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Abstract

Serious concerns have been raised about the role of ‘so-
cialbots’ in manipulating public opinion and influencing the
outcome of elections by retweeting partisan content to in-
crease its reach. Here we analyze the role and influence of
socialbots on Twitter by determining how they contribute to
retweet diffusions. We collect a large dataset of tweets during
the 1st U.S. presidential debate in 2016 and we analyze its
1.5 million users from three perspectives: user influence, po-
litical behavior (partisanship and engagement) and botness.
First, we define a measure of user influence based on the
user’s active contributions to information diffusions, i.e. their
tweets and retweets. Given that Twitter does not expose the
retweet structure – it associates all retweets with the origi-
nal tweet – we model the latent diffusion structure using only
tweet time and user features, and we implement a scalable
novel approach to estimate influence over all possible un-
foldings. Next, we use partisan hashtag analysis to quantify
user political polarization and engagement. Finally, we use
the BotOrNot API to measure user botness (the likelihood of
being a bot). We build a two-dimensional “polarization map”
that allows for a nuanced analysis of the interplay between
botness, partisanship and influence. We find that not only are
socialbots more active on Twitter – starting more retweet cas-
cades and retweeting more – but they are 2.5 times more influ-
ential than humans, and more politically engaged. Moreover,
pro-Republican bots are both more influential and more po-
litically engaged than their pro-Democrat counterparts. How-
ever we caution against blanket statements that software de-
signed to appear human dominates politics-related activity on
Twitter. Firstly, it is known that accounts controlled by teams
of humans (e.g. organizational accounts) are often identified
as bots. Secondly, we find that many highly influential Twitter
users are in fact pro-Democrat and that most pro-Republican
users are mid-influential and likely to be human (low bot-
ness).

1 Introduction

Socialbots are broadly defined as “software processes that
are programmed to appear to be human-generated within
the context of social networking sites such as Facebook and
Twitter” (Gehl and Bakardjieva 2016, p.2). They have re-
cently attracted much attention and controversy, with con-
cerns that they infiltrated political discourse during the 2016
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U.S. presidential election and manipulated public opinion
at scale. Concerns were heightened with the discovery that
an influential conservative commentator (@Jenn_Abrams,
70,000 followers) and a user claiming to belong to the Ten-
nessee Republican Party (@TEN_GOP, 136,000 followers)
– both retweeted by high-profile political figures and celebri-
ties – were in fact Russian-controlled bots operated by the
Internet Research Agency in St. Petersburg (Collins and Cox
2017; Timberg, Dwoskin, and Entous 2017).

There are several challenges that arise when conducting
large-scale empirical analysis of political influence of bots
on Twitter. The first challenge concerns estimating user in-
fluence from retweet diffusions, where the retweet relations
are unobserved – the Twitter API assigns every retweet to
the original tweet in the diffusion. Current state-of-the-art
influence estimation methods such as ConTinEst (Du et al.
2013) operate on a static snapshot of the diffusion graph,
which needs to be inferred from retweet diffusions using ap-
proaches like NetRate (Rodriguez, Balduzzi, and Schölkopf
2011). This workflow suffers from two major drawbacks:
first, the algorithms for uncovering the diffusion graph do
not scale to millions of users like in our application; second,
operating on the diffusion graph estimates the “potential of
being influential”, but it loses information about user activ-
ity – e.g. a less well connected user can still be influential
if they tweet a lot. The question is how to estimate at scale
the influence of millions of users from diffusion in which
the retweet relation is not observed? The second challenge
lies in determining at scale whether a user is a bot and also
her political behavior, as manually labeling millions of users
is infeasible. The question is therefore how to leverage au-
tomated bot detection approaches to measure the botness
of millions of users? and how to analyze political behav-
ior (partisanship and engagement) at scale?

This paper addresses the above challenges using a large
dataset (hereafter referred to as #DEBATENIGHT) of 6.5
million tweets authored by 1.5 million users that was col-
lected on 26 September 2016 during the 1st U.S. presidential
debate.

To address the first challenge, we introduce, evaluate, and
apply a novel algorithm to estimate user influence based on
retweet diffusions. We model the latent diffusion structure
using only time and user features by introducing the diffu-
sion scenario – a possible unfolding of a diffusion – and its
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likelihood. We implement a scalable algorithm to estimate
user influence over all possible diffusion scenarios associ-
ated with a diffusion. We demonstrate that our algorithm can
accurately recover the ground truth on a synthetic dataset.
We also show that, unlike simpler alternative measures–such
as the number of followers, or the mean size of initiated
cascades–our influence measure ϕ assigns high scores to
both highly-connected users who never start diffusions and
to active retweeters with little followership.

We address the second challenge by proposing three new
measures (political polarization P , political engagement E
and botness ζ) and by computing them for each user in #DE-
BATENIGHT. We manually compile a list of partisan hash-
tags and we estimate political engagement based on the ten-
dency to use these hashtags and political polarization based
on whether pro-Democrat or pro-Republican hashtags were
predominantly used. We use the BotOrNot API to evalu-
ate botness and to construct four reference populations –
Human, Protected, Suspended and Bot. We build a
two-dimensional visualization – the polarization map – that
enables a nuanced analysis of the interplay between botness,
partisanship and influence. We make several new and impor-
tant findings: (1) bots are more likely to be pro-Republican;
(2) bots are more engaged than humans, and pro-Republican
bots are more engaged than pro-Democrat bots; (3) the aver-
age pro-Republican bot is twice as influential as the average
pro-Democrat bot; (4) very highly influential users are more
likely to be pro-Democrat; and (5) highly influential bots are
mostly pro-Republican.

