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Abstract

We describe a data-driven discovery method that leverages
Simpson’s paradox to uncover interesting patterns in behav-
ioral data. Our method systematically disaggregates data to
identify subgroups within a population whose behavior de-
viates significantly from the rest of the population. Given an
outcome of interest and a set of covariates, the method fol-
lows three steps. First, it disaggregates data into subgroups,
by conditioning on a particular covariate, so as minimize
the variation of the outcome within the subgroups. Next, it
models the outcome as a linear function of another covari-
ate, both in the subgroups and in the aggregate data. Finally,
it compares trends to identify disaggregations that produce
subgroups with different behaviors from the aggregate. We
illustrate the method by applying it to three real-world be-
havioral datasets, including Q&A site Stack Exchange and
online learning platforms Khan Academy and Duolingo.

Introduction
Digital traces of activity have exposed human behavior to
quantitative analysis (Lazer et al. 2009; McFarland, Lewis,
and Goldberg 2016). Data mining algorithms have explored
behavioral data to test social psychology and decision the-
ories (Kleinberg et al. 2017; Bond et al. 2012) and obtain
new insights into factors affecting online behavior. Yet, be-
havioral data analysis is still largely a trial-and-error pro-
cess, driven by ad-hoc methods rather than principled so-
lutions. Compounding the difficulty are the multi-faceted
challenges presented by behavioral data: it is massive, multi-
dimensional, noisy, sparse (few observations per individual),
heterogeneous (composed of differently behaving individu-
als), and highly unbalanced (very few observations of the
outcome of interest exist). As a result, given a new behav-
ioral data set, it is often unclear where to start or how to even
go about identifying interesting phenomena in data. To ex-
plore a new data set, a researcher may do exploratory analy-
sis, for example, plot the distributions of features of interest
or perform principal component analysis, but beyond this,
lack of clear guidelines for analytic practice make quantita-
tive exploration of large-scale behavioral data more of an art
than a science.
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The current paper takes a step towards solving this prob-
lem by automating discovery from behavioral data. We pro-
pose a method that systematically uncovers surprising pat-
terns in data by identifying subgroups within the popula-
tion whose behaviors are substantially different from the rest
of the population. Our method leverages Simpson’s para-
dox (Blyth 1972; Norton and Divine 2015), a phenomenon
wherein an association or a trend observed in the data at
the level of the entire population disappears or even reverses
when data is disaggregated by its underlying subgroups. The
goal of our method is to identify a covariate, such that con-
ditioning data on the covariate significantly changes the as-
sociation between the outcome and another covariate (act-
ing as an independent variable). To address this challenge,
we introduce Simpson’s Disaggregation, a method that de-
composes the population into subgroups and compares be-
havioral trends within subgroups to find surprising patterns.
First, our method identifies potential subgroups by disaggre-
gating the data into bins that minimize the variation of the
outcome of interest. It then uses a linear model to represent
behavioral trends within subgroups, as well as in aggregate
data, and looks for trend reversal. Finally, it uses statistical
methods to assess the significance of trends in both aggre-
gated and disaggregated data, and compares disaggregations
based on their explanatory power.

We apply the fully automatic method to several real-world
behavioral data sets that include Q&A site Stack Exchange,
online learning platforms Khan Academy and Duolingo.
These data sets are all highly heterogeneous. After disag-
gregating the data, we find that the trends describing the re-
sponse of the outcome to various covariates within the sub-
groups can be very different from the population-level re-
sponse. We show that disaggregations lead to models that
better explain the data. We uncover common patterns across
data sets about the effects of skill and experience on user
performance and suggest further lines of inquiry into behav-
iors on these platforms.

By dissecting the data into more homogeneous subgroups,
our method can uncover surprising subgroups that behave
differently from the rest of the population. Such patterns are
a sign that strong individual differences exist within the pop-
ulation, differences that must be accounted for in analysis.
Thus, the method gives a researcher a powerful tool for au-
tomatically identifying behavioral patterns meriting deeper
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study.
The rest of the paper is organized as follows. First, we

review Simpson’s paradox and methods used to identify it.
Next, we describe a method that automatically partitions the
data into more homogenous subgroups and identifies sur-
prising trends. In the Results section, we apply the method
to real-world behavioral data and show that our method is
able to identify interesting phenomena in data.

