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Abstract

The connectivity and openness of the Internet have cultivated
a blistering expansion of online media websites. However,
the culture of openness also makes the emerging platforms an
effective channel for content pollution, such as fraud, phish-
ing, and other online abuses. To complicate the problem,
content polluters actively manipulate the characteristics of
the Internet through establishing links with normal users and
blending the malicious information with legitimate content.
The manipulated links and content, being used as camouflage,
make it very intricate to detect content polluters. Recent work
has investigated camouflaged fraud in networks. However,
due to the lack of availability of label information for cam-
ouflaged content, it is challenging to detect content polluters
with traditional approaches. In this paper, we make the first
attempt on detecting camouflaged content polluters. In order
to evaluate the proposed approach, we conduct experiments
on real-world data. The results show that our method achieves
better results than existing approaches.

Introduction

Motivated by the monetary rewards, content polluters, which
include fraudsters, scammers, and spammers, unfairly over-
power normal users by spreading disinformation (Wu et al.
2016), which undermines the role of Internet media in sus-
taining a society as a collective entity. An emerging char-
acteristic that further complicates the problem is the cam-
ouflage. Due to the openness of Internet media, it is easy
for content polluters to copy a significant portion of con-
tent from normal users. The polluting content that is camou-
flaged by the legitimate messages can be very deluding due
to the cognitive inertia: once many genuine posts from a
fraudster establish trust, the fraudulent post is likely to con-
vince many of the readers.

Recent studies have investigated the camouflage of fraud-
sters from the perspective of network structures (Hooi et
al. 2016; Wu et al. 2017), proving that network camouflage
could be efficiently detected through studying the abnormal-
ity of the density of a graph caused by the camouflage links.
In this work, we focus on precisely the other side of the prob-
lem, i.e., detecting content polluters in the presence of cam-
ouflage. In order to illustrate the problem, we show a toy
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example in Figure 1, where a normal user posts A, B, and
C, and the adversarial rival copies them to camouflage the
polluting post D. Our goal is to detect content polluters in
the presence of camouflage.

It is particularly difficult and challenging to detect camou-
flaged content polluters. Due to the massive amount of con-
tent information on Internet media, there is a lack of avail-
ability of label information for camouflaged posts. Another
challenge is data scarcity. Since camouflage can take up the
majority of content from a content polluter, it is not easy to
identify the scarce polluting evidence, and manually label-
ing it could be labor-intensive.

In order to tackle the challenges, we propose to utilize
label information of accounts. Account labels are easier to
obtain and publicly available at a relatively large scale on
various platforms. Motivated by results of recent studies
that camouflage tends to be random while malicious con-
tent is alike due to the similar fraudulent targets (Hooi et
al. 2016), we assume that the intersection of content pol-
luters’ posts in the feature space is more likely to be a
signal of polluting content. Hence, we aim to investigate
how Camouflaged Content Polluters can be detected with
Discriminant Analysis. In particular, we introduce a novel
method CCPDA, which effectively detects content polluters
by mining signals of camouflaged pollution. Major contri-
butions of this work are summarized below,

• Formally define the problem of detecting camouflaged
content polluters;

• Propose a novel method CCPDA to efficiently detect cam-
ouflaged content polluters; and

• Conduct extensive experiments to evaluate the effective-
ness and efficiency of CCPDA.

Problem Statement

Let A = [V,P, t] be a target account set with post infor-
mation V, user-post mapping P and identity labels t. The
data matrix V ∈ R

m×n is the post information of all users,
where m is the number of posts and n is the number of tex-
tual features extracted from the posts. We denote the user-
post association as P ∈ R

u×m, where u is the number of
users. Pi,j equals to 1 if the jth post is posted by the ith

account and equals to 0 otherwise. t ∈ {0, 1}u×1 records
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Figure 1: A toy example of camouflaged content polluters,
where a normal user’s posts (A, B and C) are copied to cam-
ouflage a polluting post (D).

the identity label of all users, where ti = 1 represents the
ith account is a content polluter.

