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Abstract

In this paper we point to a surprising phenomenon in Online
Social Networks (OSNs), which we call “The Million Tweets
Fallacy”. Our hypothesis is that the measurements of activity
of a user in an OSN are not correlated with the measurements
of feedback that the user receives on that activity. For ex-
ample, the number of tweets is uncorrelated with the number
of retweets or likes. In other words, a voluminously tweeting
user is not necessarily fuelled by the attention he gets from his
followers. An innovative aspect of this work is that we treat
“activity” and “feedback” as multidimensional axes, and do
not reduce the problem to a one-dimensional pairwise corre-
lation problem. We apply our methodology to six OSNs. For
Twitter, Instagram, LinkedIn and Steam we gathered the data
ourselves, collecting features that cover both users’ activity
and feedback in the OSN. For YouTube and Flickr we used
existing data from the literature. In all OSNs, with the only
exception of Steam, we confirmed our hypothesis.

Introduction

The blood circulation in online social networking sites
(OSNs) consists of three fundamental elements, produc-
ing content: posting opinions, questions, answers, photos,
videos; consuming content: viewing videos, reading posts;
giving feedback: liking, retweeting, sharing. Producing en-
ables consuming, consuming leads to feedback, which in
turn encourages producing. Thus, successful social net-
working sites manage to promote a healthy cycle of con-
tent creation and consumption. However, peculiar and non-
intuitive phenomena may interfere with this cycle. For ex-
ample the “Million Followers Fallacy”, a term coined by
Avnit (Avnit 2009), who pointed to anecdotal evidence that
some users follow others simply because it is polite to fol-
low someone who is following you. As a result the OSN
contains supposedly-central users with a huge amount of fol-
lowers that have limited interest in their posted content. This
was confirmed in Twitter by showing that a user’s number
of followers and influence (measured as the ability to spread
popular news topics) were not correlated (Cha et al. 2010).
More generally, the claim that various simple statistics of
the user’s profile are not good indicators of influence and
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centrality were noted for example in (Trusov, Bodapati, and
Bucklin 2010) or (Green October 6 2008).

In this work we extend these observations and point to a
phenomenon which we call “The Million Tweets Fallacy”.
This term stands for the claim that measurements of a user’s
activity in the OSN are not correlated with the measurements
of feedback that the user receives on that activity. More
specifically, user statistics in an OSN may be viewed along
two axes: the activity axis and the feedback axis. By activity
we mean both statistics of content activity (e.g. total number
of posts, number of posts per day, video vs. text, etc) and
statistics of social activity (e.g. the number of friends, the
number of users one follows, the number of likes that a user
gives). The feedback axis consists of statistics that measure
the feedback that a user receives on his activity, e.g. num-
ber of views, number of likes, number of retweets, number
of users that follow that user, etc. It is important to note
that our features do not concern the actual content that the
user publishes, or the content of the feedback (when rele-
vant). The following hypothesis formalizes the The Million
Tweets Fallacy:
Hypothesis. In an OSN, the scores of users in the activity
axis are not correlated with the scores in the feedback axis.

Figure 1 illustrates the claim in data that we collected for
Twitter. The figure depicts two longs tails: very active users
with very little feedback, and the other way around. Ad-
ditionally, the massive bulk of users displays an incoherent
mixture of activity-feedback ratios.

Coming up with a statistical framework that can confirm
such an hypothesis may be a challenging task in itself, since
every axis is in fact a multidimensional axis. One possi-
bility is to reduce the multidimensional problem into a set
of pairwise one-dimensional correlation tests. Doing so one
naively assigns the same importance to all features, which
might lead to erroneous or irrelevant conclusions. In addi-
tion, richer insights may be gained if axes remain multidi-
mensional. Unfortunately, there is no straightforward way
to compute a one-number correlation score for multidimen-
sional random variables. Indeed a covariance matrix is the
typical extension to the multidimensional setting.