The main contributions of this work include:

• We introduce a scalable algorithm to estimate user in-
fluence over all possible unfoldings of retweet diffusions
where the cascade structure is not observed; the code is
publicly accessible in a Github repository1;

• We develop two new measures of political polarization
and engagement based on usage of partisan hashtags; the
list of partisan hashtags is also available in the repository;

• We measure the botness of a very large population of
users engaged in Twitter activity relating to an important
political event – the 2016 U.S presidential debates;

• We propose the polarization map – a novel visualization
of political polarization as a function of user influence and
botness – and we use it to gain insights into the influence
of bots on the information landscape around the U.S. pres-
idential election.

2 Related work

We structure the discussion of previous work into two cate-
gories: related work on the estimation of user influence and
work concerning bot presence and behavior on Twitter.

Estimating user influence on Twitter. Aggregate mea-
sures such as the follower count, the number of retweets
and the number of mentions have been shown to be in-
dicative of user influence on Twitter (Cha et al. 2010;

1Code and partisan hashtag list is publicly available at https:
//github.com/computationalmedia/cascade-influence

Kwak et al. 2010). More sophisticated estimates of user in-
fluence use eigenvector centrality to account for the con-
nectivity of followers or retweeters; for example, TwitteR-
ank (Weng et al. 2010) extends PageRank (Page et al. 1999)
by taking into account topical similarity between users and
network structure. Other extensions like Temporal PageR-
ank (Rozenshtein and Gionis 2016) explicitly incorporate
time into ranking to account for a time-evolving network.
However, one limitation of PageRank-based methods is that
they require a complete mapping of the social networks.
More fundamentally, network centrality has the drawback
of evaluating only the potential of a user to be influential
in spreading ideas or content, and it does not account for
the actions of the user (e.g. tweeting on a particular subject).
Our influence estimation approach proposed in Sec. 3 is built
starting from the user Twitter activity and it does not require
knowledge of the social network.

Recent work (Yates, Joselow, and Goharian 2016;
Chikhaoui et al. 2017) has focused on estimating user in-
fluence as the contribution to information diffusion. For ex-
ample, ConTinEst (Du et al. 2013) requires a complete dif-
fusion graph and employs a random sampling algorithm to
approximate user influence with scalable complexity. How-
ever, constructing the complete diffusion graph might prove
problematic, as current state-of-the-art methods for uncov-
ering the diffusion structure (e.g. (Rodriguez, Balduzzi, and
Schölkopf 2011; Simma and Jordan 2010; Cho et al. 2013;
Li and Zha 2013; Linderman and Adams 2014)) do not
scale to the number of users in our dataset. This is because
these methods assume that a large number of cascades oc-
cur in a rather small social neighborhood, whereas in #DE-
BATENIGHT cascades occur during a short period of time in
a very large population of users. Our proposed algorithm es-
timates influence directly from retweet cascades, without the
need to reconstruct the retweet graph, and it scales cubically
with the number of users.

Bot presence and behavior on Twitter. The ‘BotOrNot’
Twitter bot detection API uses a Random Forest supervised
machine learning classifier to calculate the likelihood of a
given Twitter user being a bot, based on more than 1,000
features extracted from meta-data, patterns of activity, and
tweet content (grouped into six main classes: user-based;
friends; network; temporal; content and language; and senti-
ment) (Davis et al. 2016; Varol et al. 2017)2. The bot scores
are in the range [0, 1], where 0 (1) means the user is very
unlikely (likely) to be a bot. BotOrNot was used to exam-
ine how socialbots affected political discussions on Twitter
during the 2016 U.S. presidential election (Bessi and Ferrara
2016). They found that bots accounted for approximately 15
% (400,000 accounts) of the Twitter population involved in
election-related activity, and authored about 3.8 million (19
%) tweets. However, Bessi and Ferrara (2016) sampled the
most active accounts, which could bias upwards their esti-
mate of the presence of bots as activity volume is one of
the features that is used by BotOrNot. They found that bots
were just as effective as humans at attracting retweets from
humans. Woolley and Guilbeault (2017) used BotOrNot to

2See: https://botometer.iuni.iu.edu/\#!/
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(a) (b) (c)

Figure 1: Modeling latent diffusions. (a) The schema of a retweet cascade as provided by the Twitter API, in which all retweets
are attributed to the original tweet. (b) Four diffusion scenarios (out of 120 possible scenarios), associated with the retweet
cascade in (a). (c) Intuition of the independent conditional model. A new node v5 appears conditioned on one diffusion scenario
G. Four new diffusion scenarios are generated as v5 can attach to any of the existing nodes.

test 157,504 users randomly sampled from 1,798,127 Twit-
ter users participating in election-related activity and found
that over 10% were bots. Here we use BotOrNot to classify
all 1.5 million users in our dataset to obtain a less biased
approximation of their numbers and impact.