We now define the problem of detecting camouflaged con-
tent polluters as follows:

Given a set of accounts A with post information V, user-
post mapping matrix P, and identity label information t for
partial accounts, our goal is to learn a model with the best
performance to classify whether a user is a content polluter.

Detecting Campuflaged Content Polluters

Modeling Content Information

We represent posts with a data matrix V ∈ R
m×n, where

each row represents a post and each column represents a
textual feature. However, since labels of posts are unavail-
able, we start with a trivial solution that labels all posts of a
known polluter as polluting. Then it can be reduced to the
least square problem:

min
w

1

2
||Vw − y||22 +

λ1

2
||w||22, (1)

where w ∈ R
n is the model to learn and a regularization

term ||w||22 is imposed to avoid overfitting. The parameter
λ1 controls the extent of the model complexity. The vector
y ∈ R

m is the pseudo label that is temporally initialized.
The pseudo label vector can be derived from the account
labels y = PT t. However, posts of content polluters are
not necessarily fraudulent, so labeling all posts of a content
polluter as positive would make the classifier lose sensitivity
to content pollution and result in a low recall.

Detecting Camouflaged Polluters with
Discriminant Analysis

In order to allow for the modification of the label values, we
introduce a weighting vector c ∈ R

m for the label vector.
Through incorporating the weight, the label of the ith post
becomes ciyi. So the labels could be updated through up-
dating the weights. Our aim is to filter out camouflage, i.e.,
increasing weights of polluting posts and decreasing weights
of labels of polluters’ legitimate content. To this end, we re-
formulate the objective function in Eq.(1) as:

min
w,c

1

2

m∑

i=1

(ciyi − Vi,∗w)2 +
λ1

2
||w||22, (2)

where ci represents the weight of ith post. Since the normal
posts of a content polluter are initially labeled as positive,
which can be viewed as mislabeled examples, they are more
likely to cause a larger reconstruction error during training.
Therefore, penalizing large errors leads to downweighting
labels of legitimate content. In addition, since labels of le-
gitimate users are of value 0, the weight does not influence
normal users during the optimization.

Since content pollution may only comprise a small por-
tion of all posts, the representation of c should be sparse.
Motivated by sparse representation learning, where only few
coefficients are assumed to reveal the key information, we in-
corporate an �1-norm with c and reformulate the objective
function as follows:

min
w,c

1

2

m∑

i=1

(ciyi − Vi,∗w)2 +
λ1

2
||w||22 + λ2||c||1, (3)

where the �1-norm penalizes non-sparse solutions. The pa-
rameter λ2 controls the extent of sparsity, which can be re-
garded as the discriminant threshold for a post to be selected
and labeled as polluting. Through introducing the sparsity
regularizer, the selected entries are likely to be 1 while the
unselected entries are likely to be exactly zero, which is fa-
vorable since a post is either fraudulent or legitimate in real-
world applications.

Sparse representation methods are used to find dominant
signals. However, some polluters would be ignored if too
few polluting posts are present. In order to fully exploit the
label information, we force every polluter to be selected with
some posts by introducing an �G1,2-norm term. The regular-
ization term is as follows,

�G1,2(c) =
∑

g∈G
||cGg ||21. (4)

The �G1,2-norm, which is also called group exclusive
penalty (Kong et al. 2014), is proposed to select discrimi-
nant features of different groups. Here, G is the set of all
groups, where Gg denotes the indices of posts in a group g
∈ {1, 2, . . . ,m}. For example, let Gg = {1, 2, 4, · · · }, then
||cGg

|| = [c1, c2, 0, c4, 0, . . . , 0]. The �G1,2-norm first sums
up absolute values of intra-group variables and then imposes
an �2-norm to regularize the sum. The minimization pro-
cess leads to intra-group sparsity. Concretely, it enforces lo-
cally discriminant posts of a polluter to be upweighted while
enforces globally discriminant content to be downweighted.