We suggest a suitable statistical framework, based on
Principal Component Analysis (PCA), that can confirm our
hypothesis in a multidimensional fashion. The Principal
Components (PCs) of the covariance matrix of a dataset, are
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carefully chosen linear transformations of the original set of
features. The linear transformations give large weight to im-
portant features, and small weight otherwise (importance is
measured, as customary, by variance). The PCs may be in-
terpreted as a new set of complex features, forming new axes
along which the data is redrawn. The complex features per-
tain to various users’ behaviors and modes of interactions
in the OSN. What makes PCA suitable for our goal is, first
the fact that a PC is simply a vector, and hence from an al-
gebraic point of view – a one dimensional object. However
semantically it is a suitably chosen summary of a multidi-
mensional random variable. Second, the values (scores) of
the data points along different PC-axes are statistically un-
correlated (Lemma 1).

Using our statistical framework we checked the hypoth-
esis in six different OSNs. For four OSNs, Twitter, Insta-
gram, LinkedIn and Steam, we collected the data ourselves
using standard crawling techniques (Mislove et al. 2007).
We chose those networks because they represent a good va-
riety: Twitter is a social text-based platform, while the con-
tent in Instagram is primarily visual and it is popular among
a younger crowd. Steam and LinkedIn are thematic-niche
OSNs; Steam is an online gaming community and LinkedIn
has the job-market orientation. For YouTube and Flickr we
use the data that was collected and analyzed in (Canali, Ca-
solari, and Lancellotti 2012). For all networks, with the only
exception of Steam, we confirmed our hypothesis. Let us
note that our PCA-based statistical framework is sound but
not complete, i.e. the hypothesis can be true for a certain
OSN but still not confirmable using our framework. Steam
may be one such example.

Related Work
Traditionally, information spreading in OSNs is viewed as
flowing from key members to their followers, e.g. (Kozinets
et al. 2010) or (Goldenberg et al. 2009). In contrast, the
modern view of information flow emphasizes the impor-
tance of prevailing culture more than the role of influen-
tials. Some researchers claim that people make choices
based mainly on their peers’ and friends’ opinions rather
than on influentials (Domingos and Richardson 2001). The
dissonance between the two views was captured in popu-
lar science as the “Million Followers Fallacy” (Avnit 2009)
and confirmed for Twitter (Cha et al. 2010). Concomitantly,
some scholars explored alternatives to the structural central-
ity measures. Trusov et al. (2010) studied the connection
between network activity of members and their influence in
a certain OSN. They concluded that simple metrics, such as
friend count and profile views, are likely to be inadequate
proxies for user influence. Practitioners have also noticed
the inability of simple metrics to capture influence on so-
cial network sites (Green October 6 2008). Our work may
be viewed as a continuation of this line of research where
feedback serves as a proxy for influence. We show that sim-
ple statistics of the activity plane are uncorrelated with feed-
back, and therefore might be bad predictors for feedback and
in turn influence.

Another related research topic is the task of users char-
acterization in OSNs. A PCA-based method was recently

studied by Canali et al. (2012) with very promising results
for YouTube and Flickr. Their main result is that the top PCs
in both OSNs encode labels that correspond to measures of
popularity and activity in the network. In this manner the
PCs induce a soft classification of the users, in the sense that
there is no single label per user but a continuum along each
PC-axis. We extend this line of research to additional OSNs.
Our feedback axis is the equivalent of the popularity axis
of (Canali, Casolari, and Lancellotti 2012), and our activity
axis (or axes, if several PCs are relevant) may be inspected
to determine which specific type of activity is encoded by
the PCs.

Methodology

In this section we present our statistical framework to verify
the hypothesis activity and feedback are not correlated. The
following lemma is a key observation. We use Σ̂ for the
(sample) covariance matrix, and X for the n× p data matrix
(n is the number of samples and p the number of features).

Lemma 1 Let vi,vj be two PCs of Σ̂ with i �= j. The
scores yi = Xvi and yj = Xvj satisfy yT

i yj = 0, i.e. they
are uncorrelated.

The proof, omitted here, follows immediately from defini-
tions and the orthogonality of the PCs. Figure 1 illustrates
what uncorrelation looks likes in our Twitter dataset.

