tained through 10-fold cross-validation, where the reported
result is the average of the ten folds.

Based on the results, we make following observations.
Link-based approaches RFF cannot achieve appealing re-
sults with real-world data since spammers may gain enough
links even with regular users. SSDM delivers the runner-
up performance, so it would fit some particular spammers
with certain patterns, but is not generalizable for a wider
range of spammers. NFS outperforms RFF by learning
links jointly from the group perspective. SGASD achieves

the best result by adaptively modeling the group structures.
SGASD also outperforms the two variants Network and
Content, by jointly instead of separately learning them.

Since a fundamental difference between TwitterS and
TwitterH is the different extent of data skewness, it would
be interesting to investigate the sensitivity of SGASD to
varying ratios of positive and negative examples. In the
second experiment, we use TwitterS data and vary the
ratio of spammers against non-spammers through randomly
down-sampling non-spammers. The ratio ranges from 10%
to 90%. Furthermore, we also test Content and Network
to understand how different components of SGASD work
toward varying skewness. Experimental results are shown
in Figure 2.

Based on the results, we make following observations.
As shown in Figure 2(a), precision of Content increases
steadily with more spammers. Since it only considers con-
tent information in messages, when there are more positive
instances and fewer negative instances being put, it is easier
to identify patterns of spammers regarding content. As
shown in Figure 2(b), recall of Content increases slightly
with more spammers in the data, while that of Network
increases rapidly. Though such increase of Network is
unstable, SGASD can take advantage of both information
and achieves the optimal recall and improves rapidly.

In order to further investigate the difference brought by
the adaptive group modeling, we plot the prediction results
of SGASD and the runner-up method SSDM for comparison
in Figure 3. In particular, we rank testing data examples
according to their prediction scores, and then group top
250 examples by every 50 examples and plot the mean of
each group using the red circles. We also plot the testing
points with different labels. Here, the x- and the y-axis is
the first and second component of the data correspondingly,
which are obtained through Principle Component Analysis.
It can be seen that SSDM keeps focusing on the dense area
where spammers are dominant, while SGASD also detects
spammers in the sparse area. It shows that SGASD can detect
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spammers with less apparent patterns.

4.4 Scalability Studies

In order to investigate the scalability of the method, we
report the performance of spammer detection methods and
two conventional classification algorithms with varying size
of data in Figure 4. SGASD++ is optimized with 8 threads.
As shown in the figure, multi-threaded optimization of
w significantly accelerates the training, which achieves a
sub-linear time cost with increasing data instances. The
experiment is performed on a 3.40 GHz Dual-Core Intel
Core i7 CPU.

SGASD can be viewed as imposing the adaptive group
analysis on Content information. In order to further inves-
tigate the efficiency of group analysis, we also report the
time cost of Louvain method and Content in TABLE 5. It
can be seen that the running time of SGASD adds around 10
to 15 extra seconds to Content. Although Louvain method
takes more time, its computation could be conveniently
accelerated (Low et al. 2014) and needs to be done only once
as preprocessing.

In summary, the proposed approach SGASD can identify
spammers more effectively (F1) than all baseline methods
through optimizing both precision and recall. Network and
content information contribute to different aspects of spam-
mer detection. Through integrating content analysis with
adaptive group modeling, SGASD can utilize the network
structure better and detect spammers both effectively and
efficiently.

Table 5: Running time (seconds) of group analysis methods
and the content-based method.

Methods
# Posts

1 × 105 2 × 105 3 × 105 5 × 105

Louvain 56 93 122 178
Content 33 46 61 98
SGASD 37 52 67 113

5 Related Work

The network modeling methods can generally be divided
into three categories, link-based, neighbor-based and group-
based, which are illustrated in Fig. 5. Link-based methods
assume links are generally regarded as social trust from
other users, and a small number of links might indicate a
spammer being fake. The underlying assumption is that
social media users are carefully connected, which might not
be true in the real world. Since users would simply follow
back after being followed, social media users with more
followees are found to own more followers generally. A
revised solution is to compile features such as the ratio of
follower/followee (Lee, Eoff, and Caverlee 2011). However,
spammers could follow users incrementally and unfollow
those who did not follow back seeminglessly, which is
transient and difficult to notice.

“Birds of a feather flock together”, neighbor-based meth-
ods regard links as a sign of homophily, assuming that
linked users are more likely to share the same label. The

homophily constraint could be incorporated in two ways.
First, links could be directly used to clamp prediction results
of connected users (Rayana and Akoglu 2015). Second,
since spammers usually focus on specific topics, a small set
of features are assumed to be more effective in discovering
spam. Links can then be used to smooth selection of features
by preserving the similarity between connected users in the
diminished feature space (Hu et al. 2013; Li et al. 2016).
However, sophisticated spammers could defeat related filters
through link farming.

