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Abstract

Although previous work has shown that member and struc-
tural features are important to the future popularity of groups
in EBSN, it is not yet clear how different member roles and
the interplay between them contribute to group popularity.
In this paper, we study a real-world dataset from Meetup
— a popular EBSN platform — and propose a deep neu-
ral network based method to predict the popularity of new
Meetup groups. Our method uses group-level features spe-
cific to event-based social networks, such as time and loca-
tion of events in a group, as well as the structural features
internal to a group, such as the inferred member roles in a
group and social substructures among members. Empirically,
our approach reduces the RMSE of the popularity prediction
(measured in RSVPs) of a group’s future events by up to 12%,
against the state-of-the-art baselines.

Introduction
As online social networks become more prevalent, peo-
ple’s face-to-face interactions are reshaped by these net-
works. In this work we focus on event-based social net-
works (EBSN), online social networks whose members hold
in-person events. Meetup (Meetup.com 2018) is a popular
EBSN that allows its members to find and join online in-
terest groups, and organize face-to-face events in different
categories, such as politics, books, games, movies, health,
pets, careers, and hobbies, etc.

In this paper, we study the problem of group popularity
prediction in EBSN, with a special focus on new groups.
More specifically, we focus on predicting the popularity
(measured in the number of RSVPs) of newly established
interest groups in Meetup. The main questions that we want
to answer are: 1). can we predict the future success of new
groups? 2). what are the observable factors that best predict
a group’s success?

Contributions We develop a novel approach to predicting
the popularity of newly formed groups in EBSN, achieving
the state-of-the-art accuracy. Our approach considers vari-
ous factors: i) the group-level features, such as the past pop-
ularity of the group and the number of events; ii) the event-
based features, such as location and schedule of events; iii)
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user-level features related to user’s attention: how active is a
user in individual groups, and how does the user distribute
her activity/attention among multiple groups. Based on these
features, the first key idea of our approach is the use of role
discovery to determine the importance of users in a group
and the roles they play. Specifically, armed with each group
member’s role, and event co-participation graphs generated
from those members’ activities, we combine the members’
roles with these activity networks to predict a group’s suc-
cess, extending the fingerprints techniques developed to cor-
relate the characteristics of atoms along with the neighbor-
ing bonds to other atoms to determine a molecule’s function.
Our extension also accounts for a user’s limited attention by
incorporating “attention-based” features, such as how many
groups a user joined and how much time the user spent in
each group into the member-level feature set.

Related Work
There are two major lines of research for this problem. One
focuses on characterizing the evolution of online social net-
work popularity by applying mean-field epidemic models
to the time series of the “daily active user”, without user-
level or network structural information (Ribeiro 2014). The
other focuses on using general group features to make pre-
dictions (Liu and Suel 2016; Qiu et al. 2016). In contrast,
our approach uses richer information and convolutes mem-
ber roles, member’s attention-capacity features, with their
activity network structure to achieve higher prediction accu-
racies.

Proposed Method
In this section, we first define a metric of a group’s popu-
larity and describe our prediction problem in the context of
the Meetup EBSN. We then propose our prediction method,
leveraging on the group-level features and member-level
features. Finally, we present our overall method combining
these group-level and member-level features to make predic-
tions.

Meetup Group Popularity Prediction
Meetup is an event-based social network in which users can
form and join different interest groups online, and orga-
nize and participate in face-to-face social events offline. The
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group organizers create events, and each event has specified
time, location and topic. The information about new events
will be sent to group members through emails or website
notifications. Each group member decides whether she will
participate in the new events based on her time, location,
and topic preferences, and then responds by sending RSVPs
(“yes”, “no”, or “maybe”). With the definitions of groups,
events and users in Meetup, the group popularity prediction
problem can be defined as:

Definition 1. Given the activities of a group within a time
window of [0, n] months, and a time interval of m months,
predict the group’s total RSVP number (popularity) within a
future time window of [n+m, 2n+m] months.

The time interval of m months can be chosen to eliminate
the effect of seasonal event holding patterns.

Group-level Features
The most straight-forward features to use for popularity pre-
diction are the summary statistics of each group. So we
start with extracting “group-level features”, which are vari-
ous summary statistics of a group without examining the de-
tailed features of each member in the group. We list the de-
scriptions of fourteen group-level features for each Meetup
group in Table 1, such as the scheduled time distributions
of its events, the location distributions over its venues, and
RSVP counts of all members, etc.

Internal Group Features
Internal features of a group can be defined as all the fea-
tures that are related to each individual member in the group.
These features should include the first-order features that
can be directly calculated using basic statistics, such as the
past attendances of a member and how many groups a mem-
ber has joined. They should also include the second-order
features that require further processing, such as the member
role discovery and the structural feature extraction.