Background and Related Work
Simpson’s paradox (Blyth 1972; Norton and Divine 2015)
often confounds analysis of heterogeneous data, especially
social and behavioral data. According to the paradox, an
association observed in data that has been aggregated over
the entire population may be different from, and even op-
posite to, associations existing in the subgroups comprising
the population. Failure to take this paradox into account can
distort conclusions of analysis. Arguably the most famous
example of Simpson’s paradox arose from a lawsuit alleging
gender discrimination at UC Berkeley (Bickel, Hammel, and
O’Connell 1975). Analysis of the aggregate admissions data
for the school revealed a statistically significant bias against
women: a smaller fraction of female applicants were admit-
ted. However, when admissions data was disaggregated by
department, women were shown to have parity, and even a
slight advantage in some departments, over men. The para-
dox arose because departments that female applicants prefer
have lower admissions rates for both genders.

Computational social scientists are often interested in
measuring relationships between some outcome and a
covariate. Here too Simpson’s paradox can distort re-
sults (Blyth 1972; Lerman 2018). For example, a study (Vau-
pel and Yashin 1985) of recidivism showed that the rate at
which released convicts return to prison declines over time.
From this, one may conclude that age has a pacifying ef-
fect, and older convicts are less likely to re-offend. In reality,
however, this is not the case. Instead, the population of ex-
convicts can be considered to be composed of two subgroups
with nearly constant, but different recidivism rate. The first
subgroup is composed of convicts that have been reformed
and will never commit a crime once they are released from
prison. The second subgroup is composed of incorrigibles,
who are highly likely to re-offend. Over time, members of
this subgroup commit offenses and return to prison, leaving
fewer of them in the population. Survivor bias changes the
composition of the population, giving an illusion of an over-
all decline in recidivism. As Vaupel and Yashin warn, “un-
suspecting researchers who are not wary of heterogeneity’s
ruses may fallaciously assume that observed patterns for the
population as a whole also hold on the sub-population or in-
dividual level.” Researchers have not routinely tested for the
presence of Simpson’s paradox in their data, although such
as test was recently proposed (Lerman 2018).

The idea for using Simpson’s paradox to uncover inter-
esting patterns in data was explored by researchers in the
past (Fabris and Freitas 2000). Our work extends previous
research in new directions. We not only provide a principled
way to disaggregate data, but also introduce a novel mea-
sure that allows us to quantify how interesting or surprising

an instance of Simpson’s paradox is. As we demonstrate in
the results, this provides a novel tool for studying behavioral
data.

Methods
We describe Simpson’s Disaggregation, a method for au-
tomatically uncovering interesting patterns in data. The
method takes as input a set of observations of an out-
come, Y , and a set of covariates, or features, X =
{X1, X2, ..., Xm} associated with it. The approach has three
steps. First, it disaggregates data into more homogenous
subgroups based on some covariate Xc. Next, it uses a linear
model to capture trends with respect to some other covariate
Xj , both within the subgroups and within the aggregate data.
Finally, it quantifies how well the models describe the dis-
aggregated data compared to aggregate data to identify the
important disaggregations. We describe these steps in detail
below.1

Step 1: Disaggregating Data

We disaggregate the data by partitioning it on the condition-
ing variable Xc into non-overlapping bins, such that data
points within each bin are more similar to each other than
to data in other bins. These bins correspond to the more
homogeneous subgroups within the population generating
the data. Simply partitioning the data into fixed-size bins
(Alipourfard, Fennell, and Lerman 2018), or percentiles,
can be problematic when Xc has a heavy-tailed distribution,
since the bins covering the tail will have few data points in
them. In such cases, logarithmic binning is a better choice.
However, the decision then has to be made about the size and
scale of each bin. This decision must balance two considera-
tions: first, each bin has to be homogeneous, i.e., it must con-
tain data points that are more similar to each other in relation
to the outcome variable than to variables in other bins, and
secondly, it needs to have a sufficient number of data points.
Basically, too small a bin may not contain enough samples
for a statistically significant measurement, while the sam-
ples in too large a bin may be too heterogeneous for a robust
trend.

The binning method described below partitions the values
of Xc, such that Y exhibits little variation within each bin
but significant variation between bins.

Quantifying the Partition Total sum of squares (SST)
is the key concept used to describe the variation in obser-
vations {yi}Ni=1 of a random variable Y . It is defined as
SST =

∑N
i=1(yi − ȳ)2, where ȳ = 1

N

∑N
i=1 yi is the mean

of all observations. The sample variance, σ2, is equal to
SST/(N − 1), thus the SST is related to variation in Y . For
any arbitrary partition PXc

of the variable Xc, we can quan-
tify how much variation of the outcome variable Y can be
explained by PXc

by decomposing the total sum of squares

1The code implementing the method is available on
https://github.com/ninoch/Trend-Simpsons-Paradox/.
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as:
N∑

i=1

(yi− ȳ)2 =
∑

b∈PXc

Nb(ȳb− ȳ)2+
∑

b∈PXc

Nb∑

i=1

(yb,i− ȳb)
2,

(1)
where Nb is the number of data points in bin b, yb,i is the
i-th data point in bin b, and ȳb is the average of values in that
bin. The first term on the right hand side of Eq. (1) is the sum
of squares between groups, a weighted average of squared
differences between global (ȳ) and local (ȳb) average. This
sum measures how much Y varies between different bins of
the partition. The second term is the sum of squares within
groups, which measure how much variation in Y remains
within each bin b. Then, the proportion of the explained sum
of squares to the total sum of squares, or coefficient of de-
termination, is:

R2 =

∑
b∈PXc

Nb(ȳb − ȳ)2

SST
(2)

The R2 measure takes values between zero and one, with
large values of R2 indicating a larger proportion of the vari-
ation of Y explained by Xc, for this specific binning PXc

.

Finding the Best Partition Now, we will describe the sys-
tematic way for learning partition PXc

for the feature Xc,
which explains the largest possible variation of the outcome
Y . Given the data, the domain of the feature Xc can be split
at some value s into two bins: Xc ≤ s and Xc > s. From
Eq. (2), the proportion of variation in Y explained by such a
split is:

R2(s;Xc) =
Nb1(ȳb1 − ȳ)2 +Nb2(ȳb2 − ȳ)2

SST
, (3)

where Nb1 and ȳb1 are the number of data points and av-
erage value of Y in the bin Xc ≤ s, and Nb2 and ȳb2 are
the number of data points and average value of Y in the bin
Xc > s. The s can take any value in the domain of Xc, and
afterward the R2(s;Xc) can be computed for that s. Thus,
among all possible values for s ∈ [min(Xc),max(Xc)], we
can choose s1 as the optimal split for Xc which maximizes
R2(s;Xc). For the next iteration, we can choose the next
best split s2 to optimize improvement in R2. In general, as-
sume we have bins {bu}ku=1 after k − 1 iterations, and for
next iteration we have found best split sk+1 which divides
the bin bi into two bins, bi1 and bi2 where bi1 associated
with data points in bin bi where Xc ≤ sk+1, and bi2 associ-
ated with data points in bin bi where Xc > sk+1. Thus, after
splitting we will have bins bi1 and bi2 instead of bin bi. In
this case, the R2 improvement is the following:

ΔR2(s|PXc ;Xc) =
1

SST

(
Nbi1

(ȳbi1
)2 +Nbi2

(ȳbi2
)2

−Nbi (ȳbi )
2
) (4)

In this manner, the method recursively splits the domain
of Xc to create a partition of the feature. However, this pro-
cedure will continue indefinitely until Xc has been parti-
tioned into bins consisting of single points, overfitting the
data. To prevent this, we constrain the algorithm so that the
maximum number of bins is 20, while the minimum number
of data points per bin is 100.

Step 2: Modeling Disaggregated Data
Next, the method measures the association between the out-
come variable Y and the independent variable Xj in the ag-
gregate data and compares it to the associations in the disag-
gregated data.

At an aggregate level, we model the relationship between
Y and Xj as a linear model of the form

E[Y |Xj = xj ] = f(α+ βXj), (5)
where f(α + βXj) is a monotonically increasing function
of its argument (α + βXj). The parameter α in Eq. (5) is
related to the intercept of the regression function, while the
coefficient β quantifies the effect of Xj on Y . For the dis-
aggregated data, we fit linear models of the same form but
with different values of the parameters α and β depending
on values of the conditioning variable Xc:

E[Y |Xj = xj , Xc = xc] = f(α(xc) + β(xc)Xj). (6)
To check whether disaggregating data on Xc results in a

Simpson’s paradox, we look for trend reversal by comparing
the sign of β from the fit to the aggregate data (Eq. 5) to the
signs of β’s from fits to the disaggregated data (Eq. 6) (given
that βs are significantly different from zero). if more than
half of the subgroups have different sign with aggregated
trend, then Simpson’s paradox exists.

Trend reversal is an interesting phenomenon, because it
occurs when subgroups exhibit behaviors that are different
from the trends within the population as a whole. However,
behavioral differences can exist even without trend reversal.
Consider, for example, trend lines with zero slope that are
stacked, because outcomes within each subgroup are sys-
tematically different from each other. In this case, disaggre-
gating data is still desirable, even if the trend reversal rules
for Simpson’s paradox do not indicate it. Rather than simply
look for trend reversal, we measure the significance of the
disaggregations of data.

Step 3: Significance of Disaggregations
We conjecture that surprising subgroups are those whose be-
havior deviates substantially from that of the population as a
whole. Existence of such subgroups suggests that important
behavioral differences exist that require deeper analysis. To
identify such subgroups we must first quantify how well a
model, in simplest case a linear model, describes the data.

