
QDEE: Question Difficulty and Expertise
Estimation in Community Question Answering Sites

Jiankai Sun, Sobhan Moosavi,
Rajiv Ramnath, Srinivasan Parthasarathy

The Ohio State University
sun.1306@osu.edu, moosavinejaddaryakenari.1@osu.edu,

ramnath.6@osu.edu, srini@cse.ohio-state.edu

Abstract

In this paper, we present a framework for Question Difficulty
and Expertise Estimation (QDEE) in Community Question
Answering sites (CQAs) such as Yahoo! Answers and Stack
Overflow, which tackles a fundamental challenge in crowd-
sourcing: how to appropriately route and assign questions to
users with the suitable expertise. This problem domain has
been the subject of much research and includes both language-
agnostic as well as language conscious solutions. We bring to
bear a key language-agnostic insight: that users gain expertise
and therefore tend to ask as well as answer more difficult ques-
tions over time. We use this insight within the popular competi-
tion (directed) graph model to estimate question difficulty and
user expertise by identifying key hierarchical structure within
said model. An important and novel contribution here is the ap-
plication of “social agony” to this problem domain. Difficulty
levels of newly posted questions (the cold-start problem) are
estimated by using our QDEE framework and additional tex-
tual features. We also propose a model to route newly posted
questions to appropriate users based on the difficulty level
of the question and the expertise of the user. Extensive ex-
periments on real world CQAs such as Yahoo! Answers and
Stack Overflow data demonstrate the improved efficacy of our
approach over contemporary state-of-the-art models.

Introduction

Community question answering systems (CQAs) such as
Stack Overflow and Yahoo! Answers are examples of social
media sites, with their usage being examples of an impor-
tant type of computer supported cooperative work in prac-
tice. In recent years, the usage of CQAs has seen a dra-
matic increase in both the frequency of questions posted
and general user activity. This, in turn, has given rise to
several interesting problems ranging from expertise estima-
tion to question difficulty estimation, and from automated
question routing to incentive mechanism design on such
collaborative websites (Shen et al. 2015; Fang et al. 2016;
Rieh et al. 2017). For example, Liu et al. (Liu, Song, and
Lin 2011; Liu et al. 2013) introduced a two-player and no-
draw version of TrueSkill (Herbrich, Minka, and Graepel
2007) to estimate question difficulty level in CQAs. They
proposed a competition-based approach which takes into ac-
count both question difficulty and user expertise. Both of

Copyright © 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

these approaches are simple and language agnostic but suffer
from an inherent data sparseness problem (limited number
of relationships between questions and users). To alleviate
the data sparseness problem, Wang et al. (Wang, J. Liu, and
Guo 2014) and Pal (Pal 2015) proposed language-conscious
methods that exploit the textual descriptions (e.g., titles, body,
and tags) of the questions to do question difficulty estimation
(QDE), based on the assumption that if two questions are
close in their textual descriptions, they will also be close in
their difficulty levels.

A key observation we make in this paper is that there is
an inherent monotonicity-like characteristic to the expertise-
level of a user and the difficulty level of questions posed by
the same user within such CQAs.

Table 1: Example of questions asked by a Stack Overflow user
in Python. The difficulty levels of questions are increasing
over time.

Questions in Python Question-Date

q1: use basic build-in function sum on a list July 2013
q2: changing a list element in multiple lists Sept. 2013

q3: list comprehension and generator Oct. 2013
q4: copying 2-D Python list of arbitrary length Feb. 2014

q5: using regular expressions in Python Nov. 2014

To illustrate this characteristic we provide an example
of a real (but anonymized) user u in Stack Overflow, who
asked several questions about Python, as shown in Table 1.
Two experts of Python were asked to provide a ranking
order of these questions based on their difficulty levels.
They both agreed that the difficulty level ranking order is:
q1 ≺ q2 ≺ q3 ≺ q4 ≺ q5 (i.e., in ascending difficulty level).
We also observed that u gained expertise over time, as shown
by the answers that u provided. For example, u provided an
answer a1 to a question about “installing new regex module
in Python” on March 21, 2015, after u gained experience in
regular expressions from asking and receiving answers to
question q5, thus becoming capable of providing an answer
like a1. The example above highlights the fact that as a user’s
expertise increases, he or she is capable of both asking as
well as answering harder questions. We refer to this observa-
tion as the Expertise Gain Assumption (EGA) and note that
it is language agnostic. This observation is consistent with
an analysis of 18 interviews by Rieh et al. (Rieh et al. 2017),

Proceedings of the Twelfth International AAAI Conference on Web and Social Media (ICWSM 2018)

375

where they reported that as a result of providing answers in
a CQA environment, users (teens) were able to expand their
knowledge bases, improve inquisitiveness, embrace challeng-
ing questions, and increase self-confidence. Moreover, a re-
cent study on quality of content in a CQA environment by
Ferrara et al. (Ferrara et al. 2017), revealed a long-term trend
in terms of improvement of quality of answers due to learning
and skill acquisition by users over time.

The above idea can be used to build a directed competition
graph, in which edges are drawn from vertices with lower
question difficulty levels (or user expertise scores) to ver-
tices with higher question difficulty levels (or user expertise
scores). This competition graph exhibits a strong hierarchical
structure. In the ideal case, if the competition graph were
acyclic, vertices can be partitioned into a natural hierarchy
such that there are only edges from lower difficulty levels
(or expertise scores) to higher difficulty levels (or exper-
tise scores). However, in practice, competition graphs are
not acyclic; thus we need to penalize the edges that vio-
late the hierarchy. After examining several ideas, we empiri-
cally found that social agony (Gupte et al. 2011; Tatti 2015;
Sun et al. 2017) works well for this problem. Social agony
is a measure where each edge that violates the hierarchy is
penalized based on the severity of the violation. We note
that the application of social agony to the question difficulty
and expertise estimation problem in collaborative question
answering systems has not been considered previously.

The above approaches can estimate the difficulty level of
resolved questions, but cannot solve the cold-start problem,
that is, estimating the difficulty level of newly posted ques-
tions (which naturally have limited context). To address the
cold-start problem, we leverage a combination of EGA and
language cognizant features to provide the necessary context
for the difficulty estimation procedure. We also then devise
a strategy to identify a candidate set of potential users that
the question may be routed to (i.e., potential answerers). We
lever the prior history of the user, the estimated expertise
provided by our framework, and (optional) textual features
to rank users within the candidate set.