Previous work has studied the political partisanship of
Twitter bots. Kollanyi, Howard, and Woolley (2016) ana-
lyzed candidate-oriented hashtag use during the 1st U.S.
presidential debate and found that highly automated ac-
counts (self-identified bots and/or accounts that post at least
50 times a day) were disproportionately pro-Trump. Bessi
and Ferrara (2016) also studied political partisanship by
identifying five pro-Trump and four pro-Clinton hashtags
and assigning users to a particular political faction. The re-
sults suggested that both humans and bots were more pro-
Trump in terms of hashtag partisanship. However, the above
findings are limited to a comparison between humans and
bots of frequency counts of tweets authored and retweets re-
ceived, and they provide no insight into the importance of
users in retweet diffusions. We overcome this limitation by
modeling the latent structure of retweet diffusions and com-
puting user influence over all possible scenarios.

3 Estimating influence in retweet cascades

An information cascade V of size n is defined as a series
of messages vi sent by user ui at time ti, i.e. V = {vi =
(ui, ti)}i=1:n. Here v1 = (u1, t1) is the initial message,
and v1, . . . , vn with t1 < . . . < tn are subsequent reposts
or relays of the initial message. In the context of Twitter,
the initial message is an original tweet and the subsequent
messages are retweets of that original tweet (which by def-
inition, are also tweets). A latent retweet diffusion graph
G = (V,E) has the set of tweets as its vertexes V , and
additional edges E = {(vi, vj)} that represent that the jth

tweet is a retweet of the ith tweet, and respects the tempo-
ral precedence ti < tj . Web data sources such as the Twit-
ter API provide cascades, but not the diffusion edges. Such
missing data makes it challenging to measure a given user’s
contribution to the diffusion process.

3.1 Modeling latent diffusions

Diffusion scenarios. We focus on tree-structured diffusion
graphs, i.e. each node vj has only one incoming link (vi, vj),
i < j. Denote the set of trees that are consistent with the
temporal order in cascade C as G, we call each diffusion
tree a diffusion scenario G ∈ G. Fig. 1a contains a cascade
visualized as a star graph, attributing subsequent tweets to
the first tweet at t1. Fig. 1b shows four example diffusion
scenarios consistent with this cascade. The main challenge
here is to estimate the influence of each user in the cascade,
taking into account all possible diffusion trees.
Probability of retweeting. For each tweet vj , we model the
probability of it being a direct descendant of each previous
tweet in the same cascade as a weighted softmax function,
defined by two main factors: firstly, users retweet fresh con-
tent (Wu and Huberman 2007). We assume that the probabil-
ity of retweeting decays exponentially with the time differ-
ence tj−ti; secondly, users prefer to retweet locally influen-
tial users, known as preferential attachment (Barabási 2005;
Rizoiu et al. 2017). We measure the local influence mi of
a user ui using her number of followers (Kwak et al. 2010;
Cha et al. 2010). We quantify the probability that vj is a di-
rect retweet of vi as:

pij =
mie

−r(tj−ti)

∑j−1
k=1 mke−r(tj−tk)

(1)

where r is a hyper-parameter controlling the temporal de-
cay. It is set to r = 6.8× 10−4, tuned using linear search on
a sample of 20 real retweet cascades (details in the supple-
ment (sup 2018, annex D)).

3.2 Tweet influence in a retweet cascade

We additionally assume retweets follow independent condi-
tional diffusions within a cascade. This is to say that con-
ditioned on an existing partial cascade of j − 1 retweets
denoted as V (j−1) = {vk}j−1

k=1 whose underlying diffusion
scenario is G(j−1), the jth retweet is attributed to any of the
k = 1, . . . , j−1 prior tweets according to Eq. 1, and is inde-
pendent of the diffusion scenario G(j−1). For example, the
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5th tweet in the cascade will incur four valid diffusion trees
for each of the diffusion scenarios for 4 tweets – this is illus-
trated in Fig. 1c. This simplifying assumption is reasonable,
as it indicates that each user j makes up his/her own mind
about whom to retweet, and that the history of retweets is
available to user j (as is true in the current user interface
of Twitter). It is easy to see that under this model, the to-
tal number of valid diffusion trees for a 5-tweet cascade is
1 · 2 · 3 · 4 = 24, and that for a cascade with n tweets is
(n− 1)!.

The goal for influence estimation for each cascade is to
compute the contribution φ(vi) of each tweet vi averaging
over all independent conditional diffusion trees consistent
with cascade V and with edge probabilities prescribed by
Eq. 1. Enumerating all valid trees and averaging is clearly
computationally intractable, but the illustration in Fig. 1c
lends itself to a recursive algorithm.

Tractable tweet influence computation We introduce
the pair-wise influence score mij which measures the in-
fluence of vi over vj . vi can influence vj both directly when
vj is a retweet of vi, and indirectly when a path exists from
vi to vj in the underlying diffusion scenario. Let vk be a
tweet on the path from vi to vj (i < k < j) so that vj is
a direct retweet of vk. mik can be computed at the kth re-
cursion step and it measures the influence of vi over vk over
all possible paths starting with vi and ending with vk. Given
the above independent diffusions assumption, the mij can
be computed using mik to which we add the edge (vk, vj).
User uj can chose to retweet any of the previous tweets with
probability pkj , k < j, therefore we further weight the con-
tribution through vk using pij . We consider that a tweet has
a unit influence over itself (mii = 1). Finally, we obtain that:

mij =

⎧⎨
⎩

∑j−1
k=i mikp

2
kj , i < j

1 , i = j
0 , i > j.