In this paper, we examine the case where the outcome
variable Y is binary. In this case, E[Y |Xj = xj ] is the prob-
ability of yi = 1 given Xj = xj . Therefore, we use the
logistic regression as our linear model, and Equation (5) be-
comes:

E[Y |Xj = xj ] = f(α+ βXj) =
1

1 + e−(α+βXj)
(7)

Logistic regression uses Maximum Likelihood Estimation
to find the best fit to data. Likelihood of the modelM given
the data is L(M|x) = P (X = x|M). For a binary outcome
variable, it becomes:

L(M|x) =
N∏

i=1

yi × (PM(xi)) + (1− yi)× (1− PM(xi))

(8)
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and then the log likelihood is give by:

logL(M|x) =

N∑

i=1

yi × log(PM(xi))+ (1−yi)× log(1−PM(xi)) (9)

For assessing the goodness of fit, we can use deviance (Hos-
mer Jr, Lemeshow, and Sturdivant 2013). It compares Log-
likelihood of two models. In the case of the Logistic regres-
sion of Eq. 7, this corresponds to comparing the full model
with a null model consisting only of an intercept. Letting
M0 be the reduced model and M1 the full model, the de-
viance of these two models is:

D(M1,M0) = 2× [logL(M1|x)− logL(M0|x)] (10)

In the case where M0 is a nested model of M1, where
nested means full model can be reduced to null model by im-
posing constraints on the parameters, under the null hypoth-
esis thatM0 andM1 provide a similar quality statistical ex-
planations of the outcome, for sufficiently large sample size,
the deviance comes from a χ2(p) distribution (Hosmer Jr,
Lemeshow, and Sturdivant 2013), where p is the number of
degrees of freedom, which equals the number of extra pa-
rameters of M1 in comparison to M0. If the hypothesis is
rejected, it means thatM1 provides a significantly better de-
scription of the outcome variable thanM0.

Significance of Aggregate Data Model For assessing the
significance of a model of aggregate data, we use deviance
to compare the aggregate data model, given by Eq. (5), to a
model where all ŷi are equal to the global mean ȳ =

∑N
i=1 yi

N .
In this case, Eq. (10) becomes:

D(M1,M0) = 2×
N∑

i=1

yi×log( ŷi
ȳ
)+(1−yi)×log(1− ŷi

1− ȳ
)

(11)
Where, yi is the i-th outcome, and ŷi = f(α +

βxi). Clearly, these two models are nested; there-
fore, D(M1,M0) has a χ2(1) distribution (Hosmer Jr,
Lemeshow, and Sturdivant 2013). We can apply statistical
hypothesis test to see whether the found trend for aggregated
data is significant or not.

Significance of Disaggregated Data Model For assessing
the significance of a disaggregation of data, we can use de-
viance to compare the model of Eq. (6) with a model where
ŷi is equal to the average outcome for data points in the bin
of xi. In this case, Eq. (10) becomes:

2×
∑

b∈PXc

Nb∑

i=1

yb,i× log(
ŷb,i
ȳb

) + (1− yb,i)× log(
1− ŷb,i
1− ȳb

),

(12)

where, yb,i is the i-th data point in bin b, ȳb =
∑Nb

i=1 yb,i

Nb

is the mean outcome within bin b, and ŷb,i = f(α(xc
b,i) +

β(xc
b,i) × xj

b,i). By imposing β(xc) = 0, ∀xc ∈ Xc, we
conclude that these two models are nested. Thus again, we
can use statistical test χ2(|PXc

|) to see whether the disag-
gregated trends are significant or not.

Comparing Disaggregations Comparing disaggregations
of data based on how well the linear models describe trends
within subgroups can help us identify interesting behavioral
patterns in data. A disaggregation on variables (Xj1 , Xc1)
is more interesting than (Xj2 , Xc2) if it has more explana-
tory power than the second pair. McFadden (McFadden and
others 1973), introduced a measure, called McFadden R2 or
pseudo-R2, to capture the ratio of likelihood improvement:

R2
McFadden = 1− logLfull

logLnull
(13)

If we assume that the full model is at least good as the
null model (means logLfull > logLnull), then the value
of R2

McFadden is between zero and one, with larger values
showing more improvement in log-likelihood, and values
0.2 to 0.4 considered to represent excellent fits (McFadden
and others 1977). Thus, we can fix the null model and com-
pute the value of R2

McFadden for all disaggregations. For the
null model, we choose simple global average for all Y . Thus,
the right hand side of Eq. (13) becomes:

1−
∑

b∈PXc

∑Nb
i=1 yb,i × log( ˆyb,i) + (1− yb,i)× log(1− ˆyb,i)

∑N
i=1 yi × log(ȳ) + (1− yi)× log(1− ȳ)

(14)

We use pseude-R2 to rank disaggregations by their ex-
planatory power. In addition, we can also use it to identify
the best conditioning variable Xc for disaggregating the data
that best explains the trends with respect to a covariate Xj .

