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Abstract

People often use multiple platforms to fulfill their dif-
ferent information needs, which has opened opportunities
for research on the cross-platform recommendation. Exist-
ing cross-platform recommendation works either assume no
overlapping users on different platforms or require enough
overlapping users to reach a good performance. None of them
pays attention to the sparse overlap problem, i.e., the number
of observed overlapping users of different platforms is very
small. In this paper, we propose a cross-platform recommen-
dation framework termed Adaptive Similarity Structure Regu-
larization Through Connectors (AdaSTC), which adaptively
learns the user similarity structure on different platforms and
further uses it to regularize the modeling process of user pref-
erence. Experiments conducted on two real-world datasets
demonstrate that AdaSTC significantly outperforms the state-
of-the-art methods in the sparse overlap situation.

Introduction

With the emergence and popularity of Web2.0, various so-
cial media platforms have been more and more popular due
to their different types of services. Now it is common for
users to engage in different platforms simultaneously. How-
ever, though these information platforms host huge and ever-
growing data, they are either isolated or their correlations are
significantly undermined. Therefore, how to bridge and inte-
grate multi-platforms information has become a hot research
area due to its great potential in promoting users’ preference
modeling.

Several research works have investigated the cross-
platform recommendation problem. For example,
FRIENDTRSFER (Yan et al. 2013) assumes that users
on two platforms are fully overlapped, which is incon-
sistent with reality. CM3TM (Min et al. 2015) allows no
overlapping users between different platforms but assumes
two social platforms share some same topics, which is an
overly strong assumption and often not available in real
application. Although CrossIntegration (Yan, Sang, and Xu
2015) takes users’ partially-overlapping structure between
two platforms into consideration, it assumes there are a lot
of overlapping users. In general, none of these methods
pays attention to the sparse overlap problem.
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Sparse overlap problem: Sparse overlap problem refers
to the number of the observed (explicitly known) overlap-
ping users is very small, which is a widely existing problem
in real world applications. For example, Yan et al. collected
about 40K users (Yan et al. 2013), among which only 3,003
users have both Flickr and Twitter accounts, and the overlap
ratio is less than 1%. Though the sparse overlap problem is
very important, there are few studies on this problem in the
cross-platform recommendation so far.

In this paper, we propose to use the user similarity struc-
ture on the two platforms to regularize to modeling process
of user preference. Specifically, we observed that, for every
user on one platform, there are some users on other plat-
forms who have considerable similarity with him. In prefer-
ence modeling process, we should ensure that similar users’
preferences embedding are close to each other.

Challenges: However, there are two big challenges in
exploiting the user similarity structure to solve the sparse
overlap problem. C1. Different representations. Information
from different platforms should have different patterns, and
simply representing them in the same latent space is inap-
propriate. C2. Unreliable user similarity structure. The ex-
plicit known similarity structure on different platforms is not
available in reality. In other words, for a given user on one
platform, it is very hard for us to know his similar users on
other platforms.

Insights: We provide two insights to address the above
challenges. I1. Indirect comparison strategy through over-
lapping users. We can compare two users’ preferences on
different platforms by using indirect comparison strategy:
for a user on one platform, we first calculate the similarity
values between his preference with overlapping users’ pref-
erences in the same platform, and then we use a similarity
embedding vector that consists of these similarity values to
represent this user. After we represent these two users by
using the same dimensional similarity embedding vectors,
we can compute the distance between them. Figure 1 shows
a toy example of this strategy: Alice is a user on Platform
A whose latent factor dimension is 3, and Bob is a user on
Platform B whose latent factor dimension is 4. We can cal-
culate the distance of their preferences through the overlap-
ping users, i.e., Cater and Dean. I2. Adaptive user similar-
ity structure. Instead of using the determined user similarity
structure, we propose to perform user preference modeling
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Figure 1: The example of I1: users on Platform A (e.g.,
Alice) are shown in green, users on platform B (e.g.,
Bob) are shown in orange, and overlapping users (e.g.,
Cater) are shown in black. The yellow line between two
users is the similarity of their preferences on the same
platform, e.g., Sim(Alice, Cater) = 0.8. The blue ar-
row between two platforms’ users is their distance, e.g.,
Dis(Alice,Bob) = 0.01. In this case, Alice can be rep-
resented by a similarity embedding vector V ec(Alice) =
[0.8, 0.5]T, and Bob can be represented by a similar-
ity embedding vector V ec(Bob) = [0.8, 0.4]T. The dis-
tance between Alice’s and Bob’s preferences can be com-
puted by using the following formula: Dis(Alice,Bob) =
Dis(V ec(Alice), V ec(Bob)).

and user similarity structure learning in a unified framework.
That is, we adaptively learn the user similarity structure from
the result of user preference modeling and further use it to
regularize the learning process of user preference modeling.

