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Abstract

During time-critical situations such as natural disasters, rapid
classification of data posted on social networks by affected
people is useful for humanitarian organizations to gain situa-
tional awareness and to plan response efforts. However, the
scarcity of labeled data in the early hours of a crisis hinders ma-
chine learning tasks thus delays crisis response. In this work,
we propose to use an inductive semi-supervised technique to
utilize unlabeled data, which is often abundant at the onset
of a crisis event, along with fewer labeled data. Specifically,
we adopt a graph-based deep learning framework to learn an
inductive semi-supervised model. We use two real-world crisis
datasets from Twitter to evaluate the proposed approach. Our
results show significant improvements using unlabeled data as
compared to only using labeled data.

Introduction

The recent emergence and wide-adaptation of microblogging
platforms such as Twitter, during crises and emergency situa-
tions due to natural or man-made disasters, has been proven
useful for a number of humanitarian tasks (Imran et al. 2015).
Affected population post timely and useful information of
various types such as reports of injured or dead people, in-
frastructure damage, urgent needs (food, shelter, medical
assistance) on these social networks. Humanitarian organi-
zations believe timely access to this important information
in the first few hours can help significantly and can reduce
both human loss and economic damage (Vieweg, Castillo,
and Imran 2014; Varga et al. 2013).

In order to identify useful messages for humanitarian
tasks one potential approach is to use supervised learning
to automatically categorize each incoming message (e.g.,
tweets) into one of the two classes i.e., relevant and irrele-
vant (Nguyen et al. 2017). In order to design the classification
model, obtaining a large amount of labeled data is a chal-
lenging task, particularly during the first few hours of a crisis
situation. However, access to abundant unlabeled data is pos-
sible under such time-critical situations, as hundreds of tweets
arrive each minute. Moreover, one can rely on labeled data
from past similar events. In such situations, semi-supervised
methods can provide effective ways to leverage unlabeled
data in addition to labeled data.

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Many models have been proposed for semi-supervised
learning including generative models (Nigam et al. 2000), co-
training, (Mitchell 1999), self-training (Mihalcea 2004), and
graph-based models (Subramanya and Talukdar 2014). These
methods can be categorized into two types: transductive and
inductive. In the transductive setting, a learner is only applica-
ble to the unlabeled instances observed at training time, that
is, the learner does not generalize to unobserved instances.
Whereas, an inductive learner generalizes to data that are
not seen at the training time. Therefore, it is more desirable
to have an inductive learner over a transductive one. Other
reason to prefer inductive semi-supervised learning over the
transductive approach is that it avoids building the graph each
time it needs to infer the labels for the unlabeled instances.

Among other semi-supervised text classification ap-
proaches, Johnson et al. (Johnson and Zhang 2015) use a
Convolutional Neural Networks (CNN) via region embed-
ding in which the CNN learns a small region from embed-
ding. Miyato et al. (Miyato, Dai, and Goodfellow 2016)
used adversarial training for text classification with a small
perturbations on the input word embeddings. Our motiva-
tion of using deep neural network (i.e., CNN) is that it has
shown a great success in recent years in many different ar-
eas such as NLP and data mining (Collobert et al. 2011;
Grover and Leskovec 2016). Apart from the improved per-
formance, one crucial benefit of DNN is that they obviate
the need for feature engineering and learn latent features
automatically as distributed dense vectors. This capability
of DNN has recently been extended to the semi-supervised
setting (Yang, Cohen, and Salakhutdinov 2016).

In this work, we adopt a graph-based deep learning
framework recently proposed by Yang et. al (Yang, Cohen,
and Salakhutdinov 2016) for learning an inductive semi-
supervised model to classify tweets in a crisis situation. In
this framework, CNN is combined with graph-based network
that learns internal representations of the input by predicting
contextual nodes in a graph that encodes similarity between
labeled and unlabeled training instances. Compared to the
work of Yang et. al (Yang, Cohen, and Salakhutdinov 2016),
our approach is different in several ways: 1) we construct a
graph by computing the distance between tweets based on
word embeddings, 2) we use a CNN to compose higher-level
features from the word embeddings, and 3) for context predic-
tion, instead of performing a random walk, we select nodes
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based on their similarity in the graph.
The evaluation of the proposed approach (see Sec. Method-

ology) is conducted using two real-world Twitter datasets.
Our results (see Sec. Results and Discussion) demonstrate the
effectiveness of our approach with an improvement from 5%
to 26% compared to the supervised classification. The experi-
mental data can be accessed through http://crisisnlp.qcri.org.

