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Abstract

In a large number of applications, from biomedical literature
to social networks, there are collections of text documents
that are annotated by interconnected entities, which are re-
lated to each other through association graphs. For example,
social posts are related through the friendship graph of their
authors, and PubMed articles are annotated by Mesh terms,
which are related through ontological relationships. To effec-
tively query such collections, in addition to the text content
relevance of a document, the semantic distance between the
entities of a document and the query must be taken into ac-
count.
In this paper, we propose a novel query framework, which
we refer as keyword querying on graph-annotated documents,
and query techniques to answer such queries. Our methods
automatically balance the impact of the graph entities and the
text content in the ranking. Our qualitative evaluation on real
dataset shows that our methods improve the ranking quality
compared to baseline ranking systems.

1 Introduction
Much research has studied how to query interconnected doc-
uments, such as Web pages, relational databases (tuples are
the documents) or XML data (XML elements are the docu-
ments). In these settings, the assumption is generally that the
user submits a keyword query and the system combines the
text similarity with the graph structure to rank documents or
collections of documents.

However, this paradigm misses the quite common sce-
nario where the relationships do not exist directly between
the documents, but between graph entities contained in the
documents. As an example, consider the posts of a social
network, which contain the id of their author (and possibly
of the recipients too), and the users are connected through
a friendship graph. In this case, the graph entity is the user
who submits the query.

We specifically study the problem where the query, in ad-
dition to keywords, specifies one or more graph entities (or
simply entities) of interest. In the social networks domain,
the user who submits the query becomes the entity, mean-
ing that he is more interested in documents posted by closer
friends. For example, if user John in Figure 1 submits a
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query with keyword “birthday”, he likely prefers a post re-
lated to “birthday” by his direct friend Mike than by his far-
ther friend Bob (assuming other factors such as freshness,
user influence and text similarity are the same).

We refer to the above type of queries as keyword queries
on graph-annotated documents, to differentiate them from
the more traditional keyword queries on interconnected data
mentioned above. In addition to the social networks, where
we focus our presentation for clarity, keyword queries on
graph-annotated documents can be found in other domains.
In medical literature bibliographies, each article is annotated
by a set of medical concepts, connected by a medical ontol-
ogy. In e-commerce, products have a description and are
annotated by a product category (e.g., “SLR Camera”); the
category becomes the entity. In spatial databases, each doc-
ument may have a location and a graph of (e.g., roads) that
defines the distances between them; the user’s location be-
comes the entity.

A key challenge in effectively answering keyword queries
on graph-annotated documents is to balance the importance
of the various graph entities and the keyword terms. For
example, in the above social network query by John, if there
is a post by Bob that is very relevant to keyword “Obama”,
it is likely a better result than a post of Mike that is less
relevant to Obama, if Obama is a global (not local) topic in
the social network. In contrast, if John specifies keyword
“birthday”, he is likely interested in birthday posts of his
friends only.

Figure 1: Example of social network graph showing the post
IDs for users

In this work, we make the following contributions:
• We define the keyword queries on graph-annotated docu-

ments problem, and propose an effective framework that
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Table 1: Association graphs

Association Graph Entity Association Edge
ontology concept semantic relationship

social network user friendship
spatial objects object location distance

intelligently balances graph entities relevance with key-
word relevance.

• We evaluate the results quality of our proposed frame-
work, comparing to several baseline methods through a
comprehensive user study

2 Related Work
Ontology-based query expansion XontoRank (Farfan et al.
2009) exploits ontological relationships to answer keyword
queries on XML documents. Precomputing all pairs of dis-
tances is infeasible in our setting as we don’t have a distance
threshold. Further, their query only contains keywords and
not graph entities, which are necessary in our setting (e.g. to
specify the user who submits a query in a social network).
(Xiong and Callan 2015) use semi-structured data sources
such as controlled vocabularies and knowledge bases to im-
prove the quality of ranking – entities from external sources
are used as objects connecting query and documents. Their
proposed technique “EsdRank” annotates the query using re-
lated objects from external data to improve retrieved docu-
ments.