Results
We illustrate proposed method by applying it to study human
performance data from several online domains.

Stack Exchange
First, we study answerer performance on Stack Exchange
(SE). Launched in 2008 as a forum for asking computer
programming questions, Stack Exchange has grown to en-
compass a variety of technical and non-technical topics. Any
user can ask a question, which others may answer. Users can
vote for answers they find helpful, but only the asker can
accept one of the answers as the best answer to the ques-
tion. We used anonymized data representing all answers to
questions posted on Stack Exchange from August 2008 until
September 2014.2 Approximately half of the 9.6M questions
had an accepted answer, and we included in the study ques-
tions that received two or more answers.

To understand factors affecting user performance on SE,
we study the relationship between the various features ex-
tracted from data and the outcome, here a binary attribute
denoting whether the answer written by a user is accepted
by the asker as best answer to his or her question. To this
end, for each answer written by a user, we create a list of
features describing the answer and the user. Features include
the numbers of words, hyperlinks, and lines of code the an-
swer contains, and its Flesch readability score (Kincaid et
al. 1975). Features describing answerers are their reputa-
tion, tenure on SE (in seconds and in terms of percentile

2https://archive.org/details/stackexchange
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Table 1: Variables defining important disaggregations of
Stack Exchange data, along with their pseudo-R2 scores.

R2
Mc Covariate Xj Conditioning on Xc

0.03 Answer position Number of answers
0.03 Session length Number of answers
0.02 Number of answers Reputation
0.02 Answer position Reputation
0.02 Session length Reputation
0.01 Readability Lines of codes

< 10−2 Answer position Session length
< 10−2 Time since prev ans Answer position

rank) and the total number of answers written during their
tenure. These features relate to user experience. We also use
activity-related features, including time since previous an-
swer written by the user, session length, giving the number
of answers user writes during the session, and answer posi-
tion within that session. We define a session as a period of
activity without a break of 100 minutes of longer.

Of the 110 potential disaggregations of SE data arising
from all possible pairs of covariates, our method identified
8 as significant. Table 1 ranks these disaggregations along
with their pseudo-R2 scores. Note that user experience, ei-
ther in terms of the reputation or the number of answers
written by the user over his or her tenure, comes up as an
important conditioning variable in several disaggregations.
Features related to user activity, such as answer position
within a session, session length, and time since previous an-
swer, appear as important dimensions of performance. This
suggests that answerer behavior over the course of a session
changes significantly, and these changes are different across
different sub-populations.

Figure 1 visualizes the data, disaggregated on the number
of answers. Each horizontal band in the heatmap in Fig. 1(a)
is a different bin of the conditioning variable number of
answers, and it corresponds to a distinct subgroup within
the data. The first bin ranges in value from one to eleven
answers, the second bin from 12 to over 50 answers, etc.
Within each bin, the color shows the relationship between
the outcome—the probability the answer is accepted—and
answer’s position within a session. Dark blue corresponds to
the lowest acceptance probability, and dark red to the high-
est. Within each bin, the color changes from lighter blue to
darker blue (for the bottom-most bins), indicating a lower
acceptance probability for answers written later in the ses-
sion. For the top-most bins, the acceptance probability is
overall higher, but also decreases, e.g., from pink to white
to blue. Note that data is noisy, as manifested by color flip-
ping, where there are few data points (Fig. 1(b)).

s The trends corresponding to these empirical obser-
vations are captured in Fig. 1(c). Note that the decreas-
ing trends are in contrast to the trend in aggregate data
(Fig. 1(d)), which shows performance increasing with an-
swer position within the session. This suggests that user ex-
perience, as captured by the number of answers, is an impor-
tant factor differentiating the behavior of users.

Figure 2 shows an alternate disaggregation of SE data for

the covariate answer position, here conditioned on user rep-
utation. This disaggregation is slightly worse, resulting in a
somewhat lower value pseudo-R2. While performance de-
clines in the lower reputation subgroups as a function of an-
swer position, the highest reputation users appear to write
better answers in longer sessions. The acceptance probabil-
ity for high reputation users is more than 0.50, potentially
indicating that askers pay attention to very high reputation
users and are more likely to accept their answers.