Methodology

Let Dl = {ti, yi}Li=1 and Du = {ti}Ui=1 be the set of la-
beled and unlabeled tweets for a particular crisis event, where
yi ∈ {1, . . . ,K} is the class label for tweet ti, L and U are
the number of labeled and unlabeled tweets, respectively,
with n = L+ U being the total number of training instances.
Our goal is to learn an inductive model p(yi|ti, θ), where
θ denotes the model parameters. We adopt the graph-based
semi-supervised embedding learning framework proposed in
(Yang, Cohen, and Salakhutdinov 2016). In this framework,
in addition to the labeled data, a “similarity” graph G is used
to learn internal representations for the input (i.e., embed-
dings) by exploiting relations between labeled and unlabeled
training instances.

Graph Construction

Given a set of n instances (tweets in our case), a typical
approach is to construct the graph based on relational knowl-
edge source (e.g., citation links in (Lu and Getoor 2003))
or distance between instances (Zhu 2005). However, devel-
oping such a relational knowledge is not feasible for every
problem. On the other hand, computing distance between
n(n− 1)/2 pairs of instances to construct the graph is also
very expensive (Muja and Lowe 2014). Hence, we choose
to use k-nearest neighbor-based approach for finding nearest
neighbors of instances as it has been shown to be an effec-
tive approach in other studies (Dong, Moses, and Li 2011;
Jebara, Wang, and Chang 2009). The nearest neighbor graph
consists of n vertices and for each vertex, there is an edge set
consisting of a subset of n instances. The edge is defined by
the distance measure d(i, j) between tweets ti and tj , where
the value of d represents how similar the two tweets are. To
find the nearest instances efficiently, we used k-d tree data
structure (Witten et al. 2016). The rationale of this approach
is that if ti is very far from tj and tk is close to tj then with-
out computing the distance between ti and tk we can infer
they are far. For our graph construction, we first represent
each tweet by averaging the word embedding vectors (see
Sec. Crisis Word Embedding for details) of its words, and
then we measure d(i, j) by computing the Euclidean distance
between the vectors. We have chosen to use Euclidean dis-
tance to reduce computational complexity. The number of
nearest neighbor k was set to 10.

Semi-supervised Neural Network Model

Figure 1 shows the architecture of our neural network model.
The input to the network is a tweet t = (w1, . . . , wn) con-
taining words each coming from a finite vocabulary V . The
first layer of our network maps each of these words into a dis-
tributed representation R

d by looking up a shared embedding

 

 

 

 

 

 

 

 

Softmax 

Hidden layer (z1) 

Max 
pooling 

Convolution 
layer 

Pre-trained Word 
Embeddings 

w1 

w2 

 

wn-1 

wn 

Input 
tweet 

Feature map 

Softmax 

Class label 

Graph 
context 

Hidden layer 
(z3) 

Hidden layer (z2) 

Hidden 
layer (z4) 

Figure 1: The architecture of the graph-based semi-
supervised learning with CNN.

matrix E ∈ R
|V|×d. We initialized E using pretrained word

vectors (more in Sec. Crisis Word Embedding). The output
of the look-up layer is a matrix X ∈ R

n×d, which is passed
through a number of convolution and pooling layers to learn
higher-level feature representations.

A convolution operation applies a filter u ∈ R
k.d to

a window of k vectors to produce a new feature ht =
f(u.Xt:t+k−1), where Xt:t+k−1 is the concatenation of k
look-up vectors, and f is a nonlinear activation; we use recti-
fied linear units (ReLU). We apply this filter to each possible
k-length windows in X to generate a feature map, hj =
[h1, . . . , hn+k−1]. This process is repeated N times with N
different filters to get N different feature maps. We then ap-
ply a max-pooling operation, m = [μp(h

1), · · · , μp(h
N )],

where μp(h
j) refers to the max operation applied to each

window of p features in the feature map hi. Intuitively, the fil-
ters compose local features into higher-level representations
in the feature maps, and max-pooling extracts the most impor-
tant aspects from each feature map while reducing the output
dimensionality. The pooled features are passed through two
fully-connected hidden layers, z1 = f(V1m); z2 = f(V2z1),
where V1 and V2 are the associated weight matrices. The fi-
nal activations are used for classification using a Softmax in
the output layer; the formal definition of Softmax is defined
below.