(2)

Naturally, φ(vi) the total influence of node vi is the sum
of mij , j > i the pair-wise influence score of vi over all sub-
sequent nodes vj . The recursive algorithm has three steps.

1. Initialization. mij = 0 for i, j = 1, . . . , n, j �= i, and
mii = 1 for i = 1, . . . , n;

2. Recursion. For j = 2, . . . , n;
(a) For k = 1, . . . , j − 1, compute pkj using Eq. (1);
(b) For i = 1, . . . , j − 1, mij =

∑j−1
k=i mikp

2
kj ;

3. Termination. Output φ(vi) =
∑n

k=i+1 mik, for i =
1, . . . , n.
We exemplify this algorithm on a 3-tweet toy example.

Consider the cascade {v1, v2, v3}. When the first tweet v1
arrives, we have m11 = 1 by definition (see Eq. (2)). After
the arrival of the second tweet, which must be retweeting
the first, we have m12 = m11p

2
12 = 1, and m22 = 1 by

definition. The third tweet can be a retweet of the first or the
second, therefore we obtain:

m13 =m11p
2
13 +m12p

2
23 ;

m23 =m22p
2
23 ;

m33 =1 .

The second term of m13 accounts for the indirect influence
of v1 over v3 through v2. This is the final step for a 3-node
cascade.

The computational complexity of this algorithm is O(n3).
There are n recursion steps, and calculating pij at sub-step
(a) needs O(n) units of computation, and sub-step (b) takes
O(n2) steps. In real cascades containing 1000 tweets, the
above algorithm finishes in 34 seconds on a PC. For more
details and examples, see the online supplement (sup 2018,
annex B).

3.3 Computing influence of a user

Given T (u) – the set of tweets authored by user u –, we
define the user influence of u as the mean tweet influence of
tweets v ∈ T (u):

ϕ(u) =

∑
v∈T (u) ϕ(v)

|T (u)| , T (u) = {v|uv = u} (3)

To account for the skewed distribution of user influence, we
mostly use the normalization – percentiles with a value of 1
for the most influential user our dataset and 0 for the least
influential – denoted ϕ(u)% .

4 Dataset and measures of political behavior

In this section, we first describe the #DEBATENIGHT dataset
that we collected during the 1st U.S. presidential debate.
Next, we introduce three measures for analyzing the political
behavior of users who were active on Twitter during the de-
bate. In Sec. 4.1, we introduce political polarization P and
political engagement E . In Sec. 4.2 we introduce the botness
score ζ and we describe how we construct the reference bot
and human populations.

The #DEBATENIGHT dataset contains Twitter discus-
sions that occurred during the 1st 2016 U.S presiden-
tial debate between Hillary Clinton and Donald Trump.
Using the Twitter Firehose API3, we collected all the
tweets (including retweets) that were authored during
the two hour period from 8.45pm to 10.45pm EDT,
on 26 September 2016, and which contain at least
one of the hashtags: #DebateNight, #Debates2016,
#election2016, #HillaryClinton, #Debates,
#Hillary2016, #DonaldTrump and #Trump2016.
The time range includes the 90 minutes of the presidential
debate, as well as 15 minutes before and 15 minutes after
the debate. The resulting dataset contains 6,498,818 tweets,
emitted by 1,451,388 twitter users. For each user, the Twit-
ter API provides aggregate information such as the number
of followers, the total number (over the lifetime of the user)
of emitted tweets, authored retweets, and favorites. For in-
dividual tweets, the API provides the timestamp and, if it is
a retweet, the original tweet that started the retweet cascade.
The #DEBATENIGHT dataset contains 200,191 retweet dif-
fusions of size 3 and larger.

4.1 Political polarization P and engagement E
Protocol. Content analysis (Kim and Kuljis 2010) was used
to code the 1000 most frequently occurring hashtags accord-

3Via the Uberlink Twitter Analytics Service.
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Figure 2: Wordclouds of partisan hashtags in #DE-
BATENIGHT: Democrat (top) and Republican (bottom).
Hashtags sizes are scaled by their frequency.

ing to their political polarity. More specifically, we used Di-
rected Content Analysis (Hsieh and Shannon 2005) to con-
textually analyse hashtags and code them according to their
political polarity (or not, denoted as ‘neutral’ and subse-
quently excluded from analysis). This approach has been
used in previous work to study hashtags on Twitter in a man-
ner that is valid, reliable and replicable (Small 2011). There
were two previous studies of Twitter activity during the
2016 U.S. presidential election that informed the develop-
ment of our coding schema. Firstly, Bessi and Ferrara (2016)
devised a binary classification scheme that attributed po-
litical partisanship to a small set of key hashtags as ei-
ther ‘Trump-supporting’ (#donaldtrump, #trump2016, #nev-
erhillary, #trumppence16, #trump) or ‘Clinton-supporting’
(#hillaryclinton, #imwithher, #nevertrump, #hillary). Sec-
ondly, in studying Twitter activity during the 1st U.S. pres-
idential debate, Kollanyi, Howard, and Woolley (2016) de-
veloped a coding schema that categorized tweets into seven
categories based on the hashtags that occurred within the
tweet. However, the authors found that three ‘exclusive’
categories (‘Pro-Trump’, ‘Pro-Clinton’, and ‘Neutral’) ac-
counted for the majority (88.5%) of observations.