We evaluate our approach on several real-world CQAs
such as Stack Overflow and Yahoo! Answers (Japanese). We
find that our insight of explicitly modeling expertise and
question difficulty as a monotonically increasing function in
our competition graph model, results in significant improve-
ment of question difficulty estimation (when compared with
the state-of-the-art competition models and other baselines).
We also find that the use of social agony, a new idea in the
domain of question difficulty estimation, outperforms other
approaches for approximating the hierarchical structure of
the resulting competition graph. Additionally, we find that
understanding user expertise and accounting for question dif-
ficulty estimation simultaneously, yields interesting insights
on the real-world datasets that we used for evaluation.

Related Work

A two-player and no-draw version of TrueSkill (Herbrich,
Minka, and Graepel 2007) was introduced in (Liu, Song, and
Lin 2011; Liu et al. 2013) by Liu et al. to estimate question

difficulty in CQAs. The result of learning skills in the compe-
tition game for question nodes is their difficulty score and for
user nodes is their expertise score. The main shortcomings
of TrueSkill are its sensitivity to the false-positive cases1 and
also the tendency to overfit. We discuss more about these
problems in Experiments section.

Hanrahan et al. (Hanrahan, Convertino, and Nelson 2012)
proposed to develop indicators for hard problems and experts.
They assumed that questions which took longer to receive
their best answer, require a higher degree of expertise to
be resolved. Huna et al. (Huna, Srba, and Bielikova 2016)
leveraged this assumption and proposed to calculate a user’s
reputation based on the difficulty of the questions which he or
she asked. Yang et al. (Yang et al. 2014) proposed that harder
questions can generate more answers or discussions than eas-
ier ones. They called the number of answers provided for a
question as debatableness, which is a very important factor
for determining the expertise of users in their model. How-
ever, Yang et al. did not provide any evidence to support their
assumption, since they lacked the information of question
difficulty. In this paper, we conducted some experiments to
verify this assumption by using the question difficulty scores
estimated by our model. It is worth mentioning that neither
of assumptions by Hanrahan et al. (Hanrahan, Convertino,
and Nelson 2012) (which is also used in (Huna, Srba, and
Bielikova 2016)) nor Yang et al. (Yang et al. 2014) can be
leveraged to estimate difficulty level of newly posted ques-
tions, since such questions have no answers.

Wang et al. (Wang, J. Liu, and Guo 2014) proposed a
language-conscious solution that uses a regularized competi-
tion model (RCM), which formalizes the QDE process as one
that tries to minimize a loss on question-user comparisons
with manifold regularization on questions’ textual descrip-
tions. They add additional context by assuming that difficulty
levels of newly posted questions are similar to that of ques-
tions with similar textual descriptions. Similarly, Pal (Pal
2015) formalizes QDE to a convex optimization problem.
Both of these approaches are language-conscious and do not
easily scale to large competition graphs (as a point of com-
parison, we scale to graphs with a larger order of magnitude).

To summarize, we propose an approach to avoid overfiting,
to address the cold-start problem, and also to improve the
scalability of the solution.

Problem Statement

Assume we are given three datasets of Questions
Q = 〈Q1,Q2, . . . ,QN〉, Answers A = 〈A1,A2, . . . ,AM〉,
and Users U = 〈U1,U2, . . . ,UK〉. For each ques-
tion Qi ∈ Q, we have a tuple of the form 〈Askeri,
Answersi,BestAnsweri,Scorei,Prizei, Categoryi〉, where
Askeri ∈ U , Answersi ⊆ A, BestAnsweri ∈ A, Scorei is an
integer, Prizei

2 is a non-negative integer, and Categoryi

1In a subjective case, like when an asker is asking about the
opinion of the community about a topic, the expertise of the asker
is not necessarily less than the difficulty of the question or expertise
of the answerers.

2Sometimes, an asker may motivate other users for contribution
by defining some prize to be assigned to the best answerer.

376

is a set of keywords which Qi belongs to. Additionally,
for each answer Ai ∈ A, we have a tuple of the form
〈Answereri,Scorei〉, where Answereri ∈ U and Scorei is an
integer. Given the preliminaries, in this work we focus on the
following problems:
• Question Difficulty Estimation: given a set of questions

̂Q= 〈q̂1, q̂2, . . . , q̂n〉 ⊆Q which belong to a category t (i.e.,
we have: {∀q̂∈ ̂Q| t ∈ q̂.Category}), the goal is to propose
a ranking function f which can sort questions in category
t based on their difficulty level. By using the function f ,
we expect to see relations like q̂i ≺ q̂ j, 1 ≤ i, j ≤ n, which
means question i is easier than question j.

• Expertise Estimation: given a set of users ̂U = 〈û1, û2, . . . ,

ûn〉 ⊆ U , who have contributed to resolve at least one
question in category t, the goal is to learn a function
gt : û ∈ ̂U −→ R, that returns an expertise score s ∈ R for
each user û ∈ ̂U , based on questions in category t, and
their related difficulty levels.

• Question Routing: given a question q ∈ Q of category t,
we look for an ordered list of experts (Ua1 ,Ua2 , . . . ,Uaκ),
Uai ∈ U for 1 ≤ i ≤ κ , who are the top-κ potential re-
solvers for question q based on their expertise in category
t of questions.

Methodology

In this section, we describe different components of the pro-
posed Question Difficulty and Expertise Estimation (QDEE)
framework. Figure 1 shows the overall process of the QDEE
framework. The key steps in this process are: 1) Building the
competition graph to incorporate our intuition (monotonicity
constraints); 2) Examining the use of different heuristic-based
algorithms to estimate question difficulty; 3) Leveraging EGA
and language cognizant features to estimate difficulty levels
for newly posted questions; and 4) Routing newly posted
questions to potential answerers, identified by using textual
features, questions difficulty level, and user expertise rank
generated by previous steps of QDEE.