Group-based methods leverage the group structure hidden
in social networks to detect spammers’ social interactions,
which are generally more robust to noisy links. Prior work
on incorporating social groups can generally be divided
into two categories. First, since attacks of social spammer
are coordinated to launch, they are assumed to form a
spammer group w.r.t. their links and messages (Jindal and
Liu 2007). Second, the problem of spammer detection
could also be reduced to that of outlier detection (Akoglu,
Tong, and Koutra 2015), since spammers are ‘outliers’ in
the sense of behaving differently from non-spammers (Gao
et al. 2010). Note that the first category aims to achieve
a group structure where spammers are clustered together,
while the second aims to achieve a group structure where
spammers are detached to any clusters. Each of the two
categories only focuses the specific spammers. Moreover,
parameters of groups such as group size and number of
groups are crucial to the performance, which are difficult
to optimize over a large information network with massive
features and links. SGASD jointly considers spammers with
both social interaction patterns and can adaptively model the
group structure.

The content-based methods aim to discover patterns from
posts of malicious users (Wu et al. 2016). The patterns
can be drawn from friend requests, private messages and
comments (Jindal and Liu 2007; Morstatter et al. 2016;
Wu et al. 2017a). As social media platforms provide
users with a variety of activities to participate in, various
features have also been used in previous spammer detection
research. Correlations between similar posts and correla-
tions between historical and present data have been utilized
to find misinformation (Sampson et al. 2016; Wu et al.
2017b) Since accounts of spammers are often generated in
a batch, similar or even same profile templates are often
used. Webb et al. tried to discover these accounts through
learning the user profiles (Webb, Caverlee, and Pu 2008). As
spammers are often employed to post information related to
a specific topic, their posting behavior often contains long
hibernation and bursty peaks. Chu et al. proposed related
approach to leverage the temporal feature and discover
spammers (Chu et al. 2010). User behavioral patterns, such
as online rating (Lim et al. 2010), temporal burstiness (Ye,
Kumar, and Akoglu 2016), locations (Li et al. 2015), friend
invitation (Xue et al. 2013) and social ties (Yang et al. 2014)
have also been studied.

Our work is also related to sparse learning methods.
Sparse learning was proposed for generating sparse repre-
sentations of models and data instances, where �1-norm is
often adopted to regularize the parameters. In real applica-
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(a) Centers of results with highest confidence of SGASD. (b) Centers of results with highest confidence of SSDM.

Figure 3: An example of difference on prediction results between SGASD and SSDM.

Figure 4: Training time of methods on varying size of train-
ing data with the same convergence condition. SGASD++
learns parameters with 8 threads in parallel.

tions, sparsity with some specific structure is often found to
be effective. In order to encode different kinds of structures,
a variety of sparse learning methods have been proposed,
such as group lasso and fused lasso. The structured sparsity
is achieved through using �1-norm on different levels. For
example, Kong et al. proposed to encode intra-group
sparsity of models through introducing �1,2-norm (Kong
et al. 2014), where the �1,2-norm is imposed on instances
inside each group (Wu, Hu, and Liu 2016). Thus, a small set
of features are selected in each group. Liu et al. proposed
to impose sparsity toward tree-structured groups and select
certain groups of features (Liu and Ye 2010), which is
different from the regularizer in our work for selecting
groups of instances. In addition to features, our method also
clusters data examples, which distances itself from multiple
task grouping methods (Daumé III 2013)

6 Conclusion and Future Work

Social media platforms have been used by spammers to
overwhelm normal users with unwanted information. Var-
ious methods have been proposed to discover the specific
patterns of spammers and detect them, however, it becomes
more challenging since sophisticated spammers find ways
to establish links with legitimate users, and thus are able

Figure 5: An illustrative example of how the social network
structure has been used in traditional spammer detection.

to trick existing social spammer algorithms. In this work,
we reviewed how network information has been used in
existing spammer detection methods, and we found that
adaptive methods might be useful in dealing with these
noisy links. In order to allow for the adaptive detection
of spammers, we propose a novel sparse group modeling
method to characterize group structures hidden in social
networks. Through leveraging the redundancy of social
groups, and content information of training data, the pro-
posed framework SGASD can detect spammers effectively
and efficiently. Empirical results are obtained based on two
real world Twitter datasets.

Several possible future directions remain to be studied.
Since we focus on automatically generated labeled datasets,
it would be interesting to test the performance of different
models on datasets which are labeled by human annotators,
such as through crowdsourcing platforms. Social media
platforms enable users to share various kinds of information,
such as texts, user names, friends, time and locations. We
mainly focus on leveraging texts and links between users, it
would be interesting to design a framework which is able
to infer identity by incorporating all these heterogeneous
information sources.
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