Solution: Based on the above two insights, we pro-
pose a novel cross-platform user preference learning frame-
work termed Adaptive Similarity Structure Regularization
Through Connectors (AdaSTC). AdaSTC performs the user
similarity structure learning and the user preference mod-
eling simultaneously. That is, AdaSTC directly learns a
distance induced probabilistic neighborhood matrix (Nie,
Wang, and Huang 2014), where the distance between users’
preferences on different platforms is computed with indirect
comparison strategy.

We summarize the main contributions of this paper as fol-
lows: 1. we identify the sparse overlap problem in the cross-
platform recommendation scenario, and propose to exploit
cross-platform users’ intrinsic similarity structure to allevi-
ate this problem; 2. We conduct extensive experiments on
two real-world datasets to validate the effectiveness and ef-
ficiency of AdaSTC.

The Method

Notations: Suppose we have two platforms A and B. Plat-
form A has a user set UA = {u1

A, ..., u
nA

A } and an item set
VA = {v1A, ..., vmA

A } with nA and mA denoting the number
of users and items, respectively. Platform B has a user set
UB = {u1

B , ..., u
nB

B } and an item set VB = {v1B , ..., vnB

B }

with nB and mB denoting the number of users and items,
respectively. There are nAB observed overlapping users be-
tween two platforms A and B, and we denote them by UAB ,
and usually, nAB � nA, nB , which is the sparse overlap
problem. We denote the dimensions of latent factors on two
platforms by kA and kB respectively. Let RA ∈ R

nA×mA

and RB ∈ R
nB×mB be the user-item rating matrices on two

platforms. The corresponding observation indicator matrices
are WA ∈ R

nA×mA and WB ∈ R
nB×mB , where W ij

A = 1

denotes Rij
A is known and W ij

A = 0 denotes Rij
A is missing,

and the same as W ij
B . Let UA ∈ R

nA×kA , VA ∈ R
kA×mA

, UB ∈ R
nB×kB , and VB ∈ R

kB×mB be the latent factor
matrices, where each row of UA represents a user’s prefer-
ence on platform A, each column of VA represents an item’s
characteristics on the platform A, and the same meanings as
UB and VB .

The framework: First, we aim to minimize the error be-
tween the known ratings and the predicted ratings on two
platforms separately. We choose to model the user prefer-
ence on two platforms by using matrix factorization (MF)
(Koren, Bell, and Volinsky 2009) technique. Next, we bridge
the users on two platforms by their similarity structure. That
is, in the modeling process, we use a regularization term to
make sure that similar users on two platforms have close
preferences. Thus, we propose the similarity structure regu-
larization framework as follows:

min
UA,VA,UB ,VB

‖WA ⊗ (RA − UAVA)‖2F+

τ‖WB ⊗ (RB − UBVB)‖2F + α
∑

i,j

Dis(U i
A, U

j
B)H(ui

A, u
j
B),

(1)
where α, τ are the trade-off parameters to balance the

regularizations and loss functions. We use L2 norms of
UA, VA, UB , VB as regularization terms but omit them for
conciseness. H(ui

A, u
j
B) denotes the intrinsic similarity be-

tween users ui
A and uj

B , and Dis(U i
A, U

j
B) denotes the dif-

ference between user preferences U i
A and U j

B . A bigger
value of H(ui

A, u
j
B) indicates that the distance between user

preference vectors U i
A and U j

B should be smaller.
Realization of Insight 1: we first calculate the simi-

larity between U i
A/U j

B and overlapping users’ preference
Uk
A/Uk

B (k ∈ UAB), and then we use a similarity embed-
ding vector consists of these similarity values to represent
ui
A/uj

B . Let V ec(ui
A) denotes the similarity embedding vec-

tor of ui
A and V ec(uj

B) denotes the of similarity embedding
vector of uj

B . Their formal definition are as follows:

V ec(ui
A) = [Sim(U i

A, U
k(1)
A ), ...Sim(U i

A, U
k(nAB)
A )]T,

V ec(uj
B) = [Sim(U j

B , U
k(1)
B ), ...Sim(U i

B , U
k(nAB)
B )]T,

{k(1), .., k(nAB)} = UAB,

(2)

where Sim(U i
A, U

k
A) denotes the similarity between user

preferences U i
A and Uk

A. Since both S(ui
A) and S(uj

B) are
nAB-dimensional vectors, it is easy for us to compute the
distance between them. Based on this strategy, we propose
the new regularization term in our model as follows:

min
UA,UB

∑

i,j

Dis(V ec(ui
A), V ec(uj

B))H(ui
A, u

j
B) (3)
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Table 1: Comparison result, with η = 0.8 and x = 90
Dataset movie-tag music-tag