Search in social networks (Maniu and Cautis 2012) pro-
posed a top-k algorithm that relies exclusively on weight of
tagging systems. Given a query consisting of a user and
keywords (tags in this case), the algorithm shall return top-k
relevant documents having the highest score with respect to
the keywords and the proximity (or social) scores between
the users.

3 Problem Definition and Semantics
Let D be a collection of documents. Each document d ∈
D is defined as a tuple (d.w, d.u), where d.w is its textual
content and d.u is set of graph entities.

The entities are related to each other through an associa-
tion graph. An association graph G = (N,E) consists of
a set of entities (nodes) N, and a set of association edges E.
The nodes and edges in various association graphs are shown
in Table 1. A social network graph could be an undirected
(e.g. friendship connections in Facebook) or directed graph
(e.g. follower/followee connections in Twitter), where N is
a set of users and E is a set of relationships between users.
In the rest of the paper, for simplicity of presentation, we
assume that there is only one association graph; extending
the algorithms for multiple association graphs is straightfor-
ward.
Example 1: Consider social posts, which are annotated by
the id of their author. In contrast to other graphs, each doc-
ument here can be annotated with only one entity. Suppose
we have the following posts and the social network graph
shown in Figure 1.

d1: Sara: “Obama to announce $600 million in grant pro-
grams to prepare workforce for jobs”

d2: Natalie: “Michael Bloomberg Pledges Million to
Push Gun Control”

d3: Bob: “Obama Supporters Don’t Know Obama”
A keyword query on graph-annotated documents Q =

(Q.w,Q.u) consists of Q.w, a set of query keywords, and
Q.u = {Q.u1, · · · , Q.um}, a set of graph entities.

A Top-k keyword query on graph-annotated documents
returns a ranked list of the k most relevant documents from D
based on a similarity function that combines both the graph
entities and the textual similarity.
Example 1 (cont’d): if user “John” submits keyword query
“Obama policies”, the corresponding keyword query with
graph entity is Q = ({“Obama”, “policies”}, {John}).

Our contribution in this paper is to balance the impact
of the query keywords and the query entities in the ranking
(Section 4).

4 Ranking Semantics
To keep the ranking model generic in terms of com-
bining functions, we define separately the impact of the
query keywords IRScore(d.w,Q.w) and graph entities
Dist(d.u,Q.u) and combine them by a monotone aggregate
function. The monotonicity for the graph entities is defined
on the path length between two entities, whereas for the key-
words impact is defined on the term frequencies or other text
features.

The score of the document d for query Q is:
score(d,Q) = f(Dist(d.u,Q.u), IRScore(d.w,Q.w)) (1)

The combining function f may include other features
such as document or user popularity. We adopt a previously
proposed combining function that multiplies the impact of
the two components and uses a decay factor for the entities
distance (Guo et al. 2003) (originally used in the context of
XML documents):

score(d,Q) = αDist(d.u,Q.u) × IRScore(d.w,Q.w) (2)

where α < 1.0 is the distance decay factor in the asso-
ciation graph G. A key challenge, which we tackle in Sec-
tion 4.1, is the computation of α.

For the purpose of the experiments, to compute Dist(d.u,
Q.u), we build upon previous work (Farfan et al. 2009; Rada
et al. 1989), and define it as the sum of the shortest path
distances between each of the query’s graph entities in Q.u
and their closest document entity in d.u. In other words,
Dist(d.u, Q.u) is the sum of the number of edges between
every entity in Q.u and its closest entity in d.u. Formally,
Dist(d.u, Q.u) is defined as follows:

Dist(d.u,Q.u) =
∑

q∈Q.u

G.ShortestPath(q, d.u) (3)

where ShortestPath computes the length of the shortest
path in association graph between an entity q and its closest
entity in set d.u. In the case of multiple association graphs,
the score is defined as following:
score(d,Q) =

∏

for each G

α
G.Dist(d.u,Q.u)
G × IRScore(d.w,Q.w) (4)

661



where αG is the decay factor for association graph G
An example of a specific text ranking function

IRScore(d.w, Q.w) used in our experiments is as follows:

IRScore(d.w,Q.w) =
∑

t∈Q.w

tf(d.w, t)× idf(t) (5)

4.1 Computation of α Parameter
In this subsection, we explain how α is computed to bal-
ance the relevance of the graph entity distance with the key-
word similarity. We argue that the following intuition holds,
which we also evaluate in Section 5: If the documents that
match the query keywords have similar content regardless of
their distance to the query’s graph entities, then the distance
should have a smaller importance.