Member-level Feature Extraction We start with con-
structing social graph for each group from which the fea-
tures are extracted. Based on the event co-participation so-
cial graph, We propose twelve member-level features listed
in Table 1: Feature m1∼m6 represent “who you are”, i.e.,
the features related to the member’s own characteristics, and
feature m7∼m12 represent “who you know”, i.e., the fea-
tures related to the characteristics of her neighbors in the
group’s social graph.

Member Role Discovery To find role features of each
group member, we use Non-negative Matrix Factorization
(NMF) (Lee and Seung 2001).

Taking the member-role sub-matrix Mg for group g gen-
erated by the role discovery method, we sum over all the
members (rows) and get the group’s role distribution vec-
tor Vg =

{
Vg

j =
∑n

i=1 M
g
ij,1 ≤ j ≤ r

}
, then we stack

all the vectors {Vg} to form a group-role matrix Ω ∈ R
p×r

where p represents the number of groups and r is the number
of roles.

Radius 0:

Radius 1:

Radius 2:

….

Identifier0 Identifier1 Identifier2 Identifier3 ……..Circular Fingerprints:

….

Figure 1: Subgraphs Detected by Circular Fingerprints in
Social Network. Circular Fingerprint scans the network for
all subgraphs under certain radius. Each subgraph is then
encoded into an integer identifier. Integer identifiers of all
subgraphs constitute the circular fingerprints.

…….

adjacency matrix

+ +

Layer 0

adjacency matrix

Layer 1

Figure 2: Group-Role Neural Fingerprints Algorithm. “Fea-
ture Update” operation: each member’s feature is updated
so that the 1-hop neighbors’ features and neighboring edge
features are added to the initial member feature.

Circular Fingerprints In order to extract structural fea-
tures embedded with member roles, we use the “circular
fingerprints” algorithm (Rogers and Hahn 2010). Circular
fingerprints is a popular tool for handling graph-structured
data in chemistry. In the context of event-based social net-
work, we draw the analogy between a molecule and a group.
We assume the members of a group are analogous to the
atoms of a molecule, and the social ties between members
are analogous to the chemical bonds (Figure 1). Then we
can study how the subgraphs between members contribute
to the group popularity using the circular fingerprints frame-
work. The identifier list (also called “fingerprints”) is then
used to characterize the properties of the molecule. In our
case, we use the fingerprints as structural features to predict
the group’s popularity.

Group-Role Neural Fingerprints Overcoming some lim-
itations, Duvenaud et al. (Duvenaud et al. 2015) proposed
a convolutional neural network, where each neural network
layer simulates the updating operation in circular finger-
prints (Figure 2). We now extend the convolutional finger-
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g1. Entropy of the time distribution over all
times the events are held
g2. Average distance between any two events
the group held
g3. Variance of the “event-event” distances
g4. Average distance between any event and
any participating member
g5. Variance of the “event-member” distances
g6. Average distance between any member
and any other member in the same group
g7. Variance of the “member-member” dis-
tances
g8. Entropy of the location distribution over
all venues the event are held
g9. Density of the group’s social graph
g10. Total degree of the group’s social graph
g11. Event number the group has held
g12. Average RSVP number of all past events
g13. Variance of RSVP numbers of past
events
g14. Sum RSVP number of past events.
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m1. Total degree of the member
m2. Event number the member has participated in current
group
m3. Group number the member has joined
m4. Entropy of member’s attendance distribution over the
groups the member joined
m5. Entropy of event number distribution over the groups
the member joined
m6. Entropy of event fraction distribution over the groups
the member joined
m7. Average degree of the member’s 1-hop neighbors
m8. Average event number the “1-hop neighbors” have par-
ticipated
m9. Average group number the “1-hop neighbors” have
joined
m10. Average entropy of “1-hop neighbors’” attendance dis-
tribution over the groups they have joined
m11. Average entropy of “1-hop neighbors’” event number
distribution over the groups they joined
m12. Average entropy of “1-hop neighbors’” event fraction
distribution over the groups they joined

Table 1: Group-level and Member-level Features

print algorithm to solve our problem. We denote this ap-
proach as the Group-Role Neural Fingerprints. For radius 0,
the first hidden layer in the network takes the initial member-
role matrix which is produced by the previous role discovery
step as the input, then the output of this layer goes in two di-
rections: in one direction the output is directly calculated as
the radius 0 fingerprint; in the other direction, the output is
updated with the adjacency matrix through a “feature up-
date” operation. In this update operation, the member-role
matrix is updated so that each member’s 1-hop neighbors’
role distribution vectors are added to the corresponding row
of member-role matrix. In this way, the algorithm iterates
until a certain radius is reached. After each iteration, more
and more local structural information are captured.