Figure 1: The overall process of the QDEE framework

Building the Competition Graph

In CQAs, when an asker ua posts a question q, there will be
several answerers who answer q. One answer will typically
be selected as the best answer by the asker ua or voted by the
community. The user who provides the best answer is named
as the best answerer ub and the set of non-best answerers are

denoted as S = {uo1,uo2, ...,uom}. In a recent work, Liu et
al. (Liu et al. 2013) made two assumptions when building
a competition graph model which are: 1) Given a question
answering thread, the difficulty score of the question q is
higher than the expertise score of the asker ua, but lower than
that of the best answerer ub, and 2) The expertise score of
the best answerer ub is higher than that of the asker ua as
well as any answerer in the non-best answerers set S. The
difficulty score of question q is not assumed to be lower than
the expertise score of any answerer in S, since such a user may
just happened to see the question and responded that, rather
than knowing the answer well (Wang, J. Liu, and Guo 2014).
Take the category Python in Stack Overflow for example, it
is common to have answers like “method x provided by user
a works for Python 2.7, but I have trouble in running it with
Python 3.0”. These kinds of answers do not show answerers’
expertise are higher than questions’ difficulty levels.

Taking a competitive viewpoint, each pairwise competition
can be viewed as a two-player competition with one winner
and one loser. So, edges in the competition graph are gener-
ated as follows, where question q can be viewed as a pseudo
user uq:

• from asker ua to question q: (ua,q)
• from question q to the best answerer ub: (q,ub)
• from asker ua to the best answerer ub: (ua,ub)
• from each answerer in the set of non-best answerers S to

the best answerer ub: (uo,ub), ∀uo ∈ S

However, this competition graph suffers from the following
data sparseness problem. Each question has only one in-edge
(from asker) and one out-edge (to the best answerer), which
might not provide enough information to achieve an accurate
estimation. One observation we seek to leverage to combat
this sparseness problem is the fact that users typically gain
expertise across multiple interactions with the CQA and tend
to ask more difficult questions within the same domain over
time, which is referred to EGA as we shown in Table 1.

We formalize the EGA as follows: suppose user ua asked
questions (q0,q1, ...,ql). If t(qi)+ τ ≤ t(qi+1), ∀i ∈ [0, l −
1], which means that question qi+1 was asked after qi and
the time interval is bigger than a threshold τ > 0, we then
consider that difficulty score of qi is lower than qi+1 and
an edge (qi,qi+1) will be added to the competition graph.
Additional edges such as (qi,q j) are added to alleviate the
data spareness problem, where ∀i, j ∈ [0, l] and t(qi)+ τ ≤
t(q j), and the goal being to improve the inference on question
difficulty estimation.

Figure 2 illustrates this process. A user u1 in Stack Over-
flow asked three questions q1, q2, and q3 in Jan. 2014, Aug.
2014 and Dec. 2014, respectively. These three questions are
from the same domain Python. In addition to edges (u1,q1),
(u1,q2), and (u1,q3), three blue edges (q1,q2), (q2,q3) and
(q1,q3) are added into the competition graph by leveraging
EGA. Users u2, u3 and u4 provided answers for question
q3, and u4 was selected as the best answerer. These activi-
ties generate edges: (u1,u4), (q3,u4), (u2,u4), and (u3,u4).
Then user u4 asked question q4 in Jan. 2015, and q4’s best
answerer is u1. Above activities generate edges (u4,q4) and
(u4,u1), and (q4,u1). It is important to note that based on this

377

Figure 2: Competition graph illustration: blue dashed links
(q1,q2), (q1,q3), and (q2,q3) are edges added based on EGA,
which aim to solve data sparseness problem. Other links are
built based on previous work (Liu et al. 2013; Wang, J. Liu,
and Guo 2014).

real-world example, cycles are inevitable in the generated
competition graph.

Inferring Graph Hierarchy for Estimation

We next consider the problem of question difficulty estima-
tion in the context of directed competition graphs: given
a directed competition graph, partitioning vertices into the
ranked groups (or equivalence classes) such that there are
only edges from lower groups (vertices with lower difficulty
level or expertise score) to upper groups (vertices with higher
difficulty level or expertise score). However, such a perfect
partitioning is only possible if the competition graph is a
directed acyclic graph (DAG). In such a case, the topological
ordering of the DAG can be used to infer question difficulty
and user expertise. Since cycles are inherently present in
graphs induced from such CQAs (see real-world example in
Figure 2), next we examine strategies to reduce the competi-
tion graph to a DAG.
Reducing the Competition Graph to DAG: Reducing a
general directed graph to a DAG in an optimal fashion is the
celebrated minimum feedback arc set problem, a well-known
NP-hard problem. All known heuristic methods must obey
the fact that the minimum feedback arc set problem is approx-
imation resistant. It means that, in practice, the difference
between the solution found by a heuristic and the optimal
solution can be as large as O(n). Note also that strategies to
detect communities in directed graphs may not be useful since
they optimize a different criterion function(Shih et al. 2014;
Satuluri and Parthasarathy 2011).
DFS Heuristic: A simple, fast, and domain independent ap-
proach for eliminating cycles is to leverage depth-first search
(DFS) elimination. We can perform a DFS starting from bot-
tom vertices (zero in-degree) in the competition graph. A
back edge pointing back to a node closer to the bottom of the
graph is deleted, as it violates the hierarchy. The DFS based
approach cannot guarantee optimality - it cannot ensure that
the links ignored during the graph traversal in order to pre-
vent loops from happening are actually the appropriate edges
to be removed. Which edge will be ignored, solely depends
on the order in which the graph is traversed.

Another way to reason about this problem is to define a
penalty function p on the edges. Edges which violate the

hierarchy (from a lower group to a upper group) can be
penalized. Given a penalty function, the task is to find the
hierarchy that minimizes the total penalty (sum of penalties of
all edges in the competition graph). Questions’ difficulty level
can then be inferred from the graph’s hierarchy information.
There are many choices for the penalty function. The most
simplest way is to define a constant penalty for any edge that
violates the hierarchy. If the penalty is set as a constant 1,
then this problem is equivalent to a minimum feedback arc
set problem as we discussed earlier.
Agony Heuristic: A more practical variant is to penalize the
violating edges by the severity of their violation, which means
that edges that respect the hierarchy receive a penalty of 0
and penalty increase linearly as the violation becomes more
severe. This particular approach is referred to as social agony
(Gupte et al. 2011). Given a network G = (V,E) which con-
tains cycles, each node v has a rank r(v). Higher rank nodes
are less likely to connect to lower rank nodes. Hence, directed
edges that go from higher rank nodes are less prevalent than
edges that go in reverse direction. If r(u)> r(v), then edge
u ⇒ v causes agony to the user u and the amount of agony
depends on the difference between their ranks. Gupte et al.
(Gupte et al. 2011) defined the agony to u caused by edge
(u,v) is equal to max(r(u)− r(v)+ 1,0). Since nodes typi-
cally minimize their agony, the problem is changed to find a
ranking r that minimize the total agony in the graph. Sun et
al. (Sun et al. 2017) proposed to infer graph hierarchy using
a range of features, including TrueSkill and social agony.
They also devised several strategies to leverage the inferred
hierarchy for removing a small subset of edges to make the
graph acyclic.