Specifically, if the association graph is a social network,
this means if user John specifies keyword “Obama” and his
friends do not have any consistent political views (e.g., some
are Republican, some Democrat, and some undecided), then
John would likely be interested in posts about Obama com-
ing from both close friends and the rest of the network.
Thus, the importance of Q.u is higher. In contrast, if John’s
friends discuss a topic about Obama (e.g., his immigra-
tion views), which is distinct from the general chatter about
Obama on the whole network, then John would prefer posts
from his friends rather than from the rest of the network;
thus, the importance of Q.w is higher. As another example,
for query “birthday party”, if John’s friend had a party, then
John would be most interested in posts about that party and
not about a random party on the network.

To achieve the above intuition in the social network appli-
cation, we compute the content difference between the local
community and the whole network for the set of documents
that match the query keywords Q.w. A popular measure
of the difference of two sets of documents is the Kullback-
Leibler (KL) divergence (Kullback and Leibler 1951), which
measures the difference between two probability distribu-
tions, specifically the distribution of terms in the posts rele-
vant to Q.w from the user’s social neighborhood, and the
distribution of terms in the posts relevant to Q.w in the
whole network:

KL(Ru
Q, RQ) =

∑

v∈vocab

Ru
Q(v) log

Ru
Q(v)

RQ(v)
(6)

where Ru
Q and RQ are the probability distributions of the

relevant posts in the neighborhood of the user u and in the
whole social network (hence the latter may be precomputed
as a set of ¡term, probability¿ pairs), respectively. Let D
be the set of all posts in the social network, and let DQ be
the subset of D that contains at least one of the keywords
in Q.w, and Du

Q be the subset of DQ posted by users with
distance up to T from the query user u. Suppose we have n
query terms in Q.w, we compute the exact value of RQ as:

RQ(v) =

∑
d∈DQ

tf(d, v)
∑

d∈DQ,v′∈vocab tf(d, v
′)

(7)

To compute Ru
Q, we concatenate the text of all posts that

are relevant to Q.w (e.g., that contain all terms in Q.w)

Table 2: Description of Twitter dataset

Dataset Number of Users Number of Tweets
Twitter 18,492 221,643

posted by users with distance up to T from the query user u.
We set the threshold T = 1 to only consider direct friends.

Ru
Q(v) =

∑
d∈Du

Q
tf(d, v)

∑
d∈Du

Q
,v′∈vocab tf(d, v

′)
(8)

As an example, the word “Peter” may appear with prob-
ability Ru

Q(Peter) = 0.001 in the user’s neighborhood and
with probability RQ(Peter) = 0.00005 in the whole so-
cial network. To incorporate the KL measure in our scoring
function (Equation 2), we need first to normalize it for each
query Q between (0, 1) since KL is unbounded. Therefore,
we define α using KL as follow:

α = e−KL(Ru
Q,RQ) (9)

That is, the larger KL means the two sets of documents
are different, and hence the posts from user’s neighbourhood
are more preferable. The same rationale applies to several
other types of association graphs, such as the ontology graph
discussed above.

5 Qualitative Experiments
In this section, we present the experimental evaluation of
our KL-based method. First we describe our dataset, and
then we present the qualitative experiment.
Datasets: We conducted our experiments on Twitter
dataset, which was obtained using the Twitter Streaming
API. Since the relations between users are bidirectional, i.e.
each user has followers and followings, we discarded all uni-
directional relations to convert the graph to undirected one,
that is, we only keep an edge between two users if they fol-
low each other. The goal of only considering bidirectional
relations is to define the local and global communities for
each user.

Table 2 shows a description of Twitter dataset, including
the number of the users and tweets.