Computational Cost Analysis The computation cost for
the Group-role neural fingerprint of depth R, fingerprint
length L of a social graph with N nodes that have F related
role features is O(RNFL + RNF 2). In practice, training
a GRNF with fingerprint length of 10 and convolution layer
sizes of (10× 10× 10) takes on the order of one minute for
each training batch which contains 100 social graphs on a
computer with 2.67Hz single-thread CPU and 96G RAM.

Combining Group-level and Internal Features We use
a deep neural network is used to combine group-level and
member-level features. It is a combination of our neural fin-
gerprints network with two Multilayer Perceptrons (MLPs).

Performance Evaluation
Dataset Description
Using the Meetup’s dataset API from its website, we
crawled all Meetup groups located within 50 miles of New

York City (NYC), from March 2003 to February 2015, in-
cluding all the related meta-data. Table 2 summarizes the
salient statistics of the collected dataset.

Name Value

Number of groups 17,234
Number of users 1,101,336
Number of events 1,025,719
Number of RSVPs 8,338,382
Number of venues 93,643
Avg. Members per group 274.13
Avg. Groups a user joins 3.54
Avg. Events per group 72.26
Avg. Participants per event 5.67
Avg. Events per active user 9.38

Table 2: Dataset Statistics

Group Popularity Prediction
Unlike the experiment settings introduced by (Liu and Suel
2016) and (Qiu et al. 2016), which include all groups of
different sizes and ages, we only focus on predicting future
RSVP numbers of new groups in each year. In our exper-
iments, features are extracted from the first three months
starting from the time when a newly formed group held
its first event. We then make prediction of the RSVP num-
ber within another time window of three months in the fu-
ture after a time interval ranging from one month to ten
months. The predicted RSVP numbers are tested against the
true RSVP numbers. We use the Root Mean Squared Er-
ror (RMSE) to measure RSVP prediction accuracy. After
filtering out the groups without valid information to calcu-
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Horizon
(months)

Baseline 1 Baseline 2 Proposed
Method

Gain over Best
Baseline (p-value)(best perf.) (best perf.) Baseline 3

0–3 83.92 94.61 103.53 74.78 10.90% (< 0.012)
1–4 89.85 101.31 105.44 80.32 10.61% (< 0.012)
2–5 99.81 107.45 107.64 88.62 10.68% (< 0.015)
3–6 106.15 113.11 108.71 95.96 8.53% (< 0.022)
4–7 103.91 108.74 108.61 99.84 3.91% (< 0.021)
5–8 117.58 111.13 108.32 96.69 10.73% (< 0.012)
6–9 114.38 117.28 117.28 99.85 12.69% (< 0.009)
7–10 126.52 139.67 126.41 110.83 12.32% (< 0.011)
8–11 133.41 150.28 138.61 118.07 11.51% (< 0.014)
9–12 137.75 139.36 140.54 122.04 11.39% (< 0.014)

10–13 143.83 151.24 153.67 126.86 11.42% (< 0.011)

Table 3: Prediction Accuracy (RMSE) Comparison with Baseline Methods

late the features, we have more than 7,000 new groups along
with their features and RSVP numbers. We randomly choose
6,000 groups and perform five-fold cross-validation to se-
lect the best hyper-parameters used in all the baselines and
GRNF algorithm.

Comparison with Baseline Methods We compare our
method which uses both group-level features and internal
features (shown in Table 1) with three competitive baselines:

• Baseline 1 (Liu and Suel 2016): in addition to meta in-
formation about the groups, it also uses the averaged
member-level features, such as “average event attendance
of members” and “standard deviation of event attendance
of members” etc.

• Baseline 2 (Qiu et al. 2016): it demonstrates that structural
features like triads counts and clustering coefficients have
strong predictive power for predicting the longevity of the
group’s lifecycle in an online social messaging network.

• Baseline 3 (Ribeiro 2014): it uses epidemic model of dif-
ferential equations to fit the evolution curve of group’s
popularity. One advantage of this model is that it provides
decent accuracy by only using the time series of daily ac-
tive users (DAU).

The results in Table 3 show that our final proposed
approach clearly outperforms all baselines in all predic-
tion horizons, ranging from predicting the average 3-month
RSVP numbers in the immediate next three months to pre-
dicting this quantity ten months after the last record in the
training data. As expected, for all methods, the error of pre-
dicting nearer future is smaller. Thus, it is important to con-
trast the accuracy gains of our method against all baselines,
which range from 3.91% to 12.32%.

Conclusion
In this paper, we proposed a deep neural network method to
predict the future popularity of groups in event-based social
networks. Our method outperformed all the state-of-the-art
methods. Along the way, we have analyzed a few key fac-
tors contributing the most to these predictions. Specifically,
we showed that location and time are important group-level

features. We also demonstrated that member roles and inter-
action among members with different roles, characterized by
neural fingerprints, can better represent the intrinsic member
behaviors and the social structure of a group than the raw
member features and the activity graph.
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