Given the findings of previous research, we developed
a code book with three categories: ‘Pro-Trump’, ‘Pro-
Clinton’, and ‘Neutral’. To ensure that hashtags were ana-
lyzed within context, our content analysis methodology fo-
cussed on three units of analysis (following the approach de-
veloped by Small (2011)). The first is hashtags, comprised
of a set of the 1000 most frequently occurring hashtags
over all tweets in our dataset. The second unit of analysis
was individual tweets that contained these hashtags. In or-
der to gain a more nuanced and ‘situated’ interpretation of

hashtag usage, for each hashtag we referred to a small ran-
dom sample of tweets in our dataset that contained each
given hashtag. In some instances the polarity (or neutral-
ity) was clear and/or already determined from previous stud-
ies, which helped to speed up the analysis of tweets. The
third unit of analysis was user profiles, which we referred
to in situations where the polarity or neutrality of a given
hashtag was unclear from the context of tweet analysis. For
example, #partyoflincoln was used by both Republican and
Democrat Twitter users, but an analysis of both tweets and
user profiles indicated that this hashtag was predominantly
used by Pro-Trump supporters to positively align the Re-
publican Party with the renowned historical figure of Pres-
ident Abraham Lincoln, who was a Republican. The con-
tent analysis resulted in a subset of 93 pro-Democrat and 86
pro-Republican hashtags (see the wordcloud visualization in
Fig. 2), whilst the remaining ‘neutral’ hashtags were subse-
quently excluded from further analysis. The resulting parti-
san hashtag list contains hashtags indicating either strong
support for a candidate (e.g., #imwithher for Clinton
and #trump2016 for Trump), or opposition and/or antag-
onism (e.g., #nevertrump and #crookedhillary).
The complete list of partisan hashtags is publicly available
in the Github repository.

Two measures of political behavior. We identify 65,031
tweets in #DEBATENIGHT that contain at least one partisan
hashtag (i.e., one of hashtags in the reference set of parti-
san hashtags constructed earlier). 1,917 tweets contain par-
tisan hashtags with both polarities: these are mostly negative
tweets towards both candidates (e.g., “Let’s Get READY
TO RUMBLE AND TELL LIES. #nevertrump #neverhillary
#Obama”) or hashtag spam. We count the number of occur-
rences of partisan hashtags for each user, and we detect a set
of 46,906 politically engaged users that have used at least
one partisan hashtag. Each politically engaged user ui has
two counts: demi the number of Democrat hashtags that ui

used, and repi the number of Republican hashtags. We mea-
sure the political polarization as the normalized difference
between the number of Republican and Democrat hashtags
used:

P(ui) =
repi − demi

repi + demi
. (4)

P(ui) takes values between −1 (if ui emitted only Demo-
crat partisan hashtags) and 1 (ui emitted only Republican
hashtags). We threshold the political polarization to con-
struct a population of Democrat users with P(u) ≤ −0.4
and Republican users with P(u) ≥ 0.4. In the set of po-
litically engaged users, there are 21,711 Democrat users,
22,644 Republican users and 2,551 users with no polariza-
tion (P(u) ∈ (−0.4, 0.4)). We measure the political engage-
ment of users using the total volume of partisan hashtags in-
cluded in their tweets E(ui) = repi + demi.

4.2 Botness score ζ and bot detection

Detecting automated bots. We use the BotOrNot (Davis
et al. 2016) API to measure the likelihood of a user be-
ing a bot for each of the 1,451,388 users in the #DE-
BATENIGHT dataset. Given a user u, the API returns the
botness score ζ(u) ∈ [0, 1] (with 0 being likely human,
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Table 1: Tabulating population volumes and percent-
ages of politically polarized users over four populations:
Protected, Human, Suspended and Bot.

All Prot. Human Susp. Bot

All 1,451,388 45,316 499,822 10,162 17,561
Polarized 44,299 1,245 11,972 265 435
Democrat 21,676 585 5,376 111 185

Republican 22,623 660 6,596 154 250

Dem. % 48.93% 46.99% 44.90% 41.89% 42.53%
Rep. % 51.07% 53.01% 55.10% 58.11% 57.47%

and 1 likely non-human). Previous work (Varol et al. 2017;
Bessi and Ferrara 2016; Woolley and Guilbeault 2017) use
a botness threshold of 0.5 to detect socialbots. However,
we manually checked a random sample of 100 users with
ζ(u) > 0.5 and we found several human accounts be-
ing classified as bots. A threshold of 0.6 decreases mis-
classification by 3%. It has been previously reported by
Varol et al. (2017) that organizational accounts have high
botness scores. This however is not a concern in this work,
as we aim to detect ‘highly automated’ accounts that behave
in a non-human way. We chose to use a threshold of 0.6 to
construct the Bot population in light of the more encom-
passing notion of account automation.