We evaluate our proposed ranking method, which com-
putes the α parameter using the KL strategy based on user’s
community, as we discussed in Section 4.1. To achieve this,
we used 20 queries, where each query consists of a user who
submits the query, and a list of keywords. For that, we se-
lected 20 different users from Twitter dataset, where each
user has at least 20 friends and 10 tweets. For each query Q,
we combined the query keyword Q.w with the user id as the
graph entity Q.u, and then we computed the top-3 results by
using 6 different methods:

1. Two baselines:

• IRscore baseline: computes documents’ scores using
the text similarity only, and ignore the distance to the
Q.u
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Table 3: Query keywords and number of matches per rank-
ing method

IRscore
Baseline

Distance
Baseline α=0.1 α=0.5 α=0.9 KL-based

Obama 1 0 0 3 1 1
Forest 2 1 3 3 2 3

Tax 0 1 2 3 2 3
Wednesday 0 0 3 3 0 3

Madrid 1 0 1 3 2 3
Prince 0 2 3 3 1 3
Bundy 1 0 2 3 1 2

Michael 0 2 3 3 0 3
Sonia 3 0 0 0 3 3
Gun 3 0 2 2 3 3

Happy 1 0 3 3 3 3
Mystery 2 1 3 3 2 3

Food 0 3 3 1 0 3
Hope 0 0 3 3 1 1

Constitution 3 0 1 1 3 3
Beautiful 0 1 3 1 2 2

Photo 0 1 3 3 0 3
Law 2 0 1 2 2 2

Market 2 1 3 2 2 3
Dream 1 0 1 1 2 3
Total 22 13 43 46 32 53

• Distance baseline: orders the documents by their dis-
tance from the user; for ties orders by decreasing docu-
ment freshness

2. Static α parameter, using Equation 2. We consider α =
0.1, 0.5, and 0.9

3. Adaptive (query-specific) α using KL divergence, as
shown in Equation 6
After finding the top-3 results for each of the methods, we

took the union of the results and conducted a user study. We
asked seven students to imagine that they are the selected
Twitter users Q.u, and to mark the top-3 relevant tweets for
each of the 20 queries (the distance of each tweet to the user
is also displayed). To help them get an idea of what their
friends and the rest of the network talk about, we provided
them with the following information:

1. Top 20 tweets of the local community (immediate net-
work) that contain the query keyword

2. Top 20 tweets of the global community (all users in the
network) that contain the query keyword

After the students selected the top-3 results for each query,
we took the majority voting to define the top-3 “ground
truth” results for each query, and then we compared all the
methods with the students’ selections in terms of accuracy,
that is, how many of their top-3 results are in the ground
truth top-3.

Table 3 shows the accuracy of the 20 queries. Using
KL-based method to compute α parameter achieved accu-
racy of 88.33% comparing to the students’ selections, which
is 51.66% improvement over IRscore baseline and 66.66%
improvement over Distance baseline. Our method using
α = 0.5 also achieved accuracy of 76.67%, with improve-
ment of 43% over IRscore baseline and improvement of 55%
over Distance baseline.

To intuitively explain the role of KL divergence in
computing the α parameter, consider the query keyword

“Michael”, where KL divergence is high between the local
and the global communities, specifically KL=1.11. The rea-
son for the high KL value is that the local community for
the user who submitted the query keyword “Michael” talks
more about Michael Bloomberg, while the global commu-
nity talks more about Michael Tsarion and Michael Don-
nor. Since the two communities are different, tweets from
local community are preferred, and hence the α here equals
0.33 by using Equation 9. Another example is query key-
word ”Constitution”, where KL divergence here equals 0.05.
Thus, both local and global communities talk about the same
constitution, which means the user is more likely interested
in tweets from both local and global communities when se-
lecting top relevant tweets. To avoid computing the exact
KL, we only consider the top recent tweets in both commu-
nities (1000 tweets for local and 5000 tweets for global).

6 Conclusions
In this work, we proposed a novel query framework for
querying collections of graph-annotated documents, which
we refer as keyword querying on graph-annotated docu-
ments. Our method automatically balances the importance
of the graph entities relevance and the text content rele-
vance. Our qualitative experiments show that the KL-based
method achieved an average accuracy improvement of 60%
over baselines.
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