Khan Academy
Khan Academy3 (KA) is an educational platform offering
online tools to help students learn a variety of subjects. Stu-
dent progress by watching short videos and complete ex-
ercises by solving problems. We studied an anonymized
dataset, collected over two years, which contains informa-
tion about attempts by KA adult students to solve problems.
We partitioned student activity into sessions, also defined as
a sequence of problems without a break of more than one
hour between them. The vast majority of students completed
only a single session.

As an outcome variable in this data, we take student per-
formance on a problem, a binary variable equal to one when
the student solved the problem correctly on the first try,
and zero otherwise (either did not solve it correctly, or used
hints). To study factors affecting performance, we extracted
the features of problems and users. These included the over-
all solving time during user activity, total solve time and the
number of attempts made to solve the problem, time since
the previous problem (tspp), the number of sessions prior to
the current one, all sessions user contributed to, the session
length in terms of the number of problems solved, problem
position within the session (session index of the problem),
the timestamp of the attempt, including the month, day of
week, type of weekday ( whether it is weekend or not) and
hour the student attempted to solve the problem, the month
the student joined KA, his or her tenure, the number of
all attempts on all problems solved since joining, and how
many of the problems were solved correctly on the first at-
tempts. As a proxy of skill or some background knowledge
the student brings, we use how many problems were cor-
rectly solved during the student’s five first attempts to solve
problems. For example, the least prepared students answered
few of the five problems they attempted to solve, but best
students would have solved all five correctly.

Our method identified 32 significant disaggregations of
KA data, out of 342 potential disaggregations. Some of
these are presented in Table 2. The table lists conditioning
variables for selected covariates, sorted by their pseudo-R2

scores. For example, when examining how performance—
probability to solve a problem correctly—changes over the
course of a day (Xj is hour24), the relevant disaggregation
conditions the data on all first attempts, i.e., the number of
all problems the user solved correctly on their first attempt.
On the other hand, several disaggregations can explain the
trends in performance as a function of month. Conditioning
on first five attempts has the most explanatory power, fol-

3https://www.khanacademy.org
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Figure 1: Disaggregation of Stack Exchange data. (a) The heat map shows the probability the answer is accepted as a function
of its answer position within a session, with the horizontal bands corresponding to the different subgroups, conditioned on total
number of answers the user has written. (b) Number of data samples within each bin of the heat map. Note that the outcome
becomes noisy when there are few samples. The trends in performance as a function of answer position in (c) disaggregated
data and (d) aggregate data. Error bars in (c) and (d) show 95% confidence interval.

lowed by disaggregations conditioned on session index, the
total time it took the user to solve all problems, the times-
tamp and weekday of the attempt. Many of the conditioning
variables used in the disaggregations represent different as-
pects of user experience on the site: the number of problems
they tried to solve or correctly solved, their tenure on the
site, and how much time they spent solving problems.

Figure 3 takes a closer look at the disaggregation cor-
responding to covariate hour24. In the aggregate data
(Fig. 3(d)), there is a small but significant upward trend in
performance over the course of a day. It looks like perfor-
mance is higher at night than during the day. However, when
data is disaggregated by all first attempts, only a couple of
subgroups have the up-trend: the rest stay flat or even de-
cline in performance. All first attempts, which represents
how many of all problems users solved correctly on their
first try, captures both user’s motivation to use KA (the more
motivated, the more problems they attempt), and skill (the
more skilled, the more problems they will solve on their first
attempt). The high-achieving users actually perform better
in the morning, in contrast to aggregate trends.

Figure 4 shows the disaggregation corresponding to the
covariate month, conditioned on five first attempts. When
data is aggregated over the entire population, there appears

to be a slight seasonal variation, with performance higher on
average during the summer months (Fig. 4(d)). Once data is
disaggregated by five first attempts, the seasonal trends are
no longer so obvious in several subgroups (Fig. 4(c)). In-
terestingly, it appears to be the high achieving users (who
correctly answer more of the five first problems), who per-
form better during the summer months. This suggests that
population of KA changes over the course of the year, with
motivated, high achieving students using the platform during
their summer break.