Four reference populations. In addition to the Bot pop-
ulation, we construct three additional reference populations:
Human ζ(u) ≤ 0.2 contains users with a high likelihood
of being regular Twitter users. Protected are the users
whose profile has the access restricted to their followers
and friends (the BotOrNot system cannot return the botness
score); we consider these users to be regular Twitter users,
since we assume that no organization or broadcasting bot
would restrict access to their profile. Suspended are those
users which have been suspended by Twitter between the
date of the tweet collection (26 September 2016) and the
date of retrieving the botness score (July 2017); this popu-
lation has a high likelihood of containing bots. Table 1 tab-
ulates the size of each population, split over political polar-
ization.

5 Evaluation of user influence estimation

In this section, we evaluate our proposed algorithm and mea-
sure of user influence. In Sec 5.1, we evaluate on synthetic
data against a known ground truth. In Sec. 5.2, we compare
the ϕ(u) measure (defined in Sec. 3.3) against two alterna-
tives: the number of followers and the mean size of initiated
cascades.

5.1 Evaluation of user influence

Evaluating user influence on real data presents two major
hurdles. The first is the lack of ground truth, as user influ-
ence is not directly observed. The second hurdle is that the
diffusion graph is unknown, which renders impossible com-
paring to state-of-the-art methods which require this infor-
mation (e.g. ConTinEst (Du et al. 2013)). In this section,
evaluate our algorithm against a known ground truth on a

(a) (b)

(c)

Figure 3: Evaluation of the user influence measure. (a) 2D
density plot (shades of blue) and scatter-plot (gray circles)
of user influence against the ground truth on a synthetic
dataset. (b)(c) Hexbin plot of user influence percentile (x-
axis) against mean cascade size percentile (b) and the num-
ber of followers (c) (y-axis) on #DEBATENIGHT. The color
intensity indicates the number of users in each hex bin. 1D
histograms of each axis are shown using gray bars. Note
72.3% of all users that initiate cascades are never retweeted.

synthetic dataset, using the same evaluation approach used
for ConTinEst.

Evaluation on synthetic data. We evaluate on synthetic
data using the protocol previously employed in (Du et al.
2013). We use the simulator in (Du et al. 2013) to generate
an artificial social network with 1000 users. We then simu-
late 1000 cascades through this social network, starting from
the same initial user. The generation of the synthetic social
network and of the cascades is detailed in the online supple-
ment (sup 2018, annex C). Similar to the retweet cascades in
#DEBATENIGHT, each event in the synthetic cascades has a
timestamp and an associated user. Unlike the real retweet
cascades, we know the real diffusion structure behind each
synthetic cascade. For each user u, we count the number of
nodes reachable from u in the diffusion tree of each cascade.
We compute the influence of u as the mean influence over
all cascades. ConTinEst (Du et al. 2013) has been shown to
asymptotically approximate this synthetic user influence.

We use our algorithm introduced in Sec. 3.2 on the syn-
thetic data, to compute the measure ϕ(u) defined in Eq. 3.
We plot in Fig. 3a the 2D scatter-plot and the density plot of

305



(a) (b) (c) (d) (e)

Figure 4: Profiling behavior of the Protected, Human, Suspended and Bot populations in the #DEBATENIGHT dataset.
The numbers in parentheses in the legend are mean values. (a) CCDF of the number of Twitter diffusion cascades started. (b)
CCDF of the number of retweets. (c)(d) CCDF (c) and boxplots (d) of the number of followers. (e) Number of items favorited.

the synthetic users, with our influence measure ϕ on the y-
axis and the ground truth on the x-axis (both in percentiles).
Visibly, there is a high agreement between the two measures,
particularly for the most influential and the least influential
users. The Spearman correlation coefficient of the raw val-
ues is 0.88. This shows that our method can output reliable
user influence estimates in the absence of any information
about the structure of the diffusions.

5.2 Comparison with other influence metrics

We compare the influence measure ϕ(u) against two alter-
natives that can be computed on #DEBATENIGHT.

Mean size of initiated cascades (of a user u) is the av-
erage number of users reached by original content authored
by u. It should be noted that this measure does not capture
u’s role in diffusing content authored by someone else. In
the context of Twitter, mean size of initiated cascades is the
average number of users who retweeted an original tweet
authored by u: we compute this for every user in the #DE-
BATENIGHT dataset, and we plot it against ϕ(u) in Fig. 3b.
Few users have a meaningful value for mean cascade size:
55% of users never start a cascades (and they are not ac-
counted for in Fig. 3b); out of the ones that start cascades
72.3% are never retweeted and they are all positioned at the
lowest percentile (shown by the 1D histograms in the plot). It
is apparent that the mean cascade size metric detects the in-
fluential users that start cascades, and it correlates with ϕ(u).
However, it misses highly influential users who never initi-
ate cascades, but who participate by retweeting. Examples
are user @SethMacFarlane (the actor and filmmaker Seth
MacFarlane, 10.8 million followers) or user @michaelian-
black (comedian Michael Ian Black, 2.1 million followers),
both with ϕ in the top 0.01% most influential users.

Number of followers is one of the simplest measures
of direct influence used in literature (Mishra, Rizoiu, and
Xie 2016; Zhao et al. 2015). While being loosely correlated
with ϕ(u) (visible in Fig. 3c, Pearson r = 0.42), it has
the drawback of not accounting for any of the user actions,
such as an active participation in discussions or generating
large retweet cascades. For example, user @PoliticJames
(alt-right and pro-Trump, 2 followers) emitted one tweet in
#DEBATENIGHT, which was retweeted 18 times and placing
him in the top 1% most influential users. Similarly, user @ti-

wtter1tr4_tv (now suspended, 0 followers) initiated a cas-
cade of size 58 (top 1% most influential). Interestingly, half
of the accounts scoring on the bottom 1% by number of fol-
lowers and top 1% by influence are now suspended or have
very high botness scores.