RMSE MAE RMSE MAE
Item movie tag movie tag music tag music tag
PMF 0.8187±0.0013 0.2429±0.0010 0.6471±0.0031 0.1847±0.0005 0.7916±0.0055 0.1958±0.0007 0.6247±0.0053 0.1461±0.0009
CBT 0.9065±0.0002 0.1311±0.0023 0.7200±0.0021 0.1222±0.0008 0.8185±0.0051 0.1993±0.0001 0.6232±0.0041 0.1161±0.0003

CROSS 0.8084±0.0091 0.1553±0.0093 0.6373±0.0022 0.1050±0.0030 0.7836±0.0046 0.1857±0.0055 0.6197±0.0081 0.1347±0.0072
CMF 0.8091±0.0051 0.1503±0.0013 0.6424±0.0048 0.1062±0.0003 0.7839±0.0007 0.1901±0.0014 0.6225±0.0005 0.1368±0.0002

DerSTC 0.7867±0.0019 0.1326±0.0045 0.6175±0.0058 0.0951±0.0031 0.7619±0.0027 0.1599±0.0069 0.6017±0.0011 0.1205±0.0004
AdaSTC 0.7565±0.0023 0.1075±0.0022 0.6057±0.0045 0.0853±0.0040 0.7307±0.0098 0.1478±0.0015 0.5864±0.0060 0.1109±0.0033

In this paper, for computational simplicity, we simply
choose Dis(a, b) = ‖.‖22 and Sim(c, d) =< c, d >, where
‖.‖2 denotes the L2-norm of vector and < c, d > denotes
the inner product of vector c and d. Then the regularization
term in Equation (3) can be reformulated as:

min
UA,UB

∑

i,j,k

(Ski
A − Skj

B )2H(ui
A, u

j
B) (4)

where Ski
A =< Uk

A, U
i
A > and Skj

B =< Uk
B , U

j
B >.

Realization of Insight 2: we introduce to learn a prob-
abilistic neighborhood matrix (Nie, Wang, and Huang
2014) which reveals the similarity structure between cross-
platform users. For each user ui

A on platform A, all the users
{uj

B}nB
j=1 on platform B are considered as the neighborhood

of ui
A with the probability P ij , where P ∈ R

nA×nB can be
determined by solving the following problem:

min
P

∑

i,j

Dis(U i
A, U

j
B)P

ij + β
∑

i,j

(P ij)2

s.t. 1nP = 1n, P ≥ 0 (i ∈ UA, j ∈ UB , k ∈ UAB),

(5)

where β is the regularization parameter to avoid overfitting.
It can be found that a small distance between U i

A and U j
B

leads to a large P ij . It further indicates that user uj
B is very

likely to be a close neighbor of ui
A, which means that ui

A

and uj
B have a large similarity. With such a nice property, the

estimated similarity matrix P can be used for user similarity
structure embedding.

Finally, we obtain the following objective function based
on Equations (1) and (5):

min
P,UA,VA,UB ,VB

‖WA ⊗ (RA − UAVA)‖2F+

τ‖WB ⊗ (RB − UBVB)‖2 + α
∑

k,i,j

(Ski
A − Skj

B )2P ij

+ β
∑

i,j

(P ij)2

s.t. 1nP = 1n, P ≥ 0 (i ∈ UA, j ∈ UB , k ∈ UAB),

(6)

where 1n denotes a 1× nA vector with all elements equal to 1.

The Optimization

We derive an alternative iterative algorithm to solve the
Equation (6). First, when UA, UB , VA, and VB are fixed, the
update of P can be formulated as follows:

min
P

α
∑

k,i,j

(Ski
A − Skj

B )2P ij + β
∑

i,j

(P ij)2

s.t. 1nP = 1n, P ≥ 0 (i ∈ UA, j ∈ UB , k ∈ UAB).

(7)

Let C ∈ RnA×nB be a matrix with Cij =
α
∑

k(S
ki
A −Skj

B )2

−2β , and then the above problem can be rewrit-
ten as n decoupled sub problems as the following form:

min
P i

1

2
‖P i − Ci‖2 s.t. 1nP

i = 1, P ≥ 0, (8)

where P i is the i-th column of P .
The above inequality constrained minimization problem

can be efficiently solved by Algorithm 1.

