Proceedings of the Third International ICWSM Conference (2009)

From Episodes to Sagas: Understanding the News by Identifying Temporally
Related Story Sequences

Ramnath Balasubramanyan® Frank Lin*
William W. Cohen* Matthew Hurst’" Noah A. Smith*
*Language Technologies Institute, Carnegie Mellon University
fMicrosoft Corporation

Abstract

News interfaces are largely driven by recent information,
even if many events are better interpreted in context of previ-
ous events. To address this problem, we consider the task of
constructing an explicit representation of a “saga”—a long-
running series of related events. We define a timeline as a
concrete representation of a “saga” and we propose two unsu-
pervised methods for timeline construction and compare their
performance to hand-produced timelines using a tree edit dis-
tance measure. Preliminary results using these techniques on
a weblog corpus and a supplementary news corpus are pre-
sented, showing both promise and challenges.

Introduction: Why Timelines Are Useful

One limitation of most current news interfaces is that they
are largely driven by recent information: most of the user’s
attention is directed toward events of the last few hours or
even minutes. This leads to a view of current events which
is broad, but shallow, and many events are better interpreted
in context of previous related events.

The hypothesis behind our work is that it is useful to con-
struct representations of such “sagas”—i.e., long-running
sequences of related events. From an application perspec-
tive, we are interested in providing tools giving a reader the
complete narrative context of a given event. From a soci-
ological perspective, we are interested in finding out how
events are perceived, reported and synthesized in a number
of media types including news and weblogs.

To more precisely ground the problem we will propose a
simple model of events and their relationships. An event,
represented by a node in an event graph, has a time and du-
ration, and is described in some appropriate manner. The
edges in an event graph encode binary relations between
events. These relations could be simple temporal relation-
ships but could also capture causality or other deeper re-
lationships. While the general notion of an event graph is
useful, in this paper we focus on two special cases. One
special case is a simple timeline—i.e., a linear sequence of
events. In this work we will mine timelines from weblogs.
One potential advantage of using social media is that it pro-
vides information about the relative importance of events, as

Copyright (© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

179

perceived by members of a social community, thus provided
a more normative view of what events should be in a time-
line; likewise, social media provides information about the
appropriate granularity of events.

Challenges in Constructing Timelines

Our long-term goal is to automatically construct a cohesive
narrative for a “‘saga” that is easily accessible to the user and
that facilitates in-depth study of news on any topic. This
is a difficult task, because understanding which past stories
give the best context for an event is difficult, requiring many
subtle judgments about relevance, entity identity, and so on.
We will begin by proposing a precise notion of a timeline.

A timeline T'L is a sequence of event nodes ny,...,ng,
each of which corresponds to an event e;, by which we
mean, informally, something that happened in the “real
world.” Each event node n; has an associated time span t;,
indicating the duration of the associated event, and a textual
description gq;.

Given a particular corpus C' of documents, an event node
n; can also be associated with a binary classifier rz-c , which
labels each document in d € C' with an indicator as to
whether or not it is relevant to event ¢;. We will call r¢
an event classifier. A common way of summarizing a time-
line on the web is to provide, for each event node n;, the
time span, a description, and a small sample of relevant doc-
uments.

In summary, then, for this paper we will define a com-
plete timeline T (C') over a corpus C as a set of event nodes
ni,...,nk, each which has the following properties: 1) a
short textual description ¢;; 2) an associated real-world event
e;; 3) a time span t; indicating the duration of e;, where t;
is further defined by a start and end time; 4) an indication of
which documents d € C' are relevant to n;, represented as a
function r{’ (d), where 7;(d) = 1 iff d is relevant to n;; and
5) a sample S¢ of highly-relevant documents from C.

We use the term timeline completion for the task of
completing a partially-specified timeline. Each kind of
incompletely-specified timeline leads to a slightly different
technical different problem, many of which can be mapped
to well-studied tasks in learning, natural language process-
ing, and information retrieval. If only C' is given, then find-
ing ¢ is an unsupervised clustering problem, which we will

focus on in the remainder of this paper.