Duolingo
Duolingo (DL) is an online language learning platform,
which allows users to learn dozens of different lan-
guages. DL offers a gamified learning environment, where
users progress through levels by practicing vocabulary and
dictation skills. The DL halflife-regression (Settles and
Meeder 2016) dataset (https://github.com/duolingo/halflife-
regression) follows a subset of learners over a period of two
weeks. Users are shown vocabulary words and asked to re-
call them correctly. Users may be shown between 7 and 20
words per lesson, and may have multiple lessons in a ses-
sion. Sessions are defined in a similar way as before—a pe-
riod of activity without a break longer than one hour.
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Figure 2: Disaggregation of Stack Exchange data similar to Fig. 1, but instead disaggreagted on user reputation. (a) The heat
map shows acceptance probability as a function of its answer position within a session. (b) Number of data samples within each
bin of the heat map. Note that the outcome becomes noisy when there are few samples. The trends in (c) disaggregated data
and (d) aggregate data.
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Figure 3: A disaggregation of the Khan Academy data show-
ing performance as a function of hour of day, conditioned
on all first attempts. (a) The heat map shows average perfor-
mance within a subgroup as a function of the hour of day. (b)
Number of data samples within each subgroup. The trends
in (c) the disaggregated data and in (d) aggregated data.
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Figure 4: Disaggregation of Khan Academy data showing
performance as a function of month, conditioned on five first
attempts. (a) The heat map shows average performance as a
function of the month. (b) Number of data samples within
each subgroup. The trends in (c) the disaggregated data and
in (d) aggregated data.
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Table 2: Variables defining important disaggregations of the
Khan Academy data, along with their pseudo-R2 scores.

R2
Mc Covariate Xj Conditioning on Xc

0.06 All attempts All first attempts
0.03 All attempts All problems
0.01 All attempts Tenure
0.01 All attempts Total solve time
0.04 Hour24 All first attempts
0.04 Session number All first attempts
0.02 Session number All problems
0.01 Session number Tenure
0.01 Session number All attempts
0.01 Session number All sessions
0.01 Session number Total solve time
0.0 Session number Join month
0.03 Month Five first attempts
0.01 Month Session index
0.01 Month Total solve time
0.01 Month Timestamp

< 10−2 Month Week day
0.01 Problem position Session length

a large number of words in a lesson. This makes it diffi-
cult to discern changes in performance. Therefore, we define
performance in a more stringent way, as a binary variable,
which is equal to one if the user had perfect performance
(i.e., correctly recalled all words in a lesson), and zero oth-
erwise. We used more than two dozen features to describe
performance. These include the number of words seen and
correctly answered during a lesson (lesson seen and lesson
correct), the number of distinct words shown during a les-
son, lesson index among all lessons for this user, time to next
lesson, time since the previous lesson, lesson position within
its session, session length in terms of the number of lessons
and duration, etc. User-related features include the number
of five first lessons correctly answers, number of all perfect
lessons with perfect performance, total number of lessons,
the total number of words seen and the correctly answered,
and the time the user was active.

Of the 462 potential disaggregations of DL data, 51 were
found to be significant using the χ2 test. Table 3 reports dis-
aggregations associated with select covariates, including les-
son’s position within a session, lesson index in user’s history,
the number of lessons the user completed, etc. The trends
with respect to some of the covariates could be explained by
several different disaggregations, with some of them having
relatively high values of pseudo-R2. Again, user experience
(all perfect lessons) and initial skill (five first lessons) appear
as significant conditioning variables.

Figure 5 examines the impact of experience on perfor-
mance. In the aggregate data Fig. 5(d), performance ap-
pears to increase as function of experience (lesson index):
users who have more practice perform better. However, once
the data is disaggregated by initial performance (five first
lessons), or skill, in Fig. 5(c), a subtler picture emerges.
Users who initially performed the worst (bottom bins in
Fig. 5(a)) improve their performance as they have more
lessons, while the best performers initially (top bins) de-

Table 3: Variables defining important disaggregations of
Duolingo data, along with their pseudo-R2 scores.

R2
Mc Covariate Xj Conditioning on Xc

0.08 Lesson position All perfect lessons
0.11 Lesson index All perfect lessons
0.09 Lesson index First five lessons
0.16 Number of lessons All perfect lessons
0.09 Number of lessons First five lessons
0.11 Number of sessions All perfect lessons
0.09 Number of sessions First five lessons
0.05 Number of sessions Session seen
0.1 Session number All perfect lessons

0.09 Session number First five lessons
0.05 Session number Session seen
0.05 Session number Session correct
0.05 Session number Distinct words
0.02 Session number Time since previous lesson
0.09 Session length All perfect lessons
0.06 Session correct Distinct words
0.09 Session duration First five lessons
0.09 Session duration All perfect lessons
0.0 Session duration Session length

0.08 Time since previous lesson All perfect lessons
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Figure 5: Disaggregation of Duolingo data. (a) The heat map
shows performance, as a function of how many lessons the
user completed, conditioned on how many of the five first
lessons were answered correctly. (b) Number of data sam-
ples within each bin of the heat map. Trends in (c) the dis-
aggregated data and in (d) aggregate data. Errors bars show
95% confidence interval.

cline. This may be due to “regression to the mean”, as pure
luck could have helped the initially best performers and hurt
the initially worst performers.

