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Abstract

A critical research problem about information cascades,
which is a central topic of social network analysis, is to pre-
dict the potential influence or the future growth of cascades.
Recent developments of deep learning have provided promis-
ing alternatives, which no longer rely on heavy feature engi-
neering efforts and instead learn the representation of cascade
graphs in an end-to-end manner. In reality, however, the in-
fluence of a cascade not only depends on the cascade graph
and the global network structure, but also largely relies on
the content of the cascade and the preferences of users. In
this work, we extend the deep learning approaches to cascade
prediction by jointly modeling the content and the structure
of cascades. We find that text information provides a valu-
able addition for the learning of cascade graphs, especially
when some users (nodes) have rarely participated in the past
cascades. To this end, a gating mechanism is introduced to
dynamically fuse the structural and textual representations
of nodes based on their respective properties. Attentions are
employed to incorporate the text information associated with
both cascade items and nodes. Empirical experiments demon-
strate that incorporating text information brings a significant
improvement to cascade prediction, and that the proposed
model outperforms alternative ways to combine text and net-
works.

Introduction

Online social network platforms have greatly expedited the
diffusion of information, which plays a key role in many
social network phenomena such as the adoption of innova-
tions, viral marketing, rumor spreads, crowdsourcing, and
persuasion campaigns, just to name a few.

Researchers have explored various features that are pre-
dictive of cascade growth, such as node centrality, net-
work density, structural patterns, and textual content (Weng,
Menczer, and Ahn 2014; Cheng et al. 2014; Cui et al.
2013; Jenders, Kasneci, and Naumann 2013). These stud-
ies are conducted over a wide range of information types
being diffused, such as Tweets (Yu et al. 2015; Weng,
Menczer, and Ahn 2014; Zhao et al. 2015; Jenders, Kas-
neci, and Naumann 2013; Cui et al. 2013; Guille and Hacid
2012), videos (Bauckhage, Hadiji, and Kersting 2015), pho-
tos (Cheng et al. 2014) and academic papers (Shen et al.
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2014). One recently proposed model is called the Deep-
Cas (Li et al. 2017), which learns the representation of
cascade graphs and predicts cascade growth automatically,
without arbitrary designs of features.

While one deep architecture works well for cascade
graphs, it is not obvious how it could be extended to han-
dle a different type of information, which as the focus of
this paper, is the content of an information cascade. Indeed,
the items being diffused in online social networks are usu-
ally in the form of a text message or can be described by
text – Tweets, memes, and scientific papers. How far it will
be passed along largely depends on its content (e.g., a po-
litical rumor travels faster than a movie review tweeted by
the same user). On the other hand, who will pass these items
along also highly depends on the preference or interest of
the users who are exposed to the diffusion, which are of-
ten encoded in the rich text information associated to these
users.

Researchers have explored various approaches to incor-
porating text content into the learning of node representa-
tions (Yang et al. 2015; Pan et al. 2016). How to go beyond
node to learn representation for the entire graph (like what
DeepCas does) with the presence of text content is not stud-
ied. In our context, however, simply treating graph struc-
ture as one modality and the aggregated text content from
graph nodes as another leads to significant loss of informa-
tion. This is due to the complexity of information networks –
text is not present as a single document for a cascade, but re-
sides in individual nodes, and a cascade is a complex system
of nodes and edges. Moreover, independent from the graph
structure is the item being diffused, which is also associ-
ated with textual content that is critical for the prediction.
To utilize the structural and textual information of nodes in
a better way, we introduce a gating mechanism to dynami-
cally fuse the node representations from two sources, based
on how well each representation is learned. To incorporate
the text information from both the item being diffused and
the nodes involved in the cascade, an attention mechanism is
employed over the content of nodes. Empirical evaluations
demonstrate that incorporating text information benefits the
cascade prediction task significantly, and that our proposed
model outperforms alternative methods to combine network
and text.
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Figure 1: The end-to-end pipeline to jointly model structure and text.