Corpora

The primary data we used in the experiments is a collection
of roughly 5.5 million blog posts published during the month
of May 2008. For the experiments described below, we fo-
cus on a subset of the corpus related to the US Presidential
Democratic primaries. The top 1000 or 2000 documents re-
turned by issuing the query “hillary obama” were used. The
news corpus comprising of the news stories linked to from
the blogs is also used in generative model approach.

Finding Timelines with Generative Models

A commonly used generative model for unsupervised clus-
tering of text is the mixture of multinomials. In this model,
each topic is represented by a multinomial distribution over
words. Each document is generated by such a multinomial
conditioned on the cluster it belongs to. An extension to
this model is the SpeClustering model, proposed by Huang
and Mitchell (Huang 2006). In this model, words in a docu-
ment are generated by either a topic specific distribution or a
general word distribution that captures the non topic specific
content in the document.

Here we extend the SpeClustering model by additionally
modeling the timestamps of the documents in the corpus.
Associated with each topic is a Gaussian distribution that
generates the timestamp of the document. For a corpus C'
with M documents, N; words in each document, p; being
the timestamp Vi=1, ..., M and T topics, the model has the
following parameters: ¢: multinomial over topics, (3: per-
topic distribution over words, (3,: general word distribution,
m: topic-specific binomial indicating the proclivity towards
using the topic specific distribution, [u, o]: per-topic Gaus-
sian parameters for timestamp distributions, z: topic vari-
able of a document, s: boolean variable which indicates
if the word was generated from the general word distribu-
tion or the topic specific distribution, ¢: observed timestamp
which indicates the time of the event reported in the docu-
ment, and w: observed word in the document.

A maximum likelihood estimate of the parameters that
maximizes the likelihood of observing the corpus can be ob-
tained by running an EM procedure.

Relationship to Other Models

Topics over Time (Wang and McCallum 2006) and Dynamic
Topic Models (Blei and Lafferty 2006) are more compli-
cated LDA-based models (Blei, Ng, and Jordan 2003) that
could also be used to induce topics (events) from blog cor-
pora. These models extend LDA by modeling the time of
generation of a document in addition to the contents of the
documents which is useful when topics are interpreted as
news events since time spans are integral to the notion of
an event. However, they treat documents as being generated
by mixtures of topics, whereas our model assumes that each
document is related to a single topic. We believe that this
stronger assumption is appropriate for the short news-driven
blog postings that dominate our corpus.

180

Date Cluster label

May 4 Obama wins Guam

May 5 IN and NC primaries

May 7 McGovern endorses Obama

May 8 Hillary claims wider support base
May 9 Obama superdelegate lead

May 14 | Edwards endorses Obama

May 20 | Hillary possible VP pick?

May 21 | Kentucky and Oregon primaries results
May 23 | Kennedy assassination gaffe

May 30 | James Carville backs Obama to win
May 31 | Obama resigns from his church

Table 1: Resultant clusters after running SpeCluster Over Time
(T=13). The cluster labels above were hand created after inspecting
the top 100 documents that were assigned to each cluster.

Results

The results of clustering using the SpeCluster Over Time
(SCOT) model are very sensitive to the initialization of the
multinomials due to the non-convex function optimized in
the EM procedure. This issue is especially evident in the Six
Apartblog corpus due to the wide range of topics involved in
each blog entry as compared to mainstream news stories. To
reduce variance in results caused by random initialization,
the experimental results are averaged over 10 runs. Another
method adopted to deal with the issue is to initialize the topic
distributions with the clusters obtained from clustering the
news stories, while performing inference on the SixApart
blog corpus. The belief is that the news clusters provide a
reasonable starting point. The news and blog corpora are
processed independently. Each document (a news article or
a blog post) is converted to a term vector. Terms that occur
fewer than five times in the corpus are discarded. Table 1
shows hand-created summaries of blog posts in each clus-
ter induced by SCOT (using the news corpus for initializa-
tion). The number of clusters is preset to 13 when running
the experiments. Results from two clusters were eliminated
since they primarily contained documents from non-English
blogs. Quantitative evaluation and discussion of these re-
sults are provided in a later section.