The ranking scores in the resulting ranking r of question
nodes in the graph are question difficulty scores, and the
learned skills of all other users can be thought to correspond
to their expertise scores. We note that the astute reader may
have noted that, on the one hand, our EGA assumption adds
edges, while, the Agony heuristic removes edges to create a
DAG-structure. Intuitively, a large fraction of edges we add
(EGA) are important constraints (that are not removed by the
agony heuristic), and finally lead to improved estimates on
question difficulty as we shall demonstrate in our empirical
evaluation.

Cold-Start Estimation and Routing

We have thus far discussed how to estimate difficulty lev-
els of resolved questions, from which competition edges
could be extracted. However, such an approach cannot ad-
dress estimating the difficulty of newly posted questions
without any answers received. This challenging problem is
the cold-start problem, sometimes referred to as the “item
cold-start problem” (Chang, Harper, and Terveen 2015) in
recommender systems (Wang et al. 2012; Sun et al. 2012;
Wang et al. 2014).
Cold-Start Difficulty Estimation: Wang et al. (Wang, J. Liu,
and Guo 2014) applied a text-based K-Nearest Neighbor
(KNN) approach to cold-start estimation in CQAs. Given a
cold question q∗, k well-resolved questions that are closest to
q∗ in textual descriptions, are picked as its nearest neighbors.
The difficulty score of q∗ is predicted as the averaged diffi-

378

culty scores of its nearest neighbors. The authors employed
a Boolean term weighting schema to represent a cold-start
question, and subsequently levered the Jaccard Coefficient to
select its nearest neighbors. q∗’s predicted difficulty level by
KNN approach can be represented as dknn(q∗).

Our idea is to enhance the above approach by leverag-
ing the EGA which we believe can bridge the gap between
cold-start and well-resolved questions asked by the same
user. Suppose the most recent k questions asked by user u are
q1,q2, ...,qk and their associated difficulty levels are avail-
able to us (estimated by QDEE). Then, q∗’s difficulty level
(dega(q∗)) can be inferred from these most recent-k questions
by several strategies such as:

– Minimum difficulty level of q1, ...,qk, represented as Min
– Maximum difficulty level of q1, ...,qk, represented as

Max
– Average difficulty level of q1, ...,qk, represented as Avg
– Difficulty level of the most recently posed question,

which is qk, represented as MRQ

We can then combine these two approaches, and the dif-
ficulty level of the cold question q∗ estimated by the hybrid
model is:

d(q∗) = α ·dknn(q∗)+(1−α) ·dega(q∗) (1)

where α ∈ [0,1], is a simple regularization parameter. We
note that it is possible that the user posing the question is a
new user (or one that has not posted a sufficient number of
questions). In this case, we simply set α = 1.
Identifying a Candidate Set of Potential Answerers: To
identify potential users to route new questions to, we need
to identify a candidate set of users. We rely on a similar
procedure (as we call that QT) to what we have outlined
above – we compute a set SetT of users who have attempted
to answer questions that are textually similar to the current
question being posed. We also identify a set of answerers of
questions of similar difficulty to the current question within
the domain. Since we have a ranked list of questions (based
on their question difficulty score – from the competition
graph induced from the training data), we simply identify a
group of questions with similar or slightly greater difficulty
and compute the union of all their answerers (we refer to
this set as SetQ). We then select β · k and (1− β) · k users
with top activity level3 and user expertise in SetT and SetQ,
respectively, where β ∈ [0,1].

The union of SetT ∪ SetQ represents our candidate set of
answerers SetC . We then refine this set by ranking elements
of this set according to their estimated expertise from QDEE
and user activity levels. Questions can then be routed to
potential answerers according to this ranked list.

There are two variants of the algorithm QT:

• A language conscious model, represented as T: Candidate
set SetC is generated by selecting k users with top user
activity level and expertise from SetT , without using set
SetQ (β = 1).

3A user u’s activity level is defined as (1 +
questions u has answered

n), where n is used for normaliza-
tion.

• A language agnostic algorithm, named as Q: Candidate set
SetC consists of k users who have top user activity level
and estimated user expertise from QDEE, without using
set SetT (β = 0).

Characterizing Potential Answerers

In the previous section we have described a methodology for
simultaneously estimating question difficulty and user exper-
tise in CQAs for pre-specified domains. We also described an
approach to address the challenging cold-start problem that
arises in such CQAs. In this section we briefly describe some
ideas that leverage question difficulty estimation to under-
stand the different categories of users that actively participate
in such systems.

We hypothesize that users in CQAs can be characterized by
their activity and effectiveness on a range of questions. The
framework described in the previous section allows us to drill
down further on this aspect. One can extract a set of features
associated with each user, where some examples can be “how
often the user answers questions of varying difficulty (e.g.
easy, medium, and hard)”, “how often said user is deemed
as the best answerer of each category of question (e.g. easy,
medium, and hard)”, or some other statistics about the activity
like number of logins, number of questions answered, etc.

One can then take such feature vectors for each user and
cluster users by levering an appropriate approach. While we
are not wed to a particular approach in this article, a simple
k-means algorithm with a suitable distance measure or an
approach based on Non-negative Matrix Factorization (NMF)
(Cheng et al. 2017) are options that one can explore to under-
stand and characterize active participants in such CQAs. For
example, one may find some users who attempt to answer all
range of questions, however, they are never rated particularly
highly (enthusiastic participants) or others who focus only on
effectively answering the hardest questions (focused expert)
and yet others who enjoy effectively answering all-comers
(all-round experts).