Another disaggregation of DL data is shown in Figure 6.
The plots show performance as a function of lesson cor-
rect, the number of words correctly answered in a lesson. In
the aggregate data, performance shows an overall decline;
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Figure 6: Disaggregation of Duolingo data showing perfor-
mance as a function of lesson Correct (a) The heat map
shows performance, i.e., probability to answer all the words
correctly, conditioned on the number of distinct words in the
lesson. (b) Number of data samples in each bin of the heat
map. Trends in (c) the disaggregated data and in (d) aggre-
gate data. Errors bars show 95% confidence interval.

however, conditioned on distinct words (the total number
of unique words shown in a lesson), performance shows
more complex trends. The red values appearing initially
along the diagonal show perfect lessons, where users an-
swered all words they were shown correctly. However, as
the lessons become more difficult—more distinct words are
introduced—it becomes more difficult for users to have per-
fect performance. After 20 new words are shown in a lesson,
users can no longer answer all the words correctly. Also in-
teresting is a region of lower performance starting around
values of lesson correct near 20 and distinct words between
3 and 10, and continues upwards and to the right. For some
reason user performance drops in this regime.

Discussion
There are several commonalities emerging from the three
data sets we studied. Across platforms, initial performance,
captured by first five attempts in the KA data or first five
lessons in the DL data, appeared as an important condition-
ing variable differentiating the subgroups. Those users who
were initially high performers appear to be different from
the low performers, especially when looking at how their
performance changes over time. While initial performance
could capture skill or background knowledge, further analy-
sis is needed to link it to this characteristic.

Experience also appeared as an important feature differ-
entiating users. As a proxy of experience we used such fea-
tures as the number of lessons in DL data, user tenure in
KA data, and number of answers and reputation in SE data.
However, whether this variable reflects the benefits of prac-
tice, or simply captures user motivation, is not clear.

Features linked to user activity differentiated many im-
portant subgroups across all three data sets. Features such
as time since previous lesson, session length and position
within a session, total time solving a problem, were all sig-
nificant conditioning variables. This suggests that perfor-
mance on these platforms has a non-trivial dynamic com-
ponent that merits deeper investigation. Indeed, a study of
Stack Exchange observed short term deterioration in perfor-
mance (Ferrara et al. 2017). Our study suggests that such an
effect may be general. In addition, temporal features, such as
month, type of weekday, timestamp, were found to be impor-
tant covariates. This indicates that temporal effects can ex-
plain differences in performance: e.g., people who use learn-
ing web sites on weekends are different from those who use
them during the week. Our analysis helps identify such sub-
groups and understand their behavior.

Conclusion
We described a method that identifies interesting behaviors
within heterogeneous behavioral data by leveraging Simp-
son’s paradox. The method automatically disaggregates data
by partitioning it on some conditioning variable, and looks
for those conditioning variables that result in trend reversal
in many subgroups. The method ranks these disaggregations
based on how well linear models describe the disaggregated
data compared to how well they describe population as a
whole. These disaggregated subgroups are interesting be-
cause their behavior is significantly different from that of
the remainder of the population, which implies that impor-
tant behavioral differences exist within the population.

We illustrated the use of the method as a data exploration
tool by applying it to study human performance on three
online platforms, including question-answering site Stack
Exchange, and online learning sites Khan Academy and
Duolingo. Our method identified skill (judged from user’s
initial performance on the site) and experience (how long
the user has been active on the site) as important features
differentiating user performance.

Conditioning on a variable to make subgroups more ho-
mogenous is the important and the first step in our method;
however, subgroups may still be heterogeneous. As a future
direction, we can use multiple features for conditioning on
the data to make the subgroups even more homogenous, af-
terward we can look at an independent variable trend rever-
sal in these subgroups. We have used our method for bi-
nary outcome variables, however there are also continues
outcome variables in behavioral data. Our method can be
extended to more general forms, like GLM, to support all
types of outcome variable. However, new trend analysis al-
gorithm needs different statistical methods as a goodness
of fit measure. In addition, preliminary explorations suggest
that pairs of variables with high R2

McFadden value could be
used in combination to make a new variable which is highly
correlated with outcome variable. For example, in KA data,
pair (all first attempts, all attempts) has the highest value
of pseudo-R2 among all pairs. We can define new variable
as ratio of number of correctly solved question on the first
attempt to characterize user performance during his or her
tenure. This new variable is highly correlated with outcome
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variable, performance. The same thing is happened for pairs
(session seen, session correct) in Duolingo, and (number of
answers, Reputation) in Stack Exchange.
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