Finding Timelines Using Graph Clustering

In this section we describe methods based on link graph
of the blog posts instead of their textual content. The link
graph-based construction system we will describe is com-
posed of three components. The first component takes the
query and a time range from the user as input and returns
a ranked list of blog posts relevant to the topic. The sec-
ond component transforms the blog posts into a graph. The
third component, given the graph and a link-based clustering
algorithm, produces event-clusters with a date and a repre-
sentative document corresponding to each event.

Often URL links are found in blog posts; if we see each
post as a node and links from one post to another as an edge,
we can transform a set of posts into a graph. However, many
blog posts do not contain links to other blog posts, resulting
in a sparse graph. We find that instead blogs often link to
news articles, and if two or more posts link to the same arti-

Input: Transition matrix W, number of clusters k, telepor-
tation and restart probability «, (3.
Output: Clusters C, Ca, ...Cl.

1. Initialize cluster centers c5, c3, ..., ¢} and set t = 0.
2. Obtain w! using RW from c! with restart 3

3. Cluster each point a according to the walk vectors, where
a € O if x = argmaziwl(a).

4. Obtain new centers cf“ using RW with teleportation

probability « using the subgraph formed by nodes in C;.
5. If not converged, go to 2 and set t = ¢ + 1, else stop.

Figure 1: The K-walks algorithm.

cle, we add these links and articles as edges and nodes in the
graph to create a denser, mostly bipartite graph on which we
can run link-based clustering algorithms.

Time-based Graph Clustering

The proposed graph clustering method is based on random
walks on graphs, so we will first briefly describe it below
before moving on the to the clustering methods. Given a
graph G = (V, E), random walk algorithms return as out-
put a ranking vector r satisfying the following equation:
r = (1 — d)u + dWr where W is the weighted transition
matrix of graph G where transition from i to j is given by
W;; = 1/degree(i). u is a normalized teleportation vector
where |[u| = |V|] and ||u||; = 1. d is a constant damping
factor. The ranking vector r can be solved for by finding the
dominant eigenvector of (1 — d)(I — dW)~!u or iteratively
substituting r* with r'~! until r’ converges.

K-Walks The K-walks clustering method we propose here
is very similar to the K-means clustering algorithm but
uses random graph walk probabilities as distances between
nodes. Specifically, for calculating the center of a cluster of
nodes it uses PageRank (PR) (Page et al. 1998). For cal-
culating the distance between a node and a center it uses
random walk with restart (RWR) (Haveliwala, Kamvar, and
Jeh 2003; Tong, Faloutsos, and Pan 2006).

Seeding and Guiding Clustering Using Time K-walks
is an unsupervised clustering algorithm and can readily be
used on any graph. However, like original K-means algo-
rithm, there are two issues: first, we need the number of
clusters k, and second, poor initial cluster centers can result
in poor clustering. So instead of an arbitrary k£ and randomly
choosing initial centers, we use the time information avail-
able in blog data to help us choose k and the initial cluster
centers, the details are described in the next section.

To create initial seed clusters for specifying the number of
cluster and guiding the clustering algorithms, we make two
simplifying assumptions: 1) the blog posts published around
the same time are more likely to be about the same event,
and 2) only one major event happens at one discrete time
unit in the timeline. With these two assumptions in mind,
we take the blog posts returned by the search query and plot
the number of posts published against a discrete time unit—a

181

Date Cluster label

May 4 Obama wins Guam, “obliterate Iran” remark
May 8 Hillary claims wider support base

May 9 Obama superdelegate lead

May 14 | Edwards endorses Obama

May 21 | Hillary’s soaring debt, Hillary possible VP
May 24 | Kennedy assassination gaffe

Table 2: Resultant clusters after running K-walks. The cluster
labels above were hand created after inspecting the top 10 blog
posts that were assigned to each cluster.

day. From this plot we can then define peaks: a peak occurs
when the number of posts published on a time unit is greater
or equal to the number of posts published in the previous
time unit and the following time unit. Using this definition,
we set the number of clusters to be the number of peaks and
the seed instances of a cluster to be all posts published within
the time unit of the corresponding peak.