These users’ patterns of answering questions can be ben-
eficial to filtering candidate set of potential answerers for a
newly posted question. For example, a newly posted question
q is estimated by our model as a hard question, and users
in set H are users who answer hard questions effectively.
The candidate set of potential answerers for q is SetCq (see
Methodology section for more details). Then, the filtered
candidate set of potential answerers will be SetCq ∩H.

Experiments

In this section, we evaluate the proposed QDEE framework.
We begin by describing the experimental settings (datasets,
measures-of-interest, etc.) and then providing detailed analy-
sis for each part of the framework.

Experimental Settings

The first step is to describe the CQA datasets which we use
for evaluation of our QDEE framework.

Datasets: We use the Yahoo! Chiebukuro (Japanese Ya-

379

hoo! Answers) database (2nd edition)4, and the Stack Over-
flow as the main datasets for our experiments. The Yahoo!
Chiebukuro dataset roughly represents 5 years of data (from
April 7, 2009 to April 1, 2014) and contains 16,257,422
questions and 50,053,894 answers. There are 16 categories
provided in the data set. Each question belongs to exactly
one category.

The Stack Overflow dataset that we use in this paper is a
subset of the one of the recent data dump of Stack Overflow5,
and covers several important tags of questions (e.g. Java,
Python, C#, PHP, and HTML)6. The questions in the Stack
Overflow dataset represent data for over eight years (from
July 2008 to March 2017). More details about the Stack
Overflow dataset can be found in Table 2, where Q is short
for questions and U is short for users.

Table 2: Stack Overflow dataset for QDE

Tag #Q #Answers #Unique U #Q With Bounty

Java 547,509 1,302,619 359,559 11,940
Python 388,725 737,033 210,242 5,977

C# 619,174 1,302,566 271,949 11,594
PHP 508,251 1,022,306 296,441 7,838

HTML 356,446 763,831 306,806 4,188

Ground Truth: To evaluate the question difficulty esti-
mation on above mentioned datasets, we leverage the notion
of coin in the Yahoo! Chiebukuro database (ranging from
0 to 500) and bounty in Stack Overflow (ranging from 0
to 550). These coins (bounties) are given to the user who
provides the best answer. The prize is specified at the time
of submission of the question. In Table 2, we can see the
number of questions with non-zero bounty score for each of
the five popular categories of questions in Stack Overflow.
We note that specifically for these five categories, we addi-
tionally relied on three subject matter experts (and teachers
of the subject matter) to skim through a sample of the ques-
tions, and their evaluation almost exactly agrees (agreement
ratio of 0.98) with the difficulty ranking obtained by com-
paring bounty scores. Given two questions q1 and q2, which
were provided number of coins (bounties) c1 and c2 (c1 � c2
and c1 > 0,c2 > 0) to their corresponding best answerers,
respectively, we assume that q1 is relatively harder than q2, if
c1 > c2, and vice verse. Based on this assumption, we select
questions which were provided non-zero coins as our ground
truth for difficulty estimation. The ground truth data is not
leveraged intrinsically by the QDEE estimation process and
is only used during evaluation.
Accuracy Metric: Assume we have a list of question pairs
like 〈(q1,q2), (q1,q3), . . . , (q2,q3),(q2,q4), . . . (qn−1,qn)〉,
where qi is in ground truth data for 1 ≤ i ≤ n, that is, we
have the value of coin (in case of Yahoo! Answer) or bounty
(in case of Stack Overflow) for qi. Thus, for each pair of

4Yahoo! Chiebukuro Data (2nd edition) provided by National
Institute of Informatics by Yahoo Japan Corporation.

5We used the data dump which is released on March 14, 2017
and is available online at https://archive.org/details/stackexchange

6Real-time question frequency report per tags can be find at
http://stackoverflow.com/tags

Table 3: Number of Valid Question Pairs in Ground Truth Set

Stack Overflow Java Python C# PHP HTML
valid Q pairs 2,923 1,969 4,827 1,745 1,823

Yahoo! Manners News School Business Travel
valid Q pairs 4,098 5,614 12,241 8,523 12,856

(qi,q j), 1 ≤ i, j ≤ n, we know about their relative difficulty
order. In this way, we use a standard evaluation metric, ac-
curacy (Acc), for measuring the effectiveness of the QDEE
framework, as previous studies (Liu, Song, and Lin 2011;
Liu et al. 2013; Wang, J. Liu, and Guo 2014) used that as
well. Accuracy is described as follows:

Accuracy =
correctly predicted question pairs

valid question pairs
(2)

A question pair is regarded as correctly predicted if the rel-
ative difficulty ranking given by an estimation method is
consistent with that given by the ground truth. The higher the
accuracy is, the better a method performs.

Difficulty Estimation for Resolved Questions

We next describe our experiments on Question difficulty
estimation. Before we do so, we briefly define the baselines
that we compare our approach with.
Baselines: DFS-based (as described in Methodology section)
and TrueSkill-based (Wang, J. Liu, and Guo 2014; Liu et al.
2013) approaches are used as our baselines. Since others
have shown that TrueSkill-based approach outperforms the
PageRank-based approach (Wang, J. Liu, and Guo 2014; Liu
et al. 2013) (using the relative importance of nodes to estimate
question difficulty scores and user expertise scores), here we
do not include a comparison with PageRank-based approach.
For this part of the evaluation, we focus on language-agnostic
methods.

As described earlier, we use accuracy to report the perfor-
mance of different approaches on resolved questions. Table 3
shows the number of valid question pairs in ground truth
for evaluation. Figures 3a and 3b demonstrate the evaluation
results for Yahoo! and Stack Overflow dataset respectively.
In these figures, suffix “-EGA” means leveraging the exper-
tise gain assumption for creating the competition graph (see
Building the Competition Graph) 7. Here, we report the re-
sults across five different categories of questions in Yahoo!
and Stack Overflow (in the interests of space - results on
other sub-domains show similar trends). Based on the results,
we can point to several important observations:

1) Leveraging the expertise gain assumption (EGA) to handle
graph sparseness, can significantly improve the question
difficulty estimation results (not just for our methods but
for the baselines as well). We can observe this improve-
ment on both datasets and different categories of questions.
For instance, we can observe the accuracy by TrueSkill
is improved by about 5% on average, when we apply the

7The parameter τ is set as 30 days

380

EGA on Yahoo! dataset. We conducted McNemar’s test8
for each category in both datasets to test whether EGA
has significant effect or not. Based on the test results, all
p-values are well below 0.01%. Hence, these results rep-
resent a significant gain by leveraging EGA.