6 Results and findings

In this section, we present an analysis of the interplay be-
tween botness, political behavior (polarization and engage-
ment) and influence. In Sec. 6.1, we first profile the activity
of users in the four reference populations; next, we analyze
the political polarization and engagement, and their relation
with the botness measure. Finally, in Sec. 6.2 we tabulate
user influence against polarization and botness, and we con-
struct the polarization map.

6.1 Political behavior of humans and bots

Twitter activity across four populations. We measure the
behavior of users in the four reference populations defined
in Sec. 4.1 using several measures computed from the Twiter
API. The number of cascades started (i.e., number of orig-
inal tweets) and the number of posted retweets are simple
measures of activity on Twitter, and they are known to be
long-tail distributed (Cha et al. 2010). Fig. 4a and 4b re-
spectively plot the log-log plot of the empirical Comple-
mentary Cumulative Distribution Function (CCDF) for each
of the two measures. It is apparent that users in the Bot
and Suspended populations exhibit higher levels of ac-
tivity than the general population, whereas the Human and
Protected populations exhibit lower level. Fig. 4c and 4d
plot the number of followers and present a more nuanced
story: the average bot user has 10 times more followers than
the average human user; however, bots have a median of
190 followers, less than the median 253 followers of human
users. In other words, some bots are very highly followed,
but most are simply ignored. Finally, Fig. 4e shows that bots
favorite less than humans, indicating that their activity pat-
terns differ from those of humans.

Political polarization and engagement. The density
distribution of political polarization (Fig. 5a) shows two
peaks at -1 and 1, corresponding to strongly pro-Democrat
and strongly pro-Republican respectively. The shape of
the density plot is consistent with the sizes of Republican
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Figure 5: Political polarization, engagement and botness.
(a) The density distribution of political polarization P . (b)
Log-log plot of the CCDF of political engagement E for the
Democrat and Republican populations. (c) The density dis-
tribution of botness ζ for the entire population (solid line)
and the politically polarized population (dashed line). (d)
The conditional density of polarization conditioned on bot-
ness. The top panel shows the volumes of politically polar-
ized users in 30 bins. (e)(f) CCDF of political engagement
for the reference populations (e) and for the polarized Bot
populations (f).

and Democrat populations (Sec. 4.1), and the extreme bi-
modality can be explained by the clear partisan nature of the
chosen hashtags and by the known political polarization of
users on Twitter (Conover et al. 2011; Barberá et al. 2015),
which will be greatly enhanced in the context of a politi-
cal debate. Fig. 5b presents the log-log plot of the CCDF of
the political engagement, which shows that the political en-
gagement score is long-tail distributed, with pro-Democrats
slightly more engaged than pro-Republicans overall (t-test
significant, p-val = 0.0012).

Botness and political polarization. The distribution of
botness ζ exhibits a large peak around [0.1, 0.4] and a long

tail (Fig. 5c). The dashed gray vertical lines show the thresh-
holds used in Sec. 4.2 for constructing the reference Human
(ζ ∈ [0, 0.2]) and Bot (ζ ∈ [0.6, 1]) populations. Fig. 5d
shows the conditional density of polarization conditioned on
botness. For both high botness scores (i.e., bots) and low bot-
ness scores (humans) the likelihood of being pro-Republican
is consistently higher than that of being pro-Democrat, while
users with mid-range botness are more likely to be pro-
Democrat. In other words, socialbots accounts are more
likely to be pro-Republican than to be pro-Democrat.

Political engagement of bots. Fig. 5e shows the CCDF
of political engagement of the four reference populations,
and it is apparent that the Bot and Suspended popula-
tions exhibit consistently higher political engagement than
the Human and Protected populations. Fig. 5f shows the
CCDF of political engagement by the political partisanship
of bots and we find that pro-Republican Bot accounts are
more politically engaged than their pro-Democrat counter-
parts. In summary, socialbots are more engaged than hu-
mans (p-val = 8.55 × 10−5), and pro-Republican bots are
more engaged than their pro-Democrat counterparts (p-val
= 0.1228).

6.2 User influence and polarization map

User influence across four populations. First, we study the
distribution of user influence across the four reference popu-
lations constructed in Sec. 4.2. We plot the CCDF in Fig. 6a
and we summarize user influence as boxplots in Fig. 6b for
each population. User influence ϕ is long-tail distributed
(shown in Fig. 6a) and it is higher for Bot and Suspended
populations, than for Human and Protected (shown in
Fig 6b). There is a large discrepancy between the influence
of Human and Bot (p-val = 0.0025), with the average bot
having 2.5 times more influence than the average human.
We further break down users in the Bot population based
on their political polarization. Fig. 6d aggregates as box-
plots the influence of pro-Democrat and pro-Republican bots
(note: not all bots are politically polarized). Notably, on a
per-bot basis, pro-Republican bots are more influential than
their pro-Democrat counterparts (p-val = 0.0096) – the av-
erage pro-Republican bot is twice as influential as the aver-
age pro-Democrat bot.