Results

The top 1000 blog posts returned by the search engine with
the query “Hillary Obama” are used to construct the graph.
After filtering out pointer posts (posts with more than five
links and no content), duplicate posts, and posts that are not
colinked to another post, the remaining posts and articles
linked by the posts are transformed in to a graph of roughly
300 nodes. We use the conventional restart and teleportation
factor « = 8 = 0.15 for random walk parameters. The re-
sulting blog post clusters are examined by human and hand-
assigned a label or labels as to which event(s) each cluster
corresponds to, shown in Table 2.

Quantitative Evaluation
Hand-produced timelines

To evaluate these results, three of the authors hand-produced
timelines for Democratic primary subcorpus that indicated
the most important events of May 2008. The timelines were
fairly minimal, consisting of a description and a timespan
for each event. In addition, events were linked by an inclu-
sion relationship, as described below. The timelines were
produced independently (i.e., without consultation between
annotators), and the annotators were encouraged to use their
background knowledge of the domain, as well as examina-
tion of the corpus, in preparing the timeline.

We expected that disagreements would arise from several
different sources. Most obviously, there are many ways to
describe the same event: e.g., “John Edwards announces
endorsement of Barack Obama” versus “Edwards backs
Obama.” Another type of possible disagreement concerns
which events are “most important.” Yet another type of dis-
agreement concerns the granularity of events. Finally, an-
notators might disagree on the very definition of an “event.”
In many cases, clusters of text are related to events that inar-
guably take place in the “real world” (e.g., primary elec-
tions); however, it is also possible to have clusters of blog
postings that are initiated by postings from influential blog-
gers, pundits, or political figures.

Al A2 A3 | Avg

Al 0.84 0.56 | 0.70

A2 0.84 0.52 | 0.68

A3 0.56 0.52 0.54

k-walks 044 0.61 048 | 0.51
SpeCluster

—init,—prior | 0.58 0.55 0.40 | 0.51

~+init,—prior | 0.54 0.48 0.34 | 0.46

—init,+prior | 0.74 0.84 0.54 | 0.74

+init,+-prior | 0.76 0.80 0.57 | 0.71

Table 3: Pairwise agreement between annotators and algorithms.
+/-init indicates whether or not the news data was used to initialize
the SpeCluster method, and +/-prior indicates the presence or the
absence of the inverse gamma prior. In the case of -init, the results
are averaged over 10 runs with random initialization

Of course, all of these sorts of inter-annotator disagree-
ment may also arise in comparing human-provided annota-
tions with computer-generated annotations. In order to con-
trol for, and potentially measure, the contribution of these
various sources of disagreement, annotators were encour-
ages to record events at various levels of granularity, and
to indicate when a more abstract event included one or more
concrete events; hence the human timelines were actually
event trees, rather than linear sequences of events.

The hand-produced timelines had between 16 and 21
events, with a fairly large amount of variation between an-
notators: only nine events were selected by more than one
annotator, and only 3-4 were selected by all three.

Tree Edit-Distance Evaluation

To more quantitatively measure agreement, we adopted a
variation of an approach widely used in computational bi-
ology: in particular we wrote code to align two event trees
s and ¢ by finding the minimal sequence of “edits” that will
transform s into ¢; the details of the algorithm are found in
the appendix.

Inter-annotator agreement with this measure averages
0.64 for the three pairs of annotators, with agreement val-
ues ranging between 0.84 and 0.52. For the k-walks time-
line, agreement to the human annotators averages 0.51, with
a minimal values of 0.44 and a maximum value of 0.61.