The group exclusive penalty is convex but non-smooth,
which is difficult for optimization. In order to solve the prob-
lem, we rewrite the �G1,2-norm as follows (Wu, Hu, and Liu
2016),

�
Gg

1,2(c) =
1

2

u∑

i=1

(cT Pi,∗)2 (5)

=
1

2

u∑

i=1

cT PT
i,∗Pi,∗c (6)

=
1

2
cT PT Pc, (7)
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where P denotes the user-post mapping matrix. Since P is a
constant matrix, we introduce M = PT P to replace the prod-
uct. In M ∈ R

m×m, Mi,j equals to one if post i and j are
generated by the same user and zero otherwise. By rewrit-
ing the regularization term �

Gg

1,2(c), it is convex and smooth,
which can be easily incorporated into the objective function
in Eq.(3) as:

1

2

m∑

i=1

(ciyi−Vi,∗w)2+
λ1

2
||w||22+λ2||c||1+ λ3

2
cT Mc, (8)

where the parameter λ3 controls the importance of locally
discriminant content.

Optimization

The optimization problem in Eq.(8) is not jointly convex
with respect to the two variables w and c together. How-
ever, by fixing one of them, the objective function is convex
to the other. So we propose to find optimal solutions through
alternatively updating one by fixing the other.

1)While fixing c, update w: the problem only depends on
w. By only considering items related to w, we reformulate
the objective as follows:

εw =
1

2

m∑

i=1

(ciyi − Vi,∗w)2 +
λ1

2
||w||22, (9)

which is reduced to an �2 regularized linear regression prob-
lem. In order to cope with the massive amount of content in-
formation, we adopt Stochastic Gradient Descent (SGD) to
solve the optimization problem. SGD belongs to a class of
hill-climbing optimization technique that seeks a stationary
point of a function. To utilize SGD, we derive the gradient
of w as follows:

∂εw
∂w

=
m∑

i=1

VT
i,∗(Vi,∗w − ciyi) + λ1w. (10)

Instead of updating in a batch mode, SGD randomly se-
lects data examples from the total m data instances. The
update process can then be significantly accelerated with the
multi-threading manner.

Therefore, the optimal predictor can be achieved through
the following update rules:

w = w − τ
∂εw
∂w

, (11)

where τ is a learning rate which we set using backtracking
line search.

2)While fixing w, update c: the problem only depends on
c. Since the reconstruction Vi,∗w becomes constant, we use
e to replace it, where ei = Vi,∗w. Thus, Eq.(8) can be refor-
mulated as follows:

min
c

1

2

m∑

i=1

(ciyi − ei)
2 + λ2||c||1 + λ3

2
cT Mc. (12)

Though all components in Eq.(12) are convex with respect
to c, the �1-norm makes it non-smooth, which is difficult

Table 1: Statistics of the dataset used in this study.
Posts Reposts Unique Users Positive Ratio
1,150,192 576,167 94,535 7.5%

to optimize. Following (Liu, Ji, and Ye 2009), we try to
optimize the problem in Eq.(12) through reformulating it as
an equivalent smooth and convex problem,

min
c∈Z

O(c) =
1

2
||c ◦ y − e||22 +

λ3

2
cT Mc,

where Z = {c | ||c||1 ≤ z}.
(13)

◦ denotes component-wise multiplication. z ≥ 0 is the ra-
dius of the �1-ball. λ2 and z have a 1:1 correspondence.

The �1-ball constrained convex problem in Eq.(13) can be
efficiently solved. Motivated by (Ji and Ye 2009), we adopt
proximal gradient descent in this work. The update rule for
c can be formulated as follows:

ct = argmin
c∈Z

Pγ,ct−1(c), (14)

where the superscript t denotes the number of iteration,
and Pγ,ct−1(c) is the convex problem’s Euclidean projection
onto the constraint space. The projection can be formulated
as follows,

Pγ,ct−1(c) = O(ct−1)+ 〈�O(ct−1), c− c
t−1〉+ γ

2
||c− c

t−1||22,
(15)

where �O(·) is the derivative of O(·). Since O(·) is convex,
�O(·) can be derived from Eq.(13) as

�O(c) = y ◦ c ◦ y − y ◦ e + λ3Mc. (16)

Given a problem in the form of Eq.(15), the analytical
solution can be directly obtained (Ji and Ye 2009). The so-
lution of c can be written as

ctj = max(0, ut−1
j (1− λ3

γ|ut−1
j | )), (17)

where ut = ct − 1
γ (�O(ct)), which is introduced to replace

the gradient step, and ut
j and ctj are the jth element of ut and

ct, correspondingly.