Political polarization and user influence. Next, we ana-
lyze the relation between influence and polarization. Fig. 6c
plots the probability distribution of political polarization,
conditioned on user influence ϕ%. While for mid-range in-
fluential users (ϕ% ∈ [0.4, 0.8]) the likelihood of being Re-
publican is higher than being Democrat, we observe the in-
verse situation on the higher end of the influence scale. Very
highly influential users (ϕ% > 0.8]) are more likely to be
pro-Democrat, and this is consistent with the fact that many
public figures were supportive of the Democrat candidate
during the presidential campaign.

The polarization map. Finally, we create a visualiza-
tion that allows us to jointly account for botness and user
influence when studying political partisanship. We project
each politically polarized user in #DEBATENIGHT onto the
two-dimensional space of user influence ϕ% (x-axis) and
botness ζ (y-axis). The y-axis is re-scaled so that an equal
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Figure 6: Profiling influence, and linking to botness and political behavior. (a)(b) User influence ϕ(u) for the reference popula-
tions, shown as log-log CCDF plot (a) and boxplots (b). (c) Probability distribution of polarization, conditional on ϕ(u)%. (d)
Boxplots of user influence for the pro-Democrat and pro-Republican Bot users. Numbers in parenthesis show mean values.

Figure 7: Political polarization by user influence ϕ(u)% (x-
axis) and bot score ζ (y-axis). The gray dashed horizontal
line shows the threshold of 0.6 above which a user is con-
sidered a bot. The color in the map shows political polariza-
tion: areas colored in bright blue (red) are areas where the
Democrats (Republicans) have considerably higher density
than Republicans (Democrats). Areas where the two popu-
lations have similar densities are colored white. Three areas
of interest are shown by the letter A, B and C.

length interval around any botness value contains the same
amount of users, This allows to zoom in into denser areas
like ζ ∈ [0.2, 0.4], and to deal with data sparsity around
high botness scores. We compute the 2D density estimates
for the pro-Democrat and pro-Republican users (shown in
the online supplement (sup 2018, annex E)). For each point
in the space (ϕ%, ζ) we compute a score as the log of the
ratio between the density of the Republican users and that
of the pro-Democrats, which is then renormalized so that
values range from -1 (mostly Democrat) to +1 (mostly Re-
publican). The resulting map – dubbed the polarization map

– is shown in Fig. 7 and it provides a number of insights.
Three areas of interest (A, B and C) are shown on Fig. 7.
Area A is a pro-Democrat area corresponding to highly in-
fluential users (already shown in Fig. 6c) that spans across
most of the range of botness values. Area B is the largest
predominantly pro-Republican area and it corresponds to
mid-range influence (also shown in Fig. 6c) and concentrates
around small botness values – this indicates the presence of
a large pro-Republican population of mainly human users
with regular user influence. Lastly, we observe that the top-
right area C (high botness and high influence) is predomi-
nantly red: In other words highly influential bots are mostly
pro-Republican.

7 Discussion

In this paper, we study the influence and the political behav-
ior of socialbots. We introduce a novel algorithm for estimat-
ing user influence from retweet cascades in which the diffu-
sion structure is not observed. We propose four measures to
analyze the role and user influence of bots versus humans
on Twitter during the 1st U.S. presidential debate of 2016.
The first is the user influence, computed over all possible un-
foldings of each cascade. Second, we use the BotOrNot API
to retrieve the botness score for a large number of Twitter
users. Lastly, by examining the 1000 most frequently-used
hashtags we measure political polarization and engagement.
We analyze the interplay of influence, botness and politi-
cal polarization using a two-dimensional map – the polar-
ization map. We make several novel findings, for example:
bots are more likely to be pro-Republican; the average pro-
Republican bot is twice as influential as its pro-Democrat
counterpart; very highly influential users are more likely to
be pro-Democrat; and highly influential bots are mostly pro-
Republican.

Validity of analysis with respect to BotOrNot. The
BotOrNot algorithm uses tweet content and user activity pat-
terns to predict botness. However, this does not confound
the conclusions presented in Sec. 6. First, political behav-
ior (polarization and engagement) is computed from a list of
hashtags specific to #DEBATENIGHT, while the BotOrNot
predictor was trained before the elections took place and it
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has no knowledge of the hashtags used during the debate.
Second, a loose relation between political engagement and
activity patterns could be made, however we argue that en-
gagement is the number of used partisan hashtags, not tweets
– i.e. users can have a high political engagement score after
emitting few very polarized tweets.

Assumptions, limitations and future work. This work
makes a number of simplifying assumptions, some of which
can be addressed in future work. First, the delay between
the tweet crawling (Sept 2016) and computing botness (July
2017) means that a significant number of users were sus-
pended or deleted. A future application could see simul-
taneous tweets and botscore crawling. Second, our binary
hashtag partisanship characterization does not account for
independent voters or other spectra of democratic participa-
tion, and future work could evaluate our approach against
a clustering approach using follower ties to political actors
(Barberá et al. 2015). Last, this work computes the expected
influence of users in a particular population, but it does not
account for the aggregate influence of the population as a
whole. Future work could generalize our approach to entire
populations, which would allow answers to questions like
“Overall, were the Republican bots more influential than the
Democrat humans?”.
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