The results of the initial probabilistic clustering were
harder to interpret, because they did not form a tree—instead
the algorithm produced two clusters that were highly coher-
ent topically, but not temporally compact. If these clusters
are manually deleted the average agreement is 0.46, with a
minimum of 0.34 and a maximum of 0.54. Alternatively,
the algorithm can be modified by imposing a prior on the
variance of times for each cluster. Doing so improves the
average agreement to 0.71, with a minimum value of 0.57
and a maximum value of 0.80—a result slightly better than
the average intra-annotator agreement.

Surprisingly, we notice that initializing the EM procedure
with the results of clusters obtained from the news corpora
yields worse results than initializing randomly in all cases
but one. These results are summarized in Table 3.

182

Conclusions

In this paper this we addressed the task of producing ex-
plicit representations of “sagas”. To do this we considered
two alternative unsupervised methods - one based on prob-
abilistic language models, and one based on network analy-
sis. We evaluated these both qualitatively (in Tables 1 and
2) and quantitatively, by measuring agreement with human-
provided annotations. Quantitatively, both techniques are
broadly comparable to human-produced annotations; how-
ever, this is true partly because human agreement is rela-
tively low for this task. This suggests further study of “’time-
line completion” tasks in which more information is pro-
vided by the user; such semi-automatic approaches may pro-
duce timelines that better agree with the goals of a particular
user.

References

Blei, D. M., and Lafferty, J. D. 2006. Dynamic topic models. In
ICML 2006.

Blei, D. M.; Ng, A. Y.; and Jordan, M. I. 2003. Latent dirichlet
allocation. JMLR 3:993-1022.

Haveliwala, T.; Kamvar, S.; and Jeh, G. 2003. An analytical
comparison of approaches to personalizing pagerank. Technical
report, Stanford University.

Huang, Y. 2006. Text clustering with extended user feedback. In
SIGIR 2006.

Page, L.; Brin, S.; Motwani, R.; and Winograd, T. 1998. The
PageRank citation ranking: Bringing order to the web. Technical
report, Stanford Digital Library Technologies Project.

Tong, H.; Faloutsos, C.; and Pan, J.-Y. 2006. Fast randomwalk
with restart and its applications. In /CDM 2006.

Wang, X., and McCallum, A. 2006. Topics over time: a non-
markov continuous-time model of topical trends. In KDD 2006.

Appendix: Tree Edit-Distance

We ignore the text descriptions for events, and only attempt to align the times. We
assume that s and ¢ are both sequences of event trees, which are of depth at most
two (i.e., are primitive events, or abstract events with primitive events as children),
and allow two three operations: deletion of an event tree, modification of the time
of an event tree, or replacement of a depth-two tree with its children. Replacement
has cost zero, and deletion has cost 1 for top-level events and primitive events, cost
0.1 for second-level events, and deletion cost is decreased by an additional factor of
0.5 for discourse events. Modifying a time (either a start-time or an end-time) has
cost 0.01 - 10" for a k-day change—i.e., the cost is only 0.1 for a one-day change,
but 1 for a two-day change, and 10 for three-day change. This schedule was based
on the observation that annotators rarely disagree by more than one day. Finally,
to account for the effect of varying length, this edit distance cost is normalized by
the cost of deleting every event in both s and ¢, and subtracting the result from 1.0.
This yields an agreement measure between 0.0 and 1.0 (where 1.0 indicates a perfect
alignment, and 0.0 indicates that no event from s can be usefully aligned with any
event in ¢). One disadvantage of this approach is that, since the description of events
is ignored in computing edit distance, two distinct events that happen to occur at the
same time may be incorrectly aligned. We will ignore this issue in the discussions
below; however, manual inspection of aligned events suggest this sort of mismatch
is rare for event trees with high agreement, and more common for event trees with
low agreement, suggesting that the effect is unlikely to change the relative ordering of

agreement between two techniques.