Method

Basic DeepCas model. DeepCas works by making an anal-
ogy that cascade graphs are represented as documents, with
nodes as words and paths as sentences. Given a cascade
graph gc as input, it first samples node sequences from it
and feeds the sequences into a Gated Recurrent Unit (GRU),
where attention mechanisms are specifically designed to
learn how to assemble sequences into a “document”, so that
the future cascade size could be predicted.

Like DeepWalk and node2vec (Perozzi, Al-Rfou, and
Skiena 2014; Grover and Leskovec 2016), node sequences
are sampled from a cascade graph through random walks, in
which a walker either transits to a neighboring node, per-
forms a jump to a random node, or terminates the entire
walking process with certain probability. These sequences
are fed to GRUs to produce sequence representations.

To assemble the graph representation from the produced
sequence representations, the number of required sequences
and length of sequences per graph are learned through an
attention mechanism. All the parameters produced in the
pipeline can then be optimized towards predicting the future
cascade size.

Joint modeling of structure and text. The proposed frame-
work to model structure and text jointly is shown in Figure
1. It takes as input the cascade graph gc and predicts the
increment of cascade size Δsc. Similar to DeepCas, it first
samples node sequences from cascade graphs and then feeds
the sequences into GRUs. Figure 1 (c) shows the major dif-
ference, where a gating mechanism is employed to fuse the
structural and textural representation of nodes.

Modeling structure. In Figure 1 (c), the representation of
node v output by GRU is

←→
hv ∈ R2H , where H is the size of

embedding vectors. This representation, calculated based on
its relationships to neighboring nodes, captures the structural
information of each node. Therefore,

←→
hv could be treated as

the structural representation of node v.

Modeling text. The text representation of nodes is not a sim-
ple function of node text dv , because it could change dynam-
ically with respect to the cascade text dc. Thus it needs to be

calculated as mv = φ′(dv, dc).
To account for this, we apply an attention mechanism over

the node text. Specifically, denote the embedding of the i-th
word as dv,i ∈ R

H and the embedding of the query text as
dc ∈ R

H . The output is then defined as

mv =
∑
i

αidv,i (1)

αi = SoftMax(dᵀv,idc) (2)

where αi is the attention between the i-th word and the cas-
cade text.

Fusing structure and text representation. Simple concate-
nation learns to assign a global weight of importance to each
source, failing to consider the uniqueness of nodes. Some
nodes appear so frequently in cascades that structural em-
bedding is already sufficient to represent the node. Some
nodes have rich text information to be utilized. Finally, there
are nodes with scarce information from both sources.

We design a gating mechanism to dynamically fuse the
structural and textual representations of nodes. The gates
control how information flows by measuring the informa-
tiveness of each source. The informativeness of structural
information, i(s)v , can be simply measured by fq(v), the fre-
quency of node v occurred in the training set, scaled by log-
arithm:

i(s)v = log(fq(v + 1)). (3)

To measure the informativeness of text, we compute the
match between the node text and the cascade text, as users
who are constantly promoting certain topics are likely to
have larger influence in those topics. One thing to be noted
is that there are also some general topics that match well
with a large population of users. To account for this fac-
tor, we are actually measuring how much better the node
text matches the cascade text than average. Similar to neg-
ative sampling (Mikolov et al. 2013), the match of average
nodes can be approximately computed by randomly sam-
pling a node set Vs ⊆ V . In this way, the informativeness of
text i(t)v is calculated as:



i(t)v = ψ(dv)
Tψ(dc)− 1

|Vs|
∑
v′∈Vs

ψ(dv′)Tψ(dc), (4)

where ψ(·) computes the document representation simply
by taking the average of word embeddings.

Given the two measures i(s)v and i
(t)
v , we can now use two

gates g(1)v and g
(2)
v to distinguish the three cases mentioned

above:

g(1)v = σ(W (1)[i(s)v ; i(t)v ]) (5)

g(2)v = σ(W (2)[i(s)v ; i(t)v ]) (6)

rv = (1− g(1)v )
(
(1− g(2)v )

←→
hv + g(2)v mv

)
+ g(1)v e (7)

where σ(x) is the sigmoid function and e is an embedding
vector learned globally that represents nodes with neither
rich structural nor textual information. This global embed-
ding e learns aggregated information for nodes with scarce
information. If gate g

(1)
v is close to one, it chooses informa-

tion more from the global embedding e. This means that it is
hard to extract any information from node v, and therefore
we back off to the aggregated information. If g(2)v is close to
one, it allows more information from text, rather than struc-
ture, to flow through.

From sequence to graph representation The rest of the
framework basically follows DeepCas, except that the for-
mation of the final graph representation is based on the fused
representation rv , rather than the structural representation←→
hv .

Experiment setup

Data Sets. We use TWITTER and AMINER as our data
sets. In Twitter, a cascade is composed of the author of the
original Tweet and other users who have retweeted it. The
AMINER data set uses the DBLP citation network released
by ArnetMiner 1. A cascade of a particular paper involves
all authors who have written or cited that paper.

To avoid using future information, we only use a piece
of text of a node if the text is generated before training
time. Specifically for TWITTER, we collect user tweets and
retweets in April and May of 2016. The concatenation of
all tweets of a user in this period is considered as the node
text dv , while the original tweet that starts the cascade is
used as the cascade text dc. For AMINER, we gather all ti-
tles of each author’s publications between 1992 and 2002.
Their concatenation is used as the node text dv . The title of
the paper that starts the citation cascade is used as the cas-
cade text dc.

Evaluation Metric We use the mean squared error (MSE)
to evaluate the accuracy of predictions, which is a common
choice for previous work of cascade prediction (Tsur and
Rappoport 2012; Yu et al. 2015; Kupavskii et al. 2012; Li et
al. 2017). Denote ŷ a prediction value, and y the ground truth

1https://aminer.org/citation, DBLP-Citation-network V8.

value, the MSE is: 1
n

∑n
i=1(ŷi − yi)

2. Following existing
literature(Kupavskii et al. 2012; Tsur and Rappoport 2012;
Li et al. 2017), we predict a scaled version of the actual in-
crement of the cascade size, i.e., yi = log2(Δsi + 1). This
is because the growth of all cascades follows a power-law
distribution, where a large number of cascades did not grow
at all after t.
Baseline methods. Apart from strong baselines compared
with DeepCas (Li et al. 2017), we additionally compare
with node embedding methods that model text content of
nodes. (1) Features-deep. Structural features used in (Li et
al. 2017) are all included, , which are features related to
centrality, density, node identity, communities, and network
substructures. In addition, we include text based features,
including ngrams (n = 1, 2, 3), the average of word embed-
dings, and topic distribution of text, which is found by La-
tent Semantic Analysis (LSA) (Deerwester et al. 1990), from
both nodes and cascades. The features are fed to a deep MLP
network. (2) Node2vec (Grover and Leskovec 2016). We
concatenate the average of node embeddings and word em-
beddings of both node and cascade text, which is fed through
MLP to make the prediction. (3) TriDNR (Pan et al. 2016).
Since we do not have node labels, we only optimize for the
network structure and text objectives. As node text is already
incorporated into the node embedding, we only use the av-
erage of node embedding and embedding of cascade text for
prediction.

Experiment results

The overall performance of all competing methods across
data sets are displayed in Table 1. The last row of each ta-
ble shows the performance of the complete version of our
methods, which outperform all baseline methods, including
DeepCas, with a statistically significant drop of MSE.

Features-Deep, including all kinds of well-designed fea-
tures, is not as strong as in the setting of (Li et al. 2017) –
both node2vec and TriDNR are able to outperform feature-
based method in some of the configurations. Though a large
number of designed features, including the newly incorpo-
rated text-based features, are used as input, significant struc-
ture and/or text information and their interactions are lost.
The loss of structural and textual information in Features-
Deep harms its predictive ability.

Node2vec and TriDNR underperform DeepCas. This re-
sult is surprising because DeepCas does not consider any
text input. Recall that both Node2vec and TriDNR eventu-
ally make predictions based on the average of node embed-
dings and the average of word embeddings. The poor per-
formance of Node2vec and TriDNR confirms that taking the
average of embeddings, both structural and textual, as the
graph representation is not as informative as representing
the graph as a set of paths. The simple average treatments
lose crucial information in making accurate prediction on
information cascades.

Conclusion

In this work, we explored how to model structure and text
jointly in a deep learning architecture designed for cascade
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Table 1: Performance measured by MSE (the lower the better), where original label Δs is scaled to y = log2(Δs+ 1).

(a) TWITTER

t 1 day 3 days 5 days
Δt 1 day 3 days 5 days 1 day 3 days 5 days 1 day 3 days 5 days

Features-Deep 2.894∗∗∗ 3.514∗∗∗ 3.501∗∗∗ 2.113∗∗∗ 3.026∗∗∗ 3.109∗∗∗ 0.956∗∗∗ 1.542∗∗∗ 1.723∗∗∗
node2vec 2.387∗∗∗ 2.936∗∗∗ 2.930∗∗∗ 1.980∗∗∗ 2.731∗∗∗ 2.706∗∗∗ 1.053∗∗∗ 1.687∗∗∗ 1.855∗∗∗
TriDNR 2.678∗∗∗ 3.439∗∗∗ 3.510∗∗∗ 2.131∗∗∗ 3.062∗∗∗ 3.143∗∗∗ 1.109∗∗∗ 1.887∗∗∗ 2.161∗∗∗
DeepCas 2.102 2.758 2.772 1.465 2.004 2.020 0.907 1.410 1.494

DCGT 1.945∗∗∗��� 2.144∗∗∗��� 2.397∗∗∗��� 1.371∗∗∗��� 1.862∗∗∗��� 1.871∗∗∗��� 0.890∗∗∗��� 1.312∗∗∗��� 1.392∗∗∗���
(b) AMINER

t 1 year 2 years 3 years
Δt 1 year 2 years 3 years 1 year 2 years 3 years 1 year 2 years 3 years

Features-Deep 2.678∗ 2.902∗∗ 2.922∗∗∗ 1.908∗∗∗ 1.990∗∗∗ 2.032∗∗∗ 1.608∗∗ 1.683∗∗∗ 1.748∗∗∗
node2vec 2.466 2.663∗ 2.706∗∗ 1.902∗∗∗ 2.046∗∗∗ 2.073∗∗∗ 1.697∗∗∗ 1.786∗∗∗ 1.832∗∗∗
TriDNR 2.586∗ 2.821∗∗ 2.866∗∗ 1.971∗∗∗ 2.110∗∗∗ 2.130∗∗∗ 1.678∗∗∗ 1.763∗∗∗ 1.806∗∗∗
DeepCas 2.425 2.556 2.576 1.826 1.898 1.914 1.575 1.607 1.643

DCGT 2.301∗∗� 2.412∗∗ 2.494∗ 1.742∗∗∗��� 1.818∗∗∗��� 1.820∗∗∗��� 1.482∗∗∗��� 1.529∗∗∗��� 1.502∗∗∗���
“***(**, *)” means the result is significantly better or worse over DeepCas according to paired t-test test at level 0.01(0.05, 0.1).

prediction. Text is present at different levels of the cascade
graphs, where both the diffusion items and the nodes in the
social network are associated with textual content. The pro-
posed model, built upon recent work that predicts the future
growth of a cascade from the structure of cascade graphs,
successfully utilizes text to provide valuable complementary
information for the learning of graphs. Such information is
especially useful when their node members rarely partici-
pate in diffusions. A gating mechanism is introduced to dy-
namically fuse the structural and textual representations of
nodes based on their respective properties. To incorporate
the text information associated with both diffusion items
and nodes, attentions are employed over node text based
on their interactions with item text. Empirical evaluations
demonstrate that incorporating text information significantly
improves cascade prediction, and that our proposed model
outperforms alternative methods that combines text and net-
work information. The new gating and attention mechanisms
provide a general approach to incorporating multiple types
of information in a deep learning architecture and can be ex-
tended to incorporate other signals for cascade prediction,
such as time series and user profiles.

Acknowledgments This work is partially supported by
the National Science Foundation under grant numbers IIS-
1054199, IIS-1633370 and SES-1131500.

References

Bauckhage, C.; Hadiji, F.; and Kersting, K. 2015. How viral are
viral videos. In Proc. of ICWSM.

Cheng, J.; Adamic, L.; Dow, P. A.; Kleinberg, J. M.; and Leskovec,
J. 2014. Can cascades be predicted? In Proc. of WWW.

Cui, P.; Jin, S.; Yu, L.; Wang, F.; Zhu, W.; and Yang, S. 2013. Cas-
cading outbreak prediction in networks: a data-driven approach. In
Proc. of SIGKDD.

Deerwester, S.; Dumais, S. T.; Furnas, G. W.; Landauer, T. K.; and
Harshman, R. 1990. Indexing by latent semantic analysis. Journal
of the American society for information science.

Grover, A., and Leskovec, J. 2016. node2vec: Scalable feature
learning for networks. In Proc. of SIGKDD.
Guille, A., and Hacid, H. 2012. A predictive model for the temporal
dynamics of information diffusion in online social networks. In
Proc. of WWW.
Jenders, M.; Kasneci, G.; and Naumann, F. 2013. Analyzing and
predicting viral tweets. In Proc. of WWW.
Kupavskii, A.; Ostroumova, L.; Umnov, A.; Usachev, S.;
Serdyukov, P.; Gusev, G.; and Kustarev, A. 2012. Prediction of
retweet cascade size over time. In Proc. of CIKM.
Li, C.; Ma, J.; Guo, X.; and Mei, Q. 2017. Deepcas: an end-to-end
predictor of information cascades. In Proc. of WWW.
Mikolov, T.; Chen, K.; Corrado, G.; and Dean, J. 2013. Efficient
estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781.
Pan, S.; Wu, J.; Zhu, X.; Zhang, C.; and Wang, Y. 2016. Tri-party
deep network representation. Network.
Perozzi, B.; Al-Rfou, R.; and Skiena, S. 2014. Deepwalk: Online
learning of social representations. In Proc. of SIGKDD.
Shen, H.-W.; Wang, D.; Song, C.; and Barabási, A.-L. 2014. Mod-
eling and predicting popularity dynamics via reinforced poisson
processes. arXiv preprint arXiv:1401.0778.
Tsur, O., and Rappoport, A. 2012. What’s in a hashtag?: content
based prediction of the spread of ideas in microblogging commu-
nities. In Proc. of WSDM.
Weng, L.; Menczer, F.; and Ahn, Y.-Y. 2014. Predicting successful
memes using network and community structure. arXiv preprint
arXiv:1403.6199.
Yang, C.; Liu, Z.; Zhao, D.; Sun, M.; and Chang, E. Y. 2015. Net-
work representation learning with rich text information. In Proc. of
IJCAI.
Yu, L.; Cui, P.; Wang, F.; Song, C.; and Yang, S. 2015. From
micro to macro: Uncovering and predicting information cascading
process with behavioral dynamics. In Proc. of ICDM.
Zhao, Q.; Erdogdu, M. A.; He, H. Y.; Rajaraman, A.; and Leskovec,
J. 2015. Seismic: A self-exciting point process model for predict-
ing tweet popularity. In Proc. of SIGKDD.

643