Next we define two directions in the feature space that
correspond to activity and feedback. Let Iact ⊂ {1, . . . , p}
be the indices of the features that concern the activity of
the user and similarly define Ifdbk. We assume that Iact ∩
Ifdbk = ∅, i.e. every feature belongs at most one of the sets
(some features may belong to neither e.g. age). For every
PC vi we define its “energy” in either directions (feedback
and activity). Specifically, let vi[j] be the jth entry of vi.
The energy is given by the sum of entries squared:

αi =
∑

j∈Ifdbk

(vi[j])
2, βi =

∑

j∈Iact

(vi[j])
2. (1)

The total energy of vi is 1 as vi is a unit vector, therefore
αi + βi ≤ 1.

To see how these definitions are used to confirm the hy-
pothesis we describe an idealistic scenario, which is too
naive to be typical but very instructive. Suppose that v1

and v2 explain 100% of the variance. Namely, together they
characterize 100% of the behaviour patterns (variance) of
the social network users (according to the selected features).
Further assume that α1 = 1, β1 = 0 and β2 = 1, α2 = 0.
Namely, v1 points fully in the activity direction and v2 fully
in the feedback direction. Lemma 1 implies that the be-
haviour in the v1-axis is uncorrelated with the behaviour in
the v2-axis, and the hypothesis is confirmed.

Next we list a set of rules that quantify how close the data
is to this idealistic scenario. We do so in two stages. First,
identify which PCs are relevant (in the idealistic example, all
but the first two PCs explained zero variance and are clearly
irrelevant). Then, for relevant PCs, decide if their αi and βi

values significantly classify them as activity or feedback (in
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Figure 1: ≈285,00 Twitter users plotted according to their
projections on PC1 (Feedback axis) and PC3 (Activity axis).
This figure provides a clue of how uncorrelation looks like,
or a visualization of Lemma 1.

the idealistic example this task was also trivial as αi and βi

were binary).
To select relevant PCs we use the Guttman-Kaiser cri-

terion (Yeomans and Golder 1982). Namely, a PC is con-
sidered relevant if it explains more than 1/p-fraction of the
variance, otherwise it is treated as explaining incidental vari-
ance or noise. To get a baseline for the values of αi and βi

we study their distribution had the vector vi been a random
unit vector. Computing the expected values of α and β is
easy: by symmetry the expected support of a random vector
on a subset of indices I is simply |I|/p. We further compute,
empirically, the q = 0.025, 0.25, 0.75, 0.975 percentiles and
denote them by xα

q and xβ
q . Note that by symmetry, in all

these calculations only the sizes |Ifdbk| and |Iact| matter.
In addition, different datasets may have different baselines
since the ratio of |Ifdbk| to |Iact| may be different and the
value of p may differ as well. We say that a PC vi is:

• Purely feedback if αi > xα
0.975 and βi < xβ

0.025

• Purely activity if βi > xβ
0.975 and αi < xα

0.025

• Neutral if αi ∈ [xα
0.25, x

α
0.75] and βi ∈ [xβ

0.25, x
β
0.75]

• Otherwise, we say that vi is mixed.

Let P = {v1,v2, . . . ,vr} be the set of PCs which explain
more than 1/p-fraction of the variance. We use the following
rules to decide the validity of the hypothesis:

1. If P contains only pure PCs and at least one of each type
then we say that the hypothesis is confirmed.

2. Otherwise, if P contains a mixed PC or is missing at least
one of the pure types, then we declare the framework un-
suitable to validate the hypothesis.

3. Otherwise, if P contains neutral PCs, remove them from
P and decide according to Rule 1.

The α, β-values of neutral vectors are typical of random vec-
tors (using the inter-quartile measure). Hence they are dis-
missed in Rule 3 as explaining incidental variance with re-
spect to activity or feedback patterns.

PC1 PC2 PC3 PC4 PC5
Twitter 18% 16% 13% 10% 8%

Instagram 29% 19% 10% 9% 8%
LinkedIn 25% 11% 10% 6.5% 6%

Steam 27% 14% 10% 9% 8%

Table 1: The percentage of explained variance per PC. Last
two columns correspond to variance below 1/p. Accumula-
tive variance of the top three PCs is between 46% and 57%
in all four OSNs.