2) By applying the Social Agony for the first time, we ob-
tained better performance results in comparison with exist-
ing baselines. As an important observation, we have about
4% improvement on average accuracy for both Yahoo!
Answers and Stack Overflow datasets by Social Agony in
comparison with TrueSkill. Again we conducted McNe-
mar’s test for each category in Yahoo! answers and Stack
Overflow dataset, and found that all p-values are less than
0.01%, which supports the conclusion that our proposed
Social Agony model does lead to significant improvements
over the baselines.

3) Empirically, we observe that Social Agony is more ro-
bust than TrueSkill - in particular for subjective categories.
Both approaches achieve similar performance within tech-
nical categories such as Python, Java, and C# in Stack
Overflow. These questions largely tend to be rational and
objective. However, in general categories, such as Travel,
Business, and School within the Yahoo! dataset, questions
and answers, which may be designed to provoke discus-
sion, controversy, humor or other emotional responses,
tend to be less rational and more subjective. This in turn
leads to noise – typically false positive edges that do not
necessarily represent the true relationships between ques-
tion difficulty and user expertise. Manual inspection sug-
gests this is uncommon in the technical categories (e.g.
Python) as noted above. TrueSkill is more sensitive to
these false positive noisy edges and hence has much worse
performance than Social Agony in such general categories.
More specifically, TrueSkill tends to overfit – requiring
significant updates for ranking scores when it internally
accounts for such noisy edges.

We also compared Agony-EGA with the work of Hanrahan
et al. (Hanrahan, Convertino, and Nelson 2012), Huna et al.
(Huna, Srba, and Bielikova 2016) and Yang et al. (Yang et
al. 2014), as shown in Figure 3c, even though their question
difficulty estimation model cannot be applied to cold-start
questions. Number-Of-Answers is the approach to estimate
question difficulty by using the number of answers provided
for the target question (Yang et al. 2014), and Time-First-
Answer is the model to estimate question difficulty by mea-
suring how long it takes such that the target question gets
its first answer (Hanrahan, Convertino, and Nelson 2012;
Huna, Srba, and Bielikova 2016). We also consider a mod-
ification of Time-First-Answer represented as Time-Best-
Answer, which assumes that a harder question takes longer
time to get its best answer than easier ones. Two interesting
observations can be concluded as follows:

• Time-Best-Answer is a better indicator for question diffi-

8The McNemar test, introduced by Quinn McNemar in 1947, is
applied to a 2×2 contingency table, which tabulates the outcomes
of two tests on question pairs. A question pair is considered as a
positive case if its relative difficulty level is predicted correctly,
otherwise negative.

culty estimation than Time-First-Answer, since active users
may post some quick (with un-matching expertise) answers
to gain their reputation when they find the target question
has no answers so far. However, we have a significant num-
ber of questions in Stack Overflow which do not have any
best answer specified by the askers.

• Number-Of-Answer performs better than Time-First-
Answer and random guess (50% accuracy). The Number-
Of-Answer approach is a key factor in the model proposed
by Yang’s et al. (Yang et al. 2014) model to identify ex-
pert users. Intuitively, it assumes that harder questions can
generate more answers or discussions than easier ones. By
leveraging the difficulty level estimated by our model, we
can provide empirical evidence to support this assumption.

Difficulty Estimation for Cold-Start Questions

We next examine the question of how effective the QDEE
framework is to estimate difficulty of questions for which
there is limited context (i.e. the Cold-Start questions).

For this experiment, we split the datasets into the training
and testing sets as follows. For a user u, we first sort the
questions which u asked previously, by date of posting the
questions. The first 90% of questions are selected for training,
and questions associated with a prize in the remaining 10%
of data formed our test dataset. We report results on Stack
Overflow9 for the categories of C#, Java, and Python (in the
interests of space - results on other sub-domains show similar
trends). Competition edges are extracted only from the train-
ing datasets to build competition graphs. Then, the QDEE
framework, described in Methodology section, is applied to
estimate the difficulty levels of newly posted questions.
Strategy Selection We proposed four natural strategies to
estimate difficulty level of newly posted questions by leverag-
ing our EGA: Min, Max, Avg, and MRQ (see detailed descrip-
tion in Methodology section). Figures 4a, 4b, and 4c show
accuracies of different strategies for cold-start questions on
Python, C#, and Java of Stack Overflow, respectively. We
can observe that:
• Strategy Max performs better than strategy Min, Avg and

MRQ overall, which is consistent with the EGA. Users tend
to ask more difficult questions, hence it’s more reasonable
to use the maximum difficulty level of questions asked
recently to infer difficulty level of newly posted questions,
comparing with other strategies.

• By using the most-recent 3 questions posted by the same
asker, strategy Max performs the best on all categories.

Performance of the Hybrid Model We tested our hybrid
model’s performances for cold-start questions in Python,
Java, and C# of Stack Overflow, with different regularization
parameter α . When α = 0, only dega is applied to estimate
newly posted questions’ difficulty levels. In our experiments,
we select strategy Max and use the most recent 3 posted
questions to infer dega. While α = 1, only dknn is valid for
obtaining difficulty levels of newly posted questions and cor-
responds to the baseline strategy employed by Wang et al.

9Since the Yahoo! dataset is largely in Japanese and as we do
not have any expert in this language for text analysis purposes, we
do not report results on the cold-start problem for this dataset.

381

(a) Yahoo! dataset (b) Stack Overflow dataset (c) Comparing with baselines (Stack Overflow)

Figure 3: (a,b) The evaluation of question difficulty estimation based on Yahoo! and Stack Overflow datasets. (c) The comparison
of proposed solution to estimate question difficulty in Stack Overflow with three baselines Time-First-Answer (Huna, Srba, and
Bielikova 2016), Time-Best-Answer (an adaptation of (Huna, Srba, and Bielikova 2016)), and Number-of-Answers (Yang et al.
2014) .