Experiments

Dataset

Existing studies obtain normal accounts through random
sampling, where the cutoff between positive and negative
examples may not be reflective of the original data. In order
to keep in line with the real world distribution, we build up
a dataset by randomly crawling all accounts under certain
topics, where labels are obtained using the gold standard. In
particular, we randomly sample posts from Twitter in 2013.
In May 2016, we crawl each user in the dataset again and
check the account status. Statistics are shown in Table 1.
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Table 2: Results on Twitter dataset.
Method Precision Recall F-score

SVM 29.24% 8.78% 13.53%
GBDT 69.51% 5.12% 9.66%
AdaBoost 73.41% 8.24% 14.82%
SSDM 88.01% 10.11% 18.14%
SVMP 18.53% 62.14% 28.54%
GBDTP 55.34% 32.22% 40.72%
AdaBoostP 27.62% 31.85% 29.59%
SVMIL 84.36% 13.56% 23.36%
CCPDA 89.17% 30.26% 45.96%

Settings

We include two kinds of baselines: account-centric and post-
centric methods. Account-centric methods conventionally
construct an attribute vector from all posts of a user. Post-
centric methods model a user by learning individual posts.
The 10-fold cross-validation is employed to generate all ex-
perimental results. We list all baseline methods below,

Support Vector Machines (SVMs): are supervised
learning tools for solving binary classification, which have
been successfully applied to various tasks.

AdaBoost is a general boosting framework. It builds up
classifiers by ensembling weak classifiers.

Gradient Boosted Decision Tree is a boosting algorithm
which produces a prediction model in the form of an ensem-
ble of multiple decision trees.

SVMIL belongs to Multiple Instance Learning (MIL) al-
gorithms which extends SVM in a multi-instance setting.
MIL shares a similar formulation with our work, assuming
that each example contains multiple instances (Zhou 2004).

Social Spammer Detection in Microblogging: Hu et al.
proposed a framework SSDM to detect content polluters in
social media by jointly modeling network and content infor-
mation (Hu et al. 2013).

Post-Centric methods are trained with individual posts.
The method is then named by adding a subscript of P to
that of corresponding account-centric models. Since post
labels are not available, known content polluters’ posts are
all labeled as positive.

Experimental Results

The results are summarized in Table 2. Based on the exper-
imental results, we have the following observations:

1) Post-centric methods achieve better recall while
account-centric methods achieve better precision. Since an
individual suspicious post causes an account to be classified
as a content polluter, post-centric methods are more likely to
detect more polluters, which results in the higher recall. By
mixing all content together, account-centric approaches fo-
cus on the apparent content polluters, so it results in a higher
precision.

2) GBDTP achieves the second best F-score by captur-
ing approximately 1

3 content polluters with a 55% precision.
Since the dataset is skewed, post-centric methods get better
F-score by labeling more content polluters.

3) SVMIL performs better on precision while worse on re-
call. The assumption of multi-instance learning that positive
bags share similar instances leads the model to focus more
on obvious polluting content, and thus it loses the sensitiv-
ity to content polluters with locally discriminant polluting
evidence.

4) CCPDA outperforms all the baselines with respect to F-
score. In looking into the results of post-centric approaches,
we find that they are oversensitive and have a lower preci-
sion. With discriminant analysis, CCPDA achieves a higher
precision by focusing on only the polluting content.

Conclusion

Camouflage of content polluters presents great challenges to
Internet media. In this work, we investigate how the cam-
ouflaged polluting signal can be identified with label infor-
mation only for accounts. In particular, the proposed frame-
work utilizes discriminant analysis to discover the key post
that distinguishes content polluters. Experimental results on
real-world data demonstrate that the proposed framework
can effectively utilize available information to outperform
the state-of-the-art approaches. In addition, conducting lin-
guistic analysis on the detected content information to better
understand motivations and behaviors of content polluters is
also a promising direction.
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