Algorithm 1 The optimization algorithm of Equation (8)
Input: Ci

Output: P i;
1: sort Ci into b where b1 ≥ b2 ≥, ..., bnAB

2: find ρ = max{t | bt + 1
t
(1−∑t

k=1 bk) > 0, 1 ≤ t ≤ nAB}
3: define z = 1

ρ
(1−∑ρ

k=1 bk)

4: P ki = max(Cki + z, 0), 1 ≤ k ≤ nAB

Next, when P is fixed, the optimization problem in Equa-
tion (8) becomes an unconstraint problem which minimizes:

F = ‖WA ⊗ (RA − UAVA)‖2F + τ‖WB ⊗ (RB − UBVB)‖2

+ α
∑

k,i,j

(Ski
A − Skj

B )2P ij .

(9)
Because Equation (9) is convex, its solution can be obtained
by using the Stochastic Gradient Descent (SGD).

Experiments

Settings

The datasets are crawled from Douban and Sina Weibo.
Douban is an online recommendation community in China,
which provides the rating and the recommendation service
for movies and songs. Sina Weibo is a microblogging plat-
form in China, which allows users add personal tags and post
tweets. Sina Weibo and Douban provide APIs which enable
users to link their accounts on two platforms. By using the
linkage information, we first extract Sina Weibo accounts of
the Douban users, then crawl their tagging information. We
process the data into two cross-platform datasets, i.e., the
music-tag dataset and the movie-tag dataset. We randomly
select x% ratings and tags as the training set and report the
prediction performance on the remaining 10% test set, where
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(a) Predicting movie on movie-tag (b) Predicting tag on movie-tag (c) Predicting music on music-tag (d) Predicting tag on music-tag

Figure 2: Results on Douban-movie and Douban-music, with η varying from 0.2 to 1.

x varies in {10, 30, 50, 70, 90}. We also randomly select η%
users as the observed overlapping users on Douban and Sina
Weibo, where η varies from 0.2 to 1.

Comparison Results and Analysis

We compare AdaSTC with the following recommenda-
tion approaches:
PMF (Salakhutdinov and Mnih 2007) is a classic single-
platform recommendation method, and we use it to do rec-
ommendation on two platforms separately.
CBT (Li, Yang, and Xue 2009) assumes that two domains
share the same rating patterns with no overlapping users.
CROSS (Yan, Sang, and Xu 2015) takes user partially over-
lapping structure on two platforms into consideration, and it
models overlapping users’ preference from the information
on both platforms.
CMF (Singh and Gordon 2008) simultaneously factorizes
several matrices, and shares parameters among factors when
an entity participates in multiple relations.
DerSTC is a variant of our method without the realization
of I2. That is, it uses the determined similarity structure
calculated by using users’ profiles.

We first use the grid search to determine the optimal hy-
perparameters for all the baselines and AdaSTC, and we set
τ = 0.2, kA = 15, and kB = 10 for AdaSTC. Then we
conduct the experiment for 10 times and report the average
RMSE and MAE on the test set with variance. The compar-
ison results with x = 90 are shown in Table 1. From them,
we have the following observations: 1. DerSTC achieves
the best performance among all the baseline algorithms on
both datasets, which demonstrates the effectiveness of the
proposed user similarity structure regularization framework;
2. AdaSTC achieves the best performance in terms of the
RMSE and the MAE on both datasets, which further demon-
strates that our method’s strength.

Sparse Overlap Problem Experiments

Since only CROSS and DerSTC can handle the par-
tial overlapping structure between cross-platform users, we
compare AdaSTC with these baseline methods to test their
capability of handling the sparse overlap problem. We vary
η from 0.2 to 1 to study the influence of the number of over-
lapping users on our model behavior. The results are shown
in Figure 2, and from it, we have the following observations:
1. with different overlap ratios, AdaSTC always achieves the

best performance, which demonstrates that our method is ef-
ficient to solve the sparse overlap problem; 2. with η varying
from 0.2 to 0.8, the increasing number of overlapping users
will boost the performance of AdaSTC and DerSTC, while
it does not have significant influence on CROSS. This re-
sult indicates that more overlapping users will help conduct
a better indirect comparison.

Conclusion

In this paper, we first identified the sparse overlap prob-
lem. Then we proposed a novel cross-platform recommen-
dation algorithm termed AdaSTC to solve it. Specifically,
AdaSTC adopts the user similarity structure on different
platforms to regularize the modeling process of user pref-
erence. Experimental results conducted on two real-world
datasets demonstrate that our proposed AdaSTC signifi-
cantly outperforms the state-of-the-art methods under the
sparse overlap situation.
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