Data Collection

We crawled the network in a snowball approach, which
is commonly used in the literature (Mislove et al. 2007).
Crawling starts from a list of randomly selected users and
proceeds in a BFS manner. At each step the crawler pops a
user v from the queue, explores its outgoing links and adds
them to the queue. In Twitter there is a link from v to w
if v follows w. In Instagram the set of friends is private in
most cases. We say that w is an outgoing link from v if w
commented on v’s pictures. In Steam the list of friends is
public. In LinkedIn the list of friends (called connections) is
private. As a proxy for v’s friends we used the “People Also
Viewed” box which tells what recent profiles w were viewed
by people who viewed v.

We collected between 11 to 15 features per network,
which were split roughly half-half between activity and
feedback. Feedback features included for example the num-
ber of users following me, the number of retweets of my
tweets by others, the number of likes I received or comments
left on my pictures. The activity features included the vol-
ume of activity (e.g. posts per day, total number of posts),
activity types (e.g. percentage of video vs pictures, urls
vs. pure text), social activity (number of friends, number of
likes I gave, number of tweets I retweeted). Similar features
were used to find influential users in MySpace and Face-
book (Eirinaki, Monga, and Sundaram 2012) or in YouTube
and Flickr (Canali, Casolari, and Lancellotti 2012). We col-
lected a total of 284,758 Twitter accounts, 52,574 in Insta-
gram, 127,830 in Steam and 12,000 in LinkedIn. Different
numbers stem from varying levels of technical difficulty in
crawling each network and from time constraints. Twitter
data is available at (Vilenchik and Yichye 2016).

Results

We start by fixing the relevant PCs. Table 1 shows the per-
centages of explained variance of the top PCs in all four
OSNs. In all datasets, only the top three PCs pass the
Guttman-Kaiser criterion, and hence considered for the sake
of the hypothesis. Table 2 summarizes the statistics of the αi

and βi values of the top three PCs across all OSNs. For Twit-
ter we see that all vectors are pure: PC1 is purely feedback,
PC2 and PC3 are purely activity. There are no mixed or neu-
tral vectors, hence the hypothesis is readily confirmed. Sim-
ilarly for Instagram, PC1 is purely feedback and PC2 and
PC3 are purely activity. No neutral or mixed PCs, and again
the hypothesis is readily confirmed. For LinkedIn, PC1 is a
neutral vector, PC2 purely feedback and PC3 purely activ-
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ity. Again we confirm the hypothesis. Note that the standard
deviations of α and β are larger than in the other OSNs.
This may be attributed to the fact that for LinkedIn we had a
significantly smaller dataset. The situation for Steam is dif-
ferent than all the other networks: all three PCs are neutral.
In other words, the directions that the top three PCs point to
are not aligned with either Activity nor Feedback but rather
a mixture of both. Hence we are in a position where we can-
not confirm the hypothesis. Indeed, looking at the top users
in PC1 reveals both heavy gamers that have a narrow social
circle and low feedback (e.g. the user marula79 who played
230 hours in the past 2 weeks, earned 4,000 badges, but has
only 421 friends and received 164 comments on his profile)
and light gamers that have a wide social circle and high feed-
back (e.g. the user addmebby who played merely 32 hours
in the past 2 weeks, but has 1,677 friends and received 2,300
comments on his profile), and the spectrum in between.

Twitter α α avg β β avg
PC1 0.98 0.93 ± 0.09 0.02 0.07 ± 0.08
PC2 0.003 0.06 ± 0.08 0.997 0.94 ± 0.08
PC3 0.02 0.02 ± 0.01 0.98 0.98 ± 0.01

Percentiles 0.025 0.25 0.75 0.975
α 0.023 0.121 0.351 0.627
β 0.379 0.648 0.882 0.978

Instagram α α avg β β avg
PC1 0.996 0.99 ± 0.01 0.004 0.01 ± 0.03
PC2 2e-05 0.001 ± 0.002 0.99998 0.99 ± 0.003
PC3 0.003 0.01 ± 0.02 0.997 0.99 ± 0.02

Percentiles 0.025 0.25 0.75 0.975
α 0.055 0.213 0.490 0.751
β 0.235 0.506 0.783 0.943

We computed the α, β-values for two additional OSNs,
Flickr and YouTube, using the detailed PCA results in
(Canali, Casolari, and Lancellotti 2012). The YouTube data
was collected in 2009 and contains nearly two million users.
The top three PCs explain 60% of the variance. The Flickr
data was collected in 2011. The top four PCs explain 78% of
the variance. We found that in YouTube, PC1 is purely feed-
back, PC2 purely activity and PC3 is neutral. In Flickr, PC1
is neutral, PC2 is purely feedback and PC3,PC4 are purely
activity, and again the hypothesis is confirmed in both OSNs.