1 2 3 4 5 6 7 8 9
Most Recent-K

0.48

0.49

0.50

0.51

0.52

0.53

0.54

0.55

Ac
cu

ra
cy

Acc of strategies for cold-start questions on Java

Max
Avg
MRQ
Min

(a) Performance on Java

1 2 3 4 5 6 7 8 9
Most Recent-K

0.55

0.56

0.57

0.58

0.59

0.60

0.61

Ac
cu

ra
cy

Acc of strategies for cold-start questions on Python

Max
Avg
MRQ
Min

(b) Performance on Python

1 2 3 4 5 6 7 8 9
Most Recent-K

0.55

0.56

0.57

0.58

0.59

Ac
cu

ra
cy

Acc of strategies for cold-start questions on C#

Max
Avg
MRQ
Min

(c) Performance on C#

Figure 4: Accuracy of different strategies in dega for cold-start questions in Stack Overflow.

(Wang, J. Liu, and Guo 2014). After varying k, we found the
optimal performance at k = 7 for Python, and k = 10 for Java
and C#. The main observations are as follows:
• dega outperforms dknn by 3%, 7.8%, and 24.9% on C#,

Python, and Java, respectively. We conducted McNemar’s
test for each category, and found that all p-values are less
than 0.01%, which shows the effectiveness of leveraging
EGA for estimating difficulty levels of cold-start questions.

• By leveraging EGA and textual information of questions,
our proposed hybrid model can effectively deal with the
cold-start problem. In our experiments, the hybrid model
can achieve the best performance when α = 0.1. For in-
stance, on Java , the hybrid model outperforms dega and
dknn by 8.6% and 35.7%, respectively. Moreover, on C#,
the hybrid model outperforms dega and dknn by 4.8% and
7.9%, respectively.

Performance of Routing Newly Posted Questions Figure
5 shows the performance of routing newly posted questions
to candidate users on Java, C#, and Python category of Stack
Overflow. Each question in the test set has a best answerer
for evaluation. For a newly posted question q in test set, it
has a candidate set of users represented as Cq to route. If q’s
best answerer is in Cq, we say it has a hit in Cq. So hit-ratio
as y-axis is #hits

size of test set . The x-axis represents Cq’s size.
We note that this is a very challenging task since the number

of active users in each of categories of our training dataset
exceeds several hundred thousands. The recommendation
engine is limited to about 1000 users (a small fraction of
the total candidate set of users one can route to, as noted in
Table 2).

We use two language agnostic methods as base lines.

• R: The first baseline is based on Stack Overflow’s inter-
nal reputation algorithm. In this scheme, we route newly
posted questions to users with top reputation scores in
Stack Overflow. The reputation score is a rough mea-
surement of how much Stack Overflow trusts a user10.
The primary way to gain reputation is via activities such
as posting good questions and useful answers. Shah et
al. (Shah and Pomerantz 2010) demonstrated that the
answerer’s reputation score is the most significant fea-
ture for predicting the best quality answer in the Yahoo!
Answers website.

• E: The second baseline routes newly posted questions
to users with top expertise estimated from our QDEE
framework.

Two language conscious options (T and QT) and one lan-
guage agnostic (Q) include:

• T: This strategy leverages textual similarity between

10http://stackoverflow.com/help/whats-reputation

382

the question and nearest neighbor questions (up to a
1000 neighbors) in the training data. It then takes the
answerers of this nearest neighbor set and ranks the
resulting set of users by expertise level and activity.

• Q: This strategy leverages question difficulty estimation
from our QDEE framework and identifies nearest neigh-
bor questions (up to a 1000 neighbors) in the training
data. It then takes the answerers of this nearest neighbor
set and ranks the resulting set of users by activity.

• QT: This strategy combines both elements from set SetQ
and set SetT and rank orders the resulting set of users by
expertise level and activity.

The results of this experiment is reported in Figure 5 for
three categories of Stack Overflow dataset11. Based on the
results, we can make the following observations:

i. Reputation-based (R) and Expertise-only solutions are
largely ineffective. While both implicitly or explicitly ac-
count for activity, these strategies lack sufficient context
to be effective.

ii. Language conscious solutions, T and QT, are quite ef-
fective across all three domains. QT outperforms all
the other approaches (in one domain by a significant
margin).

iii. Among language agnostic solutions, the best strategy is
based on question difficulty estimation (Q). This strategy
performs comparable to T on one dataset (C#). Unlike
strategies R and E which always target top-level experts,
strategy Q which routes questions based on matching
user expertise, can help middle-level experts to improve
their expertise via collaborations in community. In other
words, strategy Q utilizes the expertise of the entire
community.

iv. Taking users’ activity level into consideration for identi-
fying candidate set of users for newly posted questions
is almost always effective.

v. Parameter Sensitivity: We also test parameter β ’s sensi-
tivity in QT.It shows that when β is set between 0.6 and
0.8, QT can achieve the best performance.

vi. Overall, the best method achieves a very respectable hit
rate of up to 45% – for a very challenging task.

Characterizing Active Users in CQAs: We now examine
some results that correspond to characterizing potential an-
swerers (see Methodology section). Given a user u, sup-
pose questions answered by u are q1,q2, ...,ql , and these
questions’ difficulty levels are estimated by our model as
d(q1),d(q2), ...,d(ql). We map d(q1),d(q2), ...,d(ql) to a
histogram representation hu. The bin size of hu is set as
3, corresponding to three difficulty levels: easy, medium,
and hard, and each user is represented by distribution of
questions’ difficulty levels. Suppose u is represented as
hu = (0.8,0.15,0.05), which means that 80% of all the ques-
tions which u answered are easy, 15% are medium, and 5%
are hard questions. Based on u’s patterns of answering ques-
tions, we can conclude that u prefers to answer easy questions.
To automatically discover patterns of users’ answering ques-

11For the sake of space, we omit the results for categories PHP
and HTML of Stack Overflow.

tion activities, k-Means is applied to group users based on
their histogram representations. We filter users to only in-
clude users that have answered at least 10 questions. For
clustering purpose, we used about 24K, 23K, and 11K of
Stack Overflow users on categories Java, C#, and Python,
respectively. We set the number of clusters as 50. We then
plot these clusters’ centers in Figure 6, where the point size is
correlated with cluster size in this figure. Users tend to have
strong preferences (see figure caption) ranging from focused
experts to all-rounders to beginners. Those users who prefer
to answer hard questions (represented as cluster A in Figure
6) are classified as Owls by Yang et al. (Yang et al. 2014),
while users who tend to actively answer easy questions in
order to gain their reputation (such as users in cluster H in
figure 6) are named as sparrows. In our experiments, only
3% - 10% of users are considered as Owls in Stack Overflow.

Conclusion and Future Work

In this paper we present QDEE, a framework for simulta-
neously estimating question difficulty and user expertise in
CQAs, which tackles a fundamental challenge in crowdsourc-
ing: how to appropriately route and assign questions to suit-
able answerers. A central element of our design is the insight
that users gain expertise over time (EGA assumption) within
a competition graph model framework. Our basic approach
is language agnostic and demonstrates the effectiveness of
the EGA assumption and social agony on two CQAs with
different base languages (English and Japanese). We rely on
textual features (to identify semantically similar questions)
as well as estimated question difficulty to generate related
context, and subsequently use this to estimate difficulty level
of newly posed questions and route them to appropriate users.

As extension of current study, we would like to examine
mechanisms to scale our approach to larger data. We are also
interested in the problem of routing newly posted questions
(item cold-start) to newly registered users (user cold-start).
Finally, we wish to examine a deeper question in a more
collective sense – i.e., how does a community at large (e.g.
Python community) gain expertise and how can such insights
improve the performance of CQAs.
Acknowledgments This work is supported by NSF grants
CCF-1645599 and IIS-1550302 and a grant from the Ohio
Supercomputer Center (PAS0166).
Code and Data: https://github.com/zhenv5/QDEE.

References

Chang, S.; Harper, F. M.; and Terveen, L. 2015. Using groups
of items for preference elicitation in recommender systems.
In CSCW.
Cheng, P.; Wang, S.; Ma, J.; Sun, J.; and Xiong, H. 2017.
Learning to recommend accurate and diverse items. In WWW.
Fang, H.; Wu, F.; Zhao, Z.; Zhuang, Y.; and Ester, M. 2016.
Community-based question answering via heterogeneous so-
cial network learning. In AAAI.
Ferrara, E.; Alipourfard, N.; Burghardt, K.; Gopal, C.; and
Lerman, K. 2017. Dynamics of content quality in collabora-
tive knowledge production. In ICWSM.

383

200 400 600 800 1000
Cardinality of User Recommendation Set

0.05

0.10

0.15

0.20

0.25

0.30

0.35
hi

t-
ra

tio
Performance of Routing Newly Posted Questions on Java

E
Q
QT
R
T

(a) Java routing hit-ratio

200 400 600 800 1000
Cardinality of User Recommendation Set

0.0

0.1

0.2

0.3

0.4

hi
t-

ra
tio

Performance of Routing Newly Posted Questions on Python

E
Q
QT
R
T

(b) Python routing hit-ratio

200 400 600 800 1000
Cardinality of User Recommendation Set

0.10

0.15

0.20

0.25

0.30

0.35

0.40

hi
t-

ra
tio

Performance of Routing Newly Posted Questions on C#

E
Q
QT
R
T

(c) C# routing hit-ratio

Figure 5: Hit-ratio of routing newly posted questions to users (experts) in Stack Overflow.

(a) Java (b) Python (c) C#

Figure 6: Characterizing Users by their Answering Patterns. Each point in the visualization corresponds to a cluster of users
(point size is correlated to cluster size), represented by their mean. Clusters range from Focused Experts (A) to Beginners (H)
and a mixture of all-rounders (B,C,D,E,F,G).

Gupte, M.; Shankar, P.; Li, J.; Muthukrishnan, S.; and Iftode,
L. 2011. Finding hierarchy in directed online social networks.
In WWW.

Hanrahan, B. V.; Convertino, G.; and Nelson, L. 2012. Mod-
eling problem difficulty and expertise in stackoverflow. In
CSCW.

Herbrich, R.; Minka, T.; and Graepel, T. 2007. Trueskill™:
A bayesian skill rating system. In NIPS.

Huna, A.; Srba, I.; and Bielikova, M. 2016. Exploiting con-
tent quality and question difficulty in cqa reputation systems.
In NetSci-X.

Liu, J.; Wang, Q.; Lin, C.-Y.; and Hon, H.-W. 2013. Ques-
tion difficulty estimation in community question answering
services. EMNLP.

Liu, J.; Song, Y.-I.; and Lin, C.-Y. 2011. Competition-based
user expertise score estimation. In SIGIR.

Pal, A. 2015. Metrics and algorithms for routing questions
to user communities. TOIS.

Rieh, S. Y.; Choi, E.; Sagan, K.; and Colby, J. 2017. Beyond
questioning and answering: Teens’ learning experiences and
benefits of social q&a services. In CSCW.

Satuluri, V., and Parthasarathy, S. 2011. Symmetrizations for
clustering directed graphs. In EDBT.

Shah, C., and Pomerantz, J. 2010. Evaluating and predicting
answer quality in cqa. In SIGIR.

Shen, Y.; Rong, W.; Sun, Z.; Ouyang, Y.; and Xiong, Z. 2015.

Question/answer matching for cqa system via combining
lexical and sequential information. In AAAI.
Shih, Y.; Kim, S.; Ruan, Y.; Cheng, J.; Gattani, A.; Shi, T.;
and Parthasarathy, S. 2014. Component detection in directed
networks. In CIKM.
Sun, J.; Wang, S.; Gao, B. J.; and Ma, J. 2012. Learning to
rank for hybrid recommendation. In CIKM.
Sun, J.; Ajwani, D.; Nicholson, P. K.; Sala, A.; and
Parthasarathy, S. 2017. Breaking cycles in noisy hierarchies.
In WebSci.
Tatti, N. 2015. Hierarchies in directed networks. In ICDM.
Wang, S.; Sun, J.; Gao, B. J.; and Ma, J. 2012. Adapting
vector space model to ranking-based collaborative filtering.
In CIKM.
Wang, S.; Sun, J.; Gao, B. J.; and Ma, J. 2014. Vsrank: A
novel framework for ranking-based collaborative filtering. In
ACM TIST.
Wang, Q.; J. Liu, B. W.; and Guo, L. 2014. A regularized
competition model for question difficulty estimation in com-
munity question answering services. In EMNLP.
Yang, J.; Tao, K.; Bozzon, A.; and Houben, G.-J. 2014.
Sparrows and owls: Characterisation of expert behaviour in
stackoverflow. In UMAP.

384