To leverage the unlabeled data Du, and to exploit the re-
lations between training instances (labeled or unlabeled) en-
coded in the graph G we add a branch to the network. It takes
z1 as input and learns internal representations by predicting
a node in the graph context of the input tweet. Following
(Yang, Cohen, and Salakhutdinov 2016), we use negative
sampling to compute the loss for predicting the context node,
and we sample two types of contextual nodes: one is based
on the graph G to encode the structural information and the
second is based on labels to incorporate label information
through this branch of the network. The ratio of positive
and negative samples is controlled by a random variable
ρ1 ∈ (0, 1), and the proportion of the two context types
is controlled by another random variable ρ2 ∈ (0, 1); see
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Alg. 1 of (Yang, Cohen, and Salakhutdinov 2016) for details
of the sampling procedure. Let (i, j, γ) is a tuple sampled
from the distribution p(i, j, γ|Dl,Du, G), where j is a con-
text node of an input node i and γ ∈ {+1,−1} denotes
whether it is a positive or a negative sample; γ = +1 if
ti and tj are neighbors in the graph (for graph-based con-
text) or they both have same labels (for label-based con-
text), otherwise γ = −1. The loss for context prediction
can be written as Lc(θ) = E(i,j,γ) log σ

(
γwT

j z3(i)
)
, where

z3(i) = f(V3z1(i)) defines another fully-connected hidden
layer (marked as Hidden layer (z3) in Fig. 1) having weights
V3, and wj is the weight vector associated with the context
node tj .

For the classification, we take z3 and pass it through an-
other fully-connected hidden layer, z4 = f(V4z3), where
V4 is the corresponding weight matrix. Finally, the Soft-
max output layer does the classification p(y = k|t, θ) =
exp

(
wT

k [z2; z4]
)
/
∑

k′ exp
(
wT

k′ [z2; z4]
)
, where [.; .] de-

notes concatenation of two column vectors, and wk are the
class weights. The overall loss of the network can be written
as L(θ) = − 1

L

∑L
i=1 log p(yi|ti, θ) − λLc(θ), where the

first part is the classification loss and the second part is the
context loss, and the hyperparameter λ controls the relative
strength of the two parts.

Crisis Word Embedding

We initialize the embedding matrix E in our network with
pretrained word embeddings. We trained a continuous bag-
of-words (CBOW) wrod2vec (Mikolov et al. 2013) model on
a large crisis dataset with vector dimensions of 300, a con-
text window size of 5 and k = 5 negative samples. The crisis
dataset consists of different collections of tweets collected au-
tomatically using the AIDR system (Imran et al. 2014). In the
preprocessing, we lowercased the tweets and removed URLs,
digit, time patterns, special characters, single character, user
name started with the @ symbol. The resulting dataset has
about 364 million tweets and about 3 billion words. When
training CBOW, we filtered out words with a frequency less
than or equal to 5. The resulting trained word-embedding
model contains about 2 million words.

Experiments

In this section, we first describe the datasets we used in our
experiments, then the experimental setting, and finally the
results.

Datasets

For the evaluation, we use two real-world Twitter datasets
collected during the 2015 Nepal earthquake and the 2013
Queensland floods. These datasets are collected collected
through the Twitter streaming API1 using event-specific key-
words/hashtags. To obtain the labeled examples for our task
which consists of two classes relevant and irrelevant, we
employed paid workers from the Crowdflower2 – a crowd-
sourcing platform. For this purpose, we randomly sampled

1https://dev.twitter.com/streaming/overview
2http://crowdflower.com

Table 1: Distribution of the labeled datasets
Data Relevant Irrelevant Train Dev Test

Nepal 5,527 6,141 7,000 1,166 3,502
Queensland 5,414 4,619 6,019 1,003 3,011

11,668 and 10,033 tweets from the Nepal earthquake and
the Queensland floods respectively. Given a tweet, we asked
crowdsourcing workers to assign the “relevant” label if the
tweet conveys/reports information useful for crisis response
such as a report of injured or dead people, some kind of
infrastructure damage, urgent needs of affected people, do-
nations requests or offers, otherwise assign the “irrelevant”
label.