Acknowledgements

This work was supported by the ISF grant number 1388/16.
We thank Maor Abutbul, Barak Yichye, Shalom Toledo and
Yaniv Costica for helping with the data collection.

References

Avnit, A. 2009. The million followers fallacy.
http://blog.pravdam.com/the-million-followers-fallacy-
guest-post-by-adi-avnit.
Canali, C.; Casolari, S.; and Lancellotti, R. 2012. A quanti-
tative methodology based on component analysis to identify
key users in social networks. Int. J. Social Network Mining
1(1):27–50.

LinkedIn α α avg β β avg
PC1 0.27 0.36 ± 0.16 0.73 0.64 ± 0.17
PC2 0.62 0.42 ± 0.23 0.38 0.57 ± 0.23
PC3 0.03 0.09 ± 0.09 0.97 0.9 ± 0.09

Percentiles 0.025 0.25 0.75 0.975
α 0.0406 0.149 0.361 0.615
β 0.387 0.638 0.852 0.958

Steam α α avg β β avg
PC1 0.16 0.18 ± 0.03 0.84 0.81 ± 0.03
PC2 0.1 0.11 ± 0.03 0.9 0.88 ± 0.03
PC3 0.2 0.15 ± 0.06 0.8 0.85 ± 0.06

Percentiles 0.025 0.25 0.75 0.975
α 0.005 0.062 0.264 0.550
β 0.442 0.734 0.938 0.994

Table 2: In each table the top part is the values of α and β
computed via Eq.(1). The average is taken over 100 random
subsamples each of size 5,000-10,000 users (depending on
the OSN). The bottom part are empirically computed per-
centiles over a sample of 10, 000 random unit vectors.

Cha, M.; Haddadi, H.; Benevenuto, F.; and Gummadi, K. P.
2010. Measuring user influence in twitter: The million fol-
lower fallacy. In Proc. of the Fourth International AAAI
Conference on Weblogs and Social Media (ICWSM), 10–17.
Domingos, P., and Richardson, M. 2001. Mining the net-
work value of customers. In Proc. of the seventh ACM
SIGKDD, 57–66.
Eirinaki, M.; Monga, S. P. S.; and Sundaram, S. 2012. Iden-
tification of influential social networkers. Int. J. Web Based
Communities 8(2):136–158.
Goldenberg, J.; Han, S.; Lehmann, D.; and Weon-Hong, J.
2009. The role of hubs in the adoption process. J. of Mar-
keting 73(2):1–13.
Green, H. October 6, 2008. Google: Harnessing the power
of cliques. BusinessWeek 50.
Kozinets, R.; de Valck, K.; Wojnicki, A.; and Wilner, S.
2010. Networked narratives: Understanding word-of-mouth
marketing in online communities. J. of Marketing 74(2):71–
89.
Mislove, A.; Marcon, M.; Gummadi, K. P.; Druschel, P.;
and Bhattacharjee, B. 2007. Measurement and analysis of
online social networks. In Proc. of the 7th ACM SIGCOMM
Conference on Internet Measurement, 29–42.
Trusov, M.; Bodapati, A.; and Bucklin, R. 2010. Deter-
mining influential users in internet social networks. J. of
Marketing Research 47(4):643–658.
Vilenchik, D., and Yichye, B. 2016. Twitter data.
https://github.com/sdannyvi/TwitterDataAnon.
Yeomans, K., and Golder, P. 1982. The guttman-kaiser cri-
terion as a predictor of the number of common factors. The
Statistician: J. of the Institute of Statisticians 31:221–229.

691