For evaluation, we split the datasets into 60% as training,
30% as test and 10% as development. Table 1 shows the
resulting datasets.

Experimental Settings

As a part of the preprocessing of the dataset, we used the
same approach that we used to train the word2vec model (see
Sec. Crisis Word Embedding). We use the validation set to
optimize the hyperparameters.

For our semi-supervised setting, one of the main goals
was to understand how much labeled data is sufficient to
obtain a reasonable result. Therefore, we experimented our
system considering the smallest to all instances, such as 100,
500, 2000, 5000 and all instances. Such an understanding
can help us to design the model at the onset of a crisis event
with sufficient amount of labeled data. To demonstrate that
the semi-supervised approach outperforms the supervised
baseline, we run supervised experiments using the same num-
ber of labeled instances. In the supervised setting, only z2
activations in Fig. 1 are used for classification.

We trained the models using the adadelta (Zeiler 2012)
algorithm. The learning rate was set to 0.1 when optimizing
on the classification loss and to 0.001 when optimizing on
the context loss. The maximum number of epochs was set
to 200, and dropout (Srivastava et al. 2014) rate of 0.02 was
used to avoid overfitting. We did early stopping based on the
f-measure on the validation set with a patience of 25.

We used 100, 150 and 200 filters each having the window
size of 2, 3 and 4, respectively, and pooling length of 2,
3 and 4 respectively. The value of λ was set to 1.0 in the
semi-supervised model. We did not tune any hyperparameter
(e.g., the size of hidden layers, filter size, dropout rate) in
any experimental setting since the goal was to have an end-
to-end comparison for the same hyperparameter setting and
understand whether CNN with graph based semi-supervised
approach can outperform or not. We did not filter out any
vocabulary item for any of the settings. We also did not fine-
tune the word embeddings on the classification task.

Results and Discussion

In Table 2, we present the classification results for different
experimental settings. We computed the performances using
weighted averaged precision, recall and F-measure. In the
table, we only report the F-measure for simplicity. The ra-
tional behind choosing the weighted metric is that it takes
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Table 2: F-measure for different experimental settings. L
refers to labeled data, U refers to unlabeled data, All L refers
to all labeled instances for that particular dataset.

Dataset L/U 100 500 1000 2000 All L

Nepal Earthquake
L 47.11 52.63 55.95 58.26 60.89
L+U(50k) 52.32 59.95 61.89 64.05 66.63

Queensland Flood
L 58.52 60.14 62.22 73.92 78.92
L+U(∼21k) 75.08 85.54 89.08 91.54 93.54

into account the class imbalance problem. From the table, we
see that as we increase the number of labeled examples (L),
the classification performance improves – from 47.1 to 60.9
for Earthquake and from 58.5 to 78.9 for Flood, which is a
common trend for supervised models.

In this study, for computational efficiency, we limit the
number of unlabeled instances U in our semi-supervised
model to 50K for Nepal and ∼21K for Queensland. We can
observe that as we include unlabeled instances with labeled
instances, performance significantly improves in each experi-
mental setting giving 5% to 26% absolute improvements over
the supervised models. These improvements demonstrate the
effectiveness of our approach. We also notice that our semi-
supervised approach can perform above 90% depending on
the event. Recall that we did not tune the hyperparameters of
our supervised and semi-supervised models. Therefore, these
results may not be optimal. We believe that upon optimizing
hyperparameters, the overall performances of our system can
be further improved. From the results, we can ascertain that
500 labeled instances with unlabelled instances could be a
reasonable choice at the early onset of a crisis event to design
the semi-supervised model.

Conclusions

We presented a graph-based semi-supervised deep learning
framework based on a CNN. The network combines a loss
for predicting the class labels with a loss for predicting the
context defined by a similarity graph. We constructed the
similarity graph using a k-nearest neighbor approach that ex-
ploits distributed representations of tweets. Our evaluation on
two crisis-related tweet datasets demonstrates significant im-
provements for our semi-supervised model over a supervised
only baseline. There are several interesting future research
directions of this work such as exploring domain adaptation
and zero- or one-